Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uisek.edu.ec/handle/123456789/3990
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRubio-Aguilar, Jefferson-
dc.contributor.authorToapanta-Lema, Alejandro-
dc.contributor.authorGallegos, Walberto-
dc.contributor.authorLlanes-Cedeño, Edilberto-
dc.contributor.authorCarrascal-García, Jorge-
dc.contributor.authorGarcía-López, Letty-
dc.contributor.authorRosero-Montalvo, Paul D.-
dc.date.accessioned2020-09-28T16:45:23Z-
dc.date.available2020-09-28T16:45:23Z-
dc.date.issued2020-03-03-
dc.identifier.citationPUB R896r/2020es
dc.identifier.isbn978-3-030-42519-7-
dc.identifier.urihttps://repositorio.uisek.edu.ec/handle/123456789/3990-
dc.description.abstractConsumption forecast models with their proper billing allow establishing strategies to avoid overloads in systems and penalties for high consumption. This paper presents a comparison of multivariate data prediction models that allow detecting the final monthly cost of electricity consumption in relation to the different billing parameters. As relevant results, it was obtained that the models based on decision support machines have a better sensitivity when compared with different metrics that evaluate the prediction error with training set improved by backward elimination criteria.es
dc.description.sponsorshipUisekes
dc.language.isoenges
dc.publisherSpringerLinkes
dc.rightsopenAccesses
dc.subjectREGRESSION MODELSes
dc.subjectELECTRIC CONSUME PREDICTIONes
dc.titleRegression Models Comparison for Efficiency in Electricity Consumption in Ecuadorian Schools: A Case of Studyes
dc.typeinfo:eu-repo/semantics/bookchapteres
Aparece en las colecciones: Publicaciones UISEK

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
978-3-030-42519-7 RUBIO JEFFERSON 2020-03-03.pdf123,67 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.