

TESIS DE GRADO PREVIO A LA OBTENCIÓN DEL TÍTULO DE MAESTRÍA EN GESTIÓN AMBIENTAL

CARACTERIZACIÓN DE COMUNIDADES DE DIATOMEAS EPILÍTICAS DEL RÍO CARIHUAYCU PARA LA IDENTIFICACIÓN DE ESPECIES BIOINDICADORAS DE EUTROFIZACIÓN

Joffre Ivan Molina Espinoza

INTRODUCCIÓN

Cuerpos hídricos tienen acumulación materia orgánica, nutrientes eutrofización

Desequilibrio

ecológico

El ICA determina cuantitativamente estado de un cuerpo hídrico con parámetros físicos, químicos y microbiológicos.

Bioindicadores:
ubicuidad,
cosmopolitanismo,
sensibilidad,
diversidad,
facilidad de
muestreo.

OBJETIVOS

- •Determinar ICA: parámetros físicos, químicos, biológicos
- •Establecer diversidad, riqueza y equidad
- ·Identificar especies diatomeas en río Carihuaycu
- •Determinar ITCA: especies diatomeas bioindicadoras

METODOLOGÍA: Campo y Laboratorio

Recolección de muestras

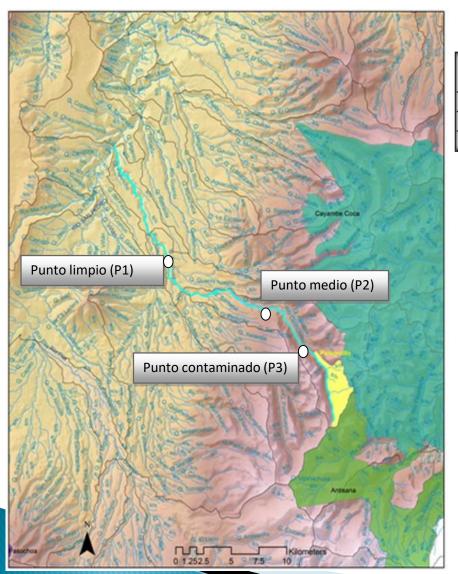

Medición parámetros in situ

Almacenamiento de muestra

Recolección de diatomeas

Almacenamiento de diatomeas

Preparación de diatomeas



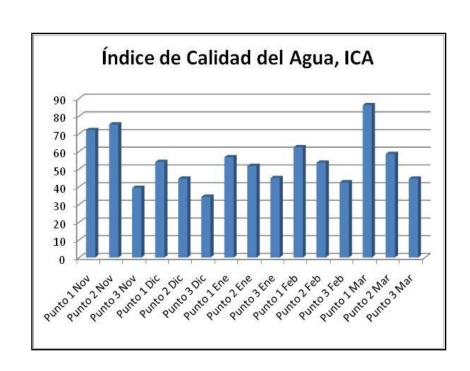
Montaje de placas

Identificación y conteo de diatomeas

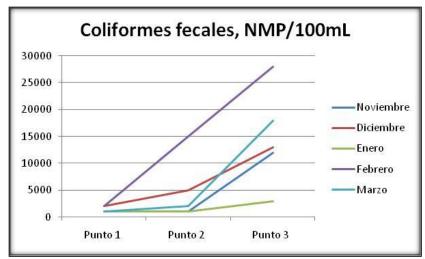
ÁREA DE ESTUDIO: RÍO CARIHUAYCU

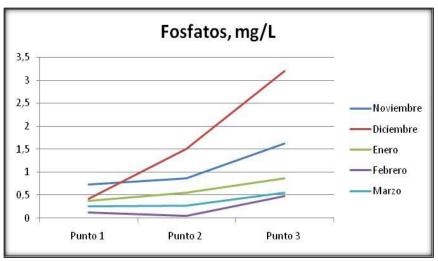
Nombre	Punto de	Ubicac	ión	Altitud	Observación	
Nombre	muestreo	Latitud	Longitud	Aitituu	Observacion	
Sierra Virgen	Punto 1	17M 0807256	9966399	3648 m	Punto limpio	
Mulauco	Punto 2	17M 0798984	9971729	2794 m	Punto medio	
Palugo	Punto 3	17M 0796398	9972516	2585 m	Punto contaminado	

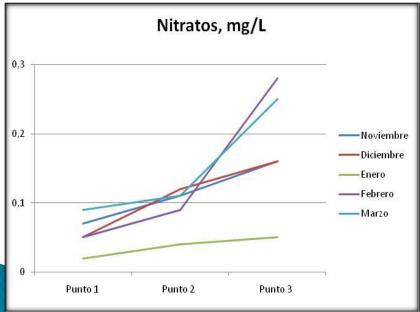
RESULTADOS: Físico, químico, microbiológico


MES	PUNTOS	ΔT (÷C)	рН	CE (uS/cm)	OXIGENO DISUELTO (mg/L)	SOLIDOS TOTALES DISUELTOS mg/L)	DBO (mg/L)	TURBIDEZ (NTU)	FOSFATOS (mg/L)	NITRATOS (mg/L)	COLIFORMES (NMP/100 mL)
	P1	12,9	7,17	14,7	7,16	28	2,43	2	0,74	0,16	1000
NOV	P2	13,2	7,19	107	7,48	35	4,52	2,2	0,88	0,07	1000
	P3	14,6	7,2	121,9	7,14	168	7,48	6,5	1,63	0,11	12000
	P1	11,6	7,23	32	6,61	170	3,36	5,4	0,42	0,05	2000
DIC	P2	12,9	7,44	51,4	7,62	140	4,21	5,8	1,5	0,12	5000
	P3	15,4	7,31	54,6	7,01	164	5,14	7,2	3,2	0,16	13000
	P1	8,6	7,7	43,8	7,18	36	4,8	7,8	0,37	0,02	1000
ENE	P2	11,6	7,9	51,9	8,07	43	5,62	27	0,55	0,04	1000
	P3	12,4	7,8	71,7	8,01	41	6,48	30	0,86	0,05	3000
	P1	11,1	7,89	85,6	6,92	78	4,95	2,3	0,124	0,05	2000
FEB	P2	12,8	8,21	96,5	8,01	78	8,5	2,05	0,055	0,09	15000
	P3	17,2	7,96	122,2	7,96	115	8,63	9,78	0,479	0,28	28000
	P1	10,1	7,19	134,6	6,53	11	6,78	3,53	0,264	0,09	1000
MAR	P2	12,3	7,7	112,8	6,84	33	5,58	2,71	0,283	0,11	2000
	P3	13,8	7,72	135,2	7,07	122	9,78	4,07	0,551	0,25	18000

Parámetros físicos-químicos obtenidos in situ y ex situ


RESULTADOS: Índice Calidad del Agua


Punto	ICA	Clasificación	
Punto 1	55,98	Regular	
Punto 2	47,34	Mala	
Punto 3	38,52	Mala	


Evaluación de puntos de muestreo IQAData

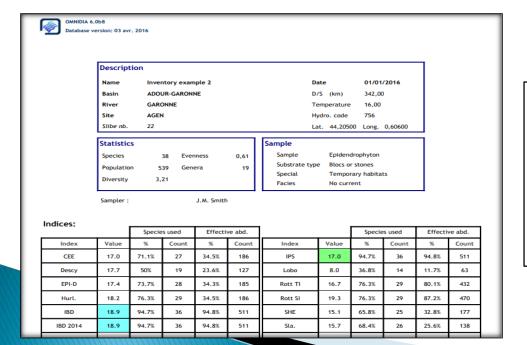
RESULTADOS: ICA

Coliformes fecales, fosfatos, y, nitratos entre los parámetros más relevantes para el Índice de Calidad del Agua.

RESULTADOS: Especies bioindicadoras

Especie		Valor trófico (VT)	Abundancia relativa (%)	Σ(VTxH)
Achnanthidium minutissimum (Kützing) Czarnecki	86	5	6,32	31,59
Achnanthidium rivulare Potapova & Ponader	65	4	4,78	19,10
Encyonema minutum (Hilse) D. G. Mann	90	1	6,61	6,61
Encyonema silesiacum (Bleisch) D. G. Mann		1	5,95	5,95
Luticola goeppertiana (Bleisch) D. G. Mann	66	1	4,85	4,85
Navicula gregaria Donkin	141	3,4	10,36	35,22
Navicula lanceolata Ehrenberg	255	3,8	18,74	71,20
Nitzschia inconspicua Grunow	149	2,8	10,95	30,65
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot	428	4	31,45	125,79
	1361		100,00	316,65

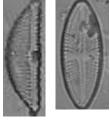
54 especies en total: 3 especies abundantes en punto 1

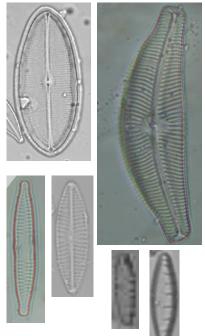

55 especies en total: 6 especies abundantes en punto 2

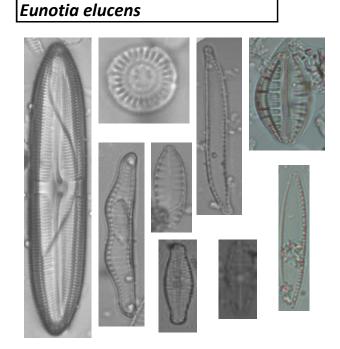
Especie		Valor trófico (VT)	Abundancia relativa (%)	Σ(VTxH)
		trolico (VI)	relativa (%)	
Cocconeis euglypta Ehrenberg		3,6	11,70	42,10
Encyonema minutum (Hilse) D. G. Mann	87	1	5,38	5,38
Encyonema silesiacum (Bleisch) D. G. Mann	41	1	2,54	2,54
Fragilaria vaucheriae (Kützing) J.B.Petersen		3,4	2,78	9,47
Navicula cryptotenella Lange-Bertalot		4	2,91	11,63
Navicula gregaria Donkin		3,4	19,49	66,27
Navicula lanceolata Ehrenberg		3,8	17,08	64,90
Nitzschia inconspicua Grunow		2,8	6,13	17,15
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot		4	31,99	127,97
	1616		100,00	347,43

RESULTADOS: Especies bioindicadoras

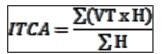
Especie	Total	Valor trófico (VT)	Abundancia relativa (%)	Σ(VTxH)
Cocconeis euglypta Ehrenberg	68	3,6	4,32	15,56
Luticola goeppertiana (Bleisch) D. G. Mann	139	1	8,84	8,84
Navicula gregaria Donkin	399	3,4	25,37	86,24
Navicula lanceolata Ehrenberg	215	3,8	13,67	51,94
Nitzschia clausii Hantzsch	127	2,8	8,07	22,61
Planothidium lanceolatum (Brébisson ex Kützing) La	78	4,6	4,96	22,81
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot	547	4	34,77	139,10
	1573		100,00	347,09


49 especies en total: 9 especies abundantes en punto 3


Ejemplo de OMNIDIA. Valor trófico es sustituido por IPS


RESULTADOS: Especies bioindicadoras

Punto 1	Punto 2	Punto 3
Encyonema minutum	Cocconeis euglypta	Nitzschia clausii
Encyonema silesiacum	Fragilaria vaucheriae	Planothidium lanceolatum
Luticola goeppertiana	Navicula cryptotenella	Nitzschia palea
	Nitzschia inconspicua	Caloneis silícula
	Grunowia solgensis	Discotella pseudostelligera
BO	Cymbella tumida	Rophalodia gibberula
11 LA		Surirella angusta
		Planothidium haynaldii



RESULTADOS: Índice Trófico Calidad Agua

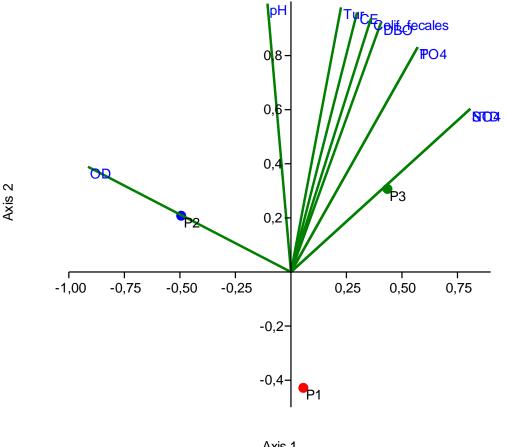
ITCA	Niveles de contaminación
1,0 - 1,5	Oligotrófico (contaminación despreciable)
1,5 - 2,5	β - mesotrófico (contaminación moderada)
2,5 - 3,5	α - mesotrófico (contaminación fuerte)
3,5 - 4,0	Eutrófico (contaminación excesiva)

Punto muestreo	ITCA	Nivel de contaminación
Punto 1	3,2	α-mesotrófico
Punto 2	3,5	eutrófico
Punto 3	3,5	eutrófico

Punto 1: contaminación fuerte

Punto 2: contaminación excesiva

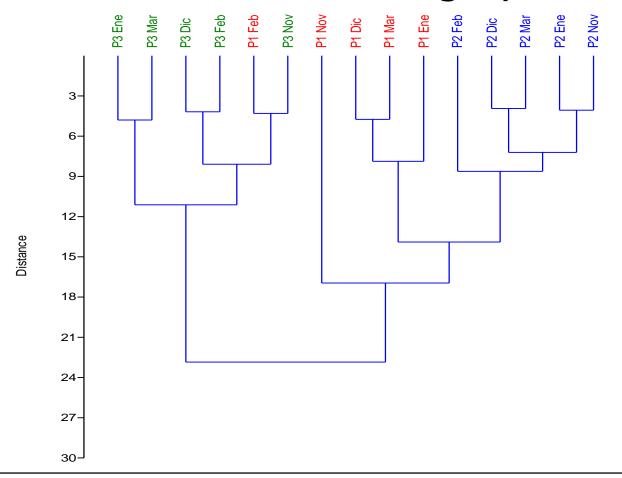
Punto 3: contaminación excesiva


RESULTADOS: Diversidad, riqueza y equidad

Dunto muostroo	Riqueza	Índice	Equidad	Equidad
Punto muestreo	específica	Shannon	Shannon	Hill
Punto 1 (limpio)	54	3,02	0,76	0,66
Punto 2 (medio)	55	2,6	0,65	0,57
Punto 3 (contaminado)	49	2,53	0,65	0,56

Punto 1 tiene mayor diversidad, es decir, comunidad diatomeas más heterogénea; mayor equidad, es decir, menor cantidad de especies dominantes.

Punto 2 tiene mayor riqueza de especies


RESULTADOS: Análisis canónico de correspondencia

Axis 1

El Punto 3 se encuentra en aguas contaminadas caracterizadas por altos valores de CE, DBO, fosfatos, nitratos, turbidez y coliformes fecales, el Runto 2, caracterizado por alta concentración de oxígenos disuelto. Se caserva grado de eutrofización en puntos muestreados.

RESULTADOS: Análisis de agrupamiento

Se observan 4 clusters: similitud entre los muestreos del Punto 2 y del Punto 3. El Punto 1, en el muestreo de febrero presenta similitud con muestreos de Punto 3; y, el Punto 1 en muestreo de noviembre presenta poca similitud con los demás muestreos de Punto 1.

CONCLUSIONES

- Según el ICA los puntos P1, P2 y P3 se consideran como regular, mala y mala calidad.
- Según bioindicadores el puntos P1 se considera como αmesotrófico, y los puntos P2 y P3 se consideran como eutrófico.
- Se identificaron 71 especies en los tres puntos.
- Las especies *Roichosphenia abbreviatta, Navícula lanceolata, Navícula gregaria,* son <u>especies plásticas</u>.
- Se encontró mayor heterogeneidad de especies en el punto P1, además de mayor equidad. Punto 2 presentó mayor riqueza.

CONCLUSIONES

- Especies raras. En el punto 1: Achnanthidium exiguum,. Cymbella tumida, Diatoma mesodon, Eunotia minor, Eunotia elucens, Fragilaria rumpens, Luticola nivalis, Gomphonema capitatum, Gomphonema laticollum. En el punto 2 se encontraron: Diploneis subovalis, Fragilaria gracilis, Grunowia solgensis, Luticola peguana, Melosira varians, Planothidium haynaldii. En el punto 3 se encontraron: Caloneis silícula, Nitzschia liebethruth,, Discotella pseudostelligera, Rophalodia gibberula, Surirella angusta, Cyclotella meneghiniana, Halamphora montana.
- Se encontró diferencia en el valor trófico asignado en bibliografía (Lobo *et al,* 2016), (Lobo & Heinrich, 2016) y valores de IPS (OMNIDIA, 2017) debido a condiciones propias de ríos ecuatorianos.
- Las especies identificadas y su valor trófico pueden aportar para considerar un índice biológico de calidad de aguas para el Ecuador.
- Se evidenció condiciones teratológicas (Olenici *et al.*, 2016) en especies como *fragilaria arcus*, ciertas deformaciones en el frústulo que pueden considerarse por presencia de metales pesados.

RECOMENDACIONES

- Para obtener información más fiable de acuerdo a las condiciones particulares de nuestros ríos en Ecuador en cuanto a ICA, se debería replantear nuevas ponderaciones de los parámetros físicosquímicos.
- Una limitante importante en taxonomía es la poca información existente en bibliografía referente a vistas pleurales para identificar especies.
- Considerar en posteriores estudios particularidades existentes en morfologías de taxones identificados, por ejemplo cambios en el contorno de una fragilaria arcus o Roichosphenia abbreviata que pueden basarse en condiciones teratológicas.

REFERENCIAS

- American Public Health Association. APHA. (2005). Standard Methods for the examination of water and wastewater. 21a Ed. 9222B Standard Total Coliform Membrane Filter Procedure.
- Baird, C., (2004). Química Ambiental. University of Western Ontario. Editorial Reverté. S.A. Barcelona. España.
- Benito, X., Feitl, M., Fritz, S., Mosquera, P., Schneider, T., Hampel, H., Quevedo, L., Steinitz-Kannan, M. (2019). Identifying temporal and spatial patterns of diatom community change in the tropical Andes over the last c. 150 years. https://doi.org/10.1111/jbi.13561
- Blanco, S., (2010). Generador de números aleatorios para recuentos en microscopía óptica. León. España.
- Blanco, S., Blanco, I., Cejudo-Figueiras, C., Bécares, E. (2010). Guía de las diatomeas de la cuenca del Duero. Valladolid. España.
- Battarbee, R. (1986). Diatoms analysis. Berglund. Handbook of Holocene Paleohydrology. New York.
- Castro, D., (2009). Desarrollo de un índice de diatomeas perifíticas para evaluar el estado de los humedales de Bogotá. Universidad Nacional de Colombia.
- Coral, K., (2013). Evaluación y control de la contaminación de aguas residuales. UISEK.
- De La Torre, E., (2009). Contaminación hídrica y su control.
- García, Q., (2012). Propuesta de índices de calidad de agua para ecosistemas hídricos de Chile.
- Granizo, F., (2011). El Estado Trófico de la Laguna de Limoncocha en el periodo (febrero 2010 enero 2011). Quito. UISEK.
- Hernández, S., (2012). Indicadores biológicos de calidad de las aguas superficiales de la subcuenca del río Viejo, utilizando fitobentos (diatomeas). Revista Universidad y Ciencia.
- Instituto de Investigaciones Marinas y Costeras. INVEMAR. (2003). Manual de Técnicas Analíticas para la determinación de parámetros físicoquímicos y contaminantes marinos. Santa Martha. Colombia.
- Lobo, E.A., Wetzel, C.E., Schuch, M., Ector, L., (2014). Diatomáceas Epilíticas como indicadores da qualidade da agua em sistemas lóticos subtropicais e temperados brasileiros. Santa Cruz do Soul. EDUNISC.
- Lobo, E.A., Schuch, M., Heinrich, C.E., Da Costa, A., Düpont, A., Wetzel, C.E., Ector, L., (2015). Development of The Trophic Water Quality Index (TWQI) for Subtropical

REFERENCIAS

- Lobo, E.A., Heinrich, C.E., Schuch, M., Wetzel, C.E., Düpont, A., Da Costa, A., Ector, L., (2016). Índice Trófico de qualidade da agua: Guia Ilustrado para sistemas lóticos subtropicais e temperados brasileiros. EDUNISC.
- Metzeltin, D., & Lange-Bertalot, H. (1998). Tropical diatoms of South America, about 700 predominantly rarely known or new taxa representative of the neotropical flora. Königstein: Koeltz Scientific Books.
- Metzeltin, D., Lange-Bertalot, H., & García-Rodríguez, F. (2005). Diatoms of Uruguay. Compared with of othertaxa from South america and elsewhere. Iconographia Diatomologica. Ruggsell. Uruguay.
- Moretto, D., L., Panta, R., E., Da Costa, A., B., Lobo, E., A. (2012). Calibration of water quality index (WQI) based on Resolution No. 357/2005 of the Environmental National Council (CONAMA).
- Necchi, JR., O., (2016). River Algae. Sao Paulo. Brasil.
- Olenici, A., Borrego-Ramos, M., Blanco, S., Momeu, L., Baciu, C. (2017). Evaluación del efecto de los metales pesados sobre las diatomeas bentónicas en Rosia Montana (Rumanaia) mediante geometría morfométrica.
- OMNIDIA, Omnidia software for taxonomy, calculation of diatom índices and inventories management. V.6.0.2. 2017 http://www.omnidia.fr
- Posselt, E., Da Costa, A., Lobo, E. (2011). Software IQAData. UNISC. Santa Cruz do Sul. Brasil.
- Rosero, K., (2106). Establecimiento de un índice biótico para determinar la calidad de aguas de los ríos andinos presentes en el Ecuador basado en poblaciones de diatomeas epilíticas. Quito. Ecuador.
- Secretaría de Medio Ambiente y Recursos Naturales. Semarnat (2007). Índice de Calidad del Agua General "ICA".
- Stigliani, T.S., (2004). Química Medioambiental (2da Ed.). España. Pearson Educación S.A.
- Wright, B.N., (1999). Ciencias Ambientales. Ecología y Desarrollo Sostenible. México. Prentice Hall.
- Tucci, C., (2009). Plan de manejo integrado de los recursos hídricos en la cuenca alta del río
- Guayllabamba. BID. FONAG.
- Tundisi, J., G., (2014). Recursos hídricos no Brasil, problemas, desafíos e estratégias para o futuro. Rio de Janeiro.
- Uvillús, S., (2017). Caracterización de la composición florística de diatomeas epilíticas asociadas al grado de eutrofización en el río "La Compañía" del cantón Mejía. Universidad SEK.

GRACIAS POR LA ATENCIÓN