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Abstract—This paper presents the implementation of a 

facial-identity and -expression recognition mechanism that 
confirms or negates physical and/or computational actuations 
in an intelligent built-environment. Said mechanism is built via 
Google Brain’s TensorFlow (as regards facial identity 
recognition) and Google Cloud Platform’s Cloud Vision API 
(as regards facial gesture recognition); and it is integrated into 
the ongoing development of an intelligent built-environment 
framework, viz., Design-to-Robotic-Production & -Operation 
(D2RP&O), conceived at Delft University of Technology (TUD). 
The present work builds on the inherited technological 
ecosystem and technical functionality of the Design-to-Robotic-
Operation (D2RO) component of said framework; and its 
implementation is validated via two scenarios (physical and 
computational). In the first scenario—and building on an 
inherited adaptive mechanism—if building-skin components 
perceive a rise in interior temperature levels, natural 
ventilation is promoted by increasing degrees of aperture. This 
measure is presently confirmed or negated by a corresponding 
facial expression on the part of the user in response to said 
reaction, which serves as an intuitive override / feedback 
mechanism to the intelligent building-skin mechanism’s 
decision-making process. In the second scenario—and building 
on another inherited mechanism—if an accidental fall is 
detected and the user remains consciously or unconsciously 
collapsed, a series of automated emergency notifications (e.g., 
SMS, email, etc.) are sent to family and/or care-takers by 
particular mechanisms in the intelligent built-environment. 
The precision of this measure and its execution are presently 
confirmed by (a) identity detection of the victim, and (b) 
recognition of a reflexive facial gesture of pain and/or 
displeasure. The work presented in this paper promotes a 
considered relationship between the architecture of the built-
environment and the Information and Communication 
Technologies (ICTs) embedded and/or deployed. 
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I.  INTRODUCTION 
This paper is part of a series of discrete—yet 

incremental—developments that promote Design-to-Robotic-
Production & -Operation (D2RP&O) [1] strategies as 
effective alternatives to those of Ambient Intelligence (AmI) 
[2] / Ambient Assisted Living (AAL) [3] in enabling 

intelligent built-environments. AmI’s / AAL’s approach—as 
evidenced by a sampling of its literature (e.g., [3–5])—
centers around the development of solutions based on 
Information and Communication Technologies (ICTs), 
where Architecture, Engineering, and Construction (AEC) 
considerations—if entertained—are relegated to the 
periphery. This results in ICT-based solutions whose 
sophistication surpasses that of the built-environment’s 
within which they are to be deployed, which often entails 
high installation costs [6] associated with retrofitting and/or 
late-stage AEC modifications. Furthermore, according to a 
recent review, there is no evidence that AmI- / AAL-based 
smart home technologies contribute to health-related quality 
of life [7]. 

While D2RP&O subsumes AmI’s objective to promote a 
vision of the future dwelling space as a digital living room 
empowered by embedded-technologies and capable of 
promoting user-wellbeing, it differs in its emphasis on early-
stage integration of both AEC considerations and ICTs. That 
is, with respect to AEC, D2RP considers composition, form, 
optimization, robotic fabrication, and integration of 
materially heterogenous components partially informed by 
intended ICT-based mechanisms / services. With respect to 
ICTs, D2RO considers technical and technological systems 
pertaining to computational / robotic services to be deployed 
in the resulting D2RP-informed built-environment. 
Consequently, decisions adopted in the AEC domain are 
considered in the computational / robotic and vice versa, 
resulting in a highly deliberate design strategy where neither 
form / space nor ICT-based mechanisms / services (physical 
and computational) are incidental with respect to one 
another. In this manner, the architecture of a built-
environment functions as a fundamental support to its ICT-
based mechanisms / services and vice-versa, while the built-
environment as a unified whole promotes user-wellbeing. 

The present implementation inherits the latest iteration of 
the system architecture developed by the authors [8], one that 
considers the built-environment as a highly heterogenous yet 
cohesive Cyber-Physical System (CPS). At the core of this 
CPS lies a self-healing and meshed Wireless Sensor and 
Actuator Network (WSAN) that correlates sensed or input 
data (environmental, user-based, or cloud-service provided) 
with physical and computational adaptations in the built-
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environment—and vice versa—in order to enhance the 
user(s) quality of life via a variety of mechanisms / services. 
Two of these mechanisms / services are presently expanded 
to integrate a facial-identity and -expression recognition 
mechanism implemented via Google Brain®’s TensorFlow™ 
[9] and Google Cloud Platform®’s Cloud Vision API [10], 
respectively, in order to confirm or to negate actuations 
effected by their automated decision-making processes.  

The first one is a mechanism that drives adaptive and 
context-aware building-skin components [11] that adapt to 
interior and exterior environmental conditions as a swarm—
that is, where the action / reaction of one affects and is 
affected by the reaction of all in a manner proportional to 
proximity and predetermined influence. In this first 
mechanism, the facial-identity and -expression recognition 
feature enables it to identify who reacts to and what [facial 
expression] is elicited by a particular actuation and to decide 
accordingly whether to continue or stop with said actuation 
depending on the user’s known preferences and his/her 
particular facial expression. The second is a mechanism that 
drives a fall detection and intervention solution [12] that 
detects collapsed users in a given space and proceeds to 
notify family and care-takers via automated SMS and email 
messages. In this second mechanism, the facial-identity and -
expression recognition feature enables it to identify who falls 
and with what [facial expression] in order to determine the 
urgency of the event and to react accordingly.  

The objective of these expansions is to increase the 
efficacy of the inherited mechanisms by demonstrating that 
the facial identification and expression recognition 
mechanism developed in this paper enhances the decision-
making processes of the two inherited mechanisms by 
enabling them to detect and to factor subtle facial reactions 
to particular actuations, which ascertain precision, 
intuitiveness, and appropriateness of the actuations in 
question.  

II. CONCEPT AND APPROACH 
As detailed in the Introduction, the present 

implementation inherits a previously developed system 
architecture [8] whose WSAN enables the two mechanisms 
presently expanded. While it is not pertinent to describe this 
system architecture in detail here, in the following 
subsections a summary of the mechanisms in question is 
provided, followed by an explanation of the role of facial-
identity and -expression recognition in their enhanced 
functionality. Incidentally, it may be noted that facial 
identification and recognition mechanisms have been 
implemented in intelligent built-environments for a variety 
of purposes (e.g., [13]). But one overarching innovation of 
the present implementation is that an instance of such 
mechanisms is used to confirm or negate actuations in the 
built-environment in an intuitive and nuanced manner, 
thereby enhancing the way the user(s) interact with their 
intelligent built-environment. Furthermore, and with respect 
to technical and technological innovation, the present 
implementation adopts a modular and distributed approach 
where the facial identification component is independent of 
yet interrelated with the facial expression recognition 

component, with the former being driven by limited and 
cost-effective local resources and the latter by powerful and 
proprietary cloud-based resources. That is, the approach 
attempts to allocate and distribute adequate resources for the 
demands of each component in a way that the successful 
performance of one does not interfere with that of the other, 
even as they are executed in parallel. This is an important 
point, as in both scenarios of expansion of inherited 
mechanisms involve both facial recognition components 
running in tandem in order to yield personalized reactions.   

A. Scenario 1: Enhancing the precision and sensitivity of 
an Adaptive and Context-Aware Building-Skin System 
This scenario expands on an adaptive building-skin 

system that enables an intuitive and responsive interface 
between interior and exterior spaces with respect to 
environmental, thermal, acoustic, and user-comfort 
considerations. Each of its components act as individual, 
context-aware, sensor-actuator nodes capable of 
differentiated—yet correlated—actions, reactions, and 
interactions. Accordingly, as the sensed data of any device is 
accessible across all devices in a topology of meshed nodes, 
the computationally processed behavior of any node is 
potentially informed by and informing of the status of 
individual and/or sets of other nodes. In this manner, the 
building-skin is not construed as a mere envelope, but rather 
as a system comprised of agents that actively and 
continuously promote user-comfort [11]. In the present 
implementation, new building-skin nodes are developed and 
built (see Fig. 1). The mechanism that drives their 
functionality remains the same, but the new design enables a 
larger variety of configurations and degrees of aperture / 
closure than the original design used in the first 
implementation of the system. In this scenario, embedded 
sensors within the built-environment feed the WSAN with 
temperature and humidity data. When these exceed limits 
prescribed by heating and cooling requirements defined by 
Comité Européen de Normalisation (CEN) Standard 
EN15251-2007 [14], the building-skin nodes begin to react 
in a way as to ascertain optimal temperature and humidity 
data. This reaction is diffused and graduated, both in terms of 
time of initial execution, duration, and extent of actuation. 
More explicitly, those nodes closest to identified areas of 
high-temperature are first to react, engage for a longer 
period, and actuate to degrees of maximum aperture to 
enable optimal ventilation. Those nodes farther away react in 
proportion to their proximity to the high-temperature areas in 
question, and to their estimated efficacy to support cooling / 
ventilation efforts by establishing an intake-outturn air-flow 
pathway. This automated behavior is now influenced by 
feedback received via the facial-identity and -expression 
recognition mechanism, a feedback that may serve to 
confirm or negate the automatically effected actuation. More 
specifically, when during the moment of reaction to a high-
temperature condition the facial-identity and -expression 
recognition mechanism detects—to a high-degree of 
probability (>80%)—that sole user A (see Fig. 3, face A) 
reacts approvingly to the effected actuation, then said 
actuation is confirmed and proceeds normally.  
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Fig. 1. New adaptive building-skin module concept; items 1: MDF base, 
with integration of servo motors and a cost-effective Raspberry Pi Camera 
Module V2; 2: MDF pivoting arms; 3: Opaque acrylic sheets. Possible 
configurations A: Fully extended, closed; B: Semi-open, variation I; C: 
Semi-open, variation II; D: Semi-open, hybrid of variations I and II; E: 
Fully retracted, open. 

Alternatively, when said facial recognition mechanism 
detects that sole user B (see Fig. 3, face B) reacts adversely 
to the actuation, then it is negated. In situations with more 
than one user in the built-environment, the decision to 
confirm or negate a routine actuation comes to a proportional 
compromise depending on the proximity and reaction of all 
detected users. That is, suppose the following scenario: 
Given a region of high-temperature, a set of closest building-
skin nodes begins to actuate to maximum degrees of aperture 
to encourage high-volume ventilation. Users A and B are 
both in the high-temperature area in question. Accordingly, 
the facial identification and expression recognition 
mechanism, via the cost-effective cameras embedded in the 
building-skin nodes being maximally actuated, begins to 
ascertain a probable reaction (e.g., joy, sorrow, anger, 
surprise, etc.) for each user. This probable reaction is given 
by a straightforward average of the probabilities gathered via 
each maximally actuating node’s embedded camera’s data—
n.b.: only those probabilities with greater than 80% 
confidence-level are considered. If user A’s reaction is 
identified as “joy” and user B’s reaction as that of “sorrow”, 
then the extent of maximal actuation is mitigated in 
proportion to the proximity of users A and B to any given 
building-skin node in maximal actuation. If with respect to a 
given actuating building-skin node both users are at the same 
distance, then the actuation will compromise halfway with 
respect to both—that is, if user A approved of 100% aperture 
and user B of 0%, then the building-skin node will actuate to 
50% aperture. If with respect to another given actuating 
building-skin node user A is 25% closer than user B, then 
user A’s perceived preference is assigned 25% more weight 
than that of user B’s, and so forth and so on.  

B. Scenario 2: Enhancing the precision and sensitivity of a 
Fall Detection and Intervention System 
This scenario expands on a fall detection and intervention 

system developed as a fully operational, real-scale solution 
[12] that uses two Class 2M 10º line lasers in conjunction 
with a number of Light Dependent Resistors (LDRs) to 
gauge the probabilities of an emergency-event based on the 
estimated dimensions of the collapsed object. If the solution 
construes the probabilities of an emergency event as high, a 
TurtleBot [15] is sent to the location of the collapsed person 
and automated notifications are sent to emergency-personnel, 
care-takers, and/or family via both wireless and cellular 
technologies. From the previous expansion of this system 
[16], an object-recognition mechanism is implemented via 
BerryNet® [17] (built with Inception® ver. 3 [18] for a 
classification model as well as with TinyYOLO® [19] for a 
detection model). This object-recognition mechanism uses 
Convolutional Neural Networks (CNNs), which are at the 
forefront of Machine Learning (ML) research [18]. 

In this implementation, the facial-identity and -
expression recognition mechanism (also powered by CNNs, 
albeit Multi-Task CNN—MTCNN) is deployed to 
complement the functions of the object-detection 
mechanism. That is to say, while this latter is used to detect 
kinds of objects (e.g., person, car, cup, book, etc.), the 
former is used exclusively within the domain of human and 
probable human-state recognition. In the present expansion, 
the fall detection and intervention system is integrated with a 
mechanism capable of detecting who the collapsed person is, 
and what facial expression is on his/her face via the same 
embedded cameras mentioned in the first scenario. 
Depending on the input of these variables, the urgency and 
repetition frequency of the system’s original intervention 
mechanisms vary. For example, if the system detects that a 
known user has fallen and remains collapsed, and that his/her 
facial expression is construed as “sorrow”, “anger”, or 
“surprise” (see Fig. 4), then SMS and email notifications 
expressing a corresponding urgency-level are sent repeatedly 
until no object is detected.   

III. METHODOLOGY AND IMPLEMENTATION 
The present facial-identity and -expression recognition 

mechanism is implemented via two independent yet 
interrelated components. The first—the facial identity 
recognition component—is implemented locally via Google 
Brain®’s TensorFlow™ [9] (see Fig. 2): while the second—
the facial expression recognition component—is 
implemented via Google Cloud Platform®’s Cloud Vision 
API [10] (see Fig. 4). Additionally, the first component is 
capable of rudimentary facial expression recognition as well, 
a feature that is used as a back-up measure in case the second 
component fails. The second component, however, is 
incapable of subsuming the function of the first because 
Cloud Vision API does not support facial identity 
recognition due to privacy concerns (although it can detect 
human faces). In the implementation of the facial identity 
recognition component (i.e., the first component), 
TensorFlow™ is installed on a Linux (Ubuntu) virtual 
environment and executed in Python. 
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Fig. 2. Top: TensorFlow™ image capture initialization. Middle: real-time 
Facial Recognition. Bottom: TensorFlow™’s rudimentary “Positive” or 
“Negative” facial-expression recognition.  

During execution of its MTCNN face detection model 
(see Fig. 2 Top), TensorFlow™ requests the user—and, 
consequently, every individual who is to be subsequently 
recognized by the system—to let the camera capture his/her 
face from a variety of positions, orientations, and angles. 
After completing this phase, facial identity recognition is 
successfully tested real-time (see Fig. 2 Middle). As 
previously mentioned, TensorFlow™ may also be used for 
basic facial expression recognition, which serves as a 
functional back-up in case the component implemented with 
Cloud Vision API fails. This back-up component is capable 
of recognizing two broad types of expression: “positive” and 
“negative” (see Fig. 2 Bottom). In the implementation of the 
facial expression recognition component (i.e., the second 
component), Python is used to integrate the services of 
Cloud Vision API into the inherited WSAN. The same visual 
input is fed to both components to yield a correlated 
recognition of an identity as well as of a facial expression. 
This is important, as it is the way that the system knows who 
the recognized facial expression corresponds to (recall that 
Cloud Vision API does not support facial identity 
recognition and consequently its returned output by itself is 
anonymous). 

IV. RESULTS AND DISCUSSION 

A. With respect to Scenario 1’s implementation 

 

 

 

 

Fig. 3. Top: building-skin fragment reacting differently to agents A and B 
under tested position configuration 2. Bottom: States of module with respect 
to agents A (fully open) and B (fully closed). 

With respect to the testing and validation of scenario 1, 
two users—already introduced in previous sections as A and 
B—with conflicting facial expressions (i.e., user A: joy; B: 
sorrow), are asked to stand—always aligned to the building-
skin fragment’s center—(1) next to each other and 
equidistantly close to the fragment; (2) far from each other 
and equidistantly close to the fragment; and (3) close to each 
other and equidistantly far to the fragment, with a simulated 
high-temperature area around where they stand across all 
configurations. In the first configuration, all four building-
skin modules default to a neutral aperture configuration—
i.e., item C in Fig. 1. In the second configuration (see Fig. 3), 
those modules closest to user A open maximally as the 
statutory actuation [to open the node] is confirmed by the 
user’s expression; and those modules closet to user B remain 
shut as the statutory actuation is negated by the user’s 
expression. In the third configuration, due to the large 
distance between the users and the fragment—and, 
consequently, between the users and the cameras belonging 
to the nodes within the fragment—the mechanism is unable 
to ascertain a high probability favoring a particular facial 
expression and therefore this consideration is ignored. That 
is to say, the nodes behave as they would without user 
feedback. Due to their interesting results, the above three 
position configurations for users A and B with respect to the 
fragment are the most salient ones among the other 
configurations sampled. To some extent, they are also 
indicative of the most common or anticipated results among 
the tested configurations. That is to say, more frequently than 
not—and under the present set-up conditions—the fragment 
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defaults to a negotiated average with respect to aperture 
extent; or to a fair distribution of nodes that satisfy user A 
and those that satisfy user B; or to a situation where user 
input / feedback is ignored. These results are more indicative 
of the experiment’s setup—and its limitations—than of the 
programed behavior of the building-skin module. 
Nevertheless, such results are sufficient for a modestly 
successful proof-of-concept implementation.  

B. With respect to Scenario 2’s implementation 

 

 

 

 

Fig. 4. Top Two: Cloud Vision API’s predictions with respect to user B’s 
expressions. Bottom Two: instances of equivocation when glasses are worn. 

With respect to the testing and validation of scenario 2, 
for all instances of successfully detected collapsed people in 
the original implementation and first expansion of the fall 
detection and intervention system, a corresponding enacted 
fall event is produced, where the identity and facial 
expression of the actor are identified. In this experimental 
setup, the emphasis of the testing is on the efficacy of the 
facial-identity and -expression recognition mechanism. In the 
trial runs, the first mechanism performs successfully by 
consistently identifying the user and his/her facial expression 
most of the time (>90%). Instances of false positives occur 
when hats, glasses, and other accessories are worn (see Fig. 
4, Bottom Two). 

V. CONCLUSION 
This paper presents a facial-identification and -

expression recognition mechanism implemented via Google 
Brain®’s TensorFlow™ and Google Cloud Platform®’s 
Cloud Vision API, respectively, in order to confirm or to 
negate actuations effected by automated decision-making 
processes in two inherited mechanisms. With respect to the 
first inherited mechanism, an expansion scenario is 
developed to consider the identity of users and their facial 
expressions in reaction to the actuation of building-skin 
nodes responding to interior and exterior environmental 
conditions. With respect to the second inherited mechanism, 
another expansion scenario is developed to consider the 
identities and facial expressions of the individuals involved 
in possible accidental fall events. In both scenarios, the 
facial-identification and -expression recognition mechanism 
contributes to an increase in precision and nuance with 
respect to adaptation (in the first scenario) and identification 
(in the second scenario). Accordingly, said mechanism is 
construed as a modestly successful addition to the existing 
ecosystem of mechanisms and services that supervene on the 
inherited WSAN.  

Nevertheless, there are certain challenges and limitations 
that could be overcome. With respect to challenges, a salient 
one compels that further work must be carried out to 
optimize the facial-identification and -expression recognition 
mechanism with respect to already existing mechanisms and 
services within said ecosystem in order to avoid unnecessary 
overlaps in sensors, subsystems, and services (whole or in 
part). For example, in subsequent implementations, object-
recognition activities may be subsumed by services provided 
by Cloud Vision API, as opposed to the present setup where 
object-recognition via BerryNet® is placed to work in tandem 
with facial expression recognition via Cloud Vision API. 
This setup is informed more by economic considerations 
than concerns for efficiency and efficacy. BerryNet® is a free 
object-recognition mechanism that, although not as powerful 
as other paid alternatives, is nevertheless effective. 
Notwithstanding this consideration, Cloud Vision API is also 
free within a certain number of feature-usages, and 
affordable beyond this limit [10]. More tests are required to 
ascertain whether efficiency and efficacy may be enhanced 
by relegating object-recognition tasks to it.   
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