

Construcción de multiagentes especializados para la búsqueda de un objetivo común basados en sistemas swarm robotics

Autor: Bryan Reyes

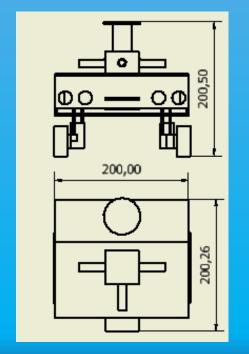
Tutor: Ing. Santiago Gómez

Introducción

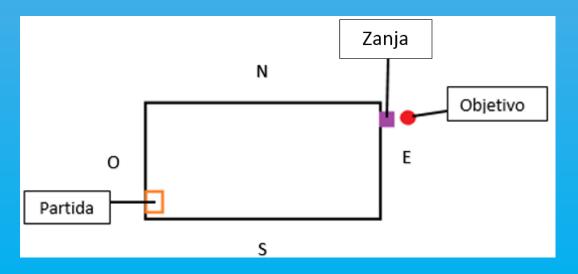
- El comportamiento de enjambre es una forma de cooperación entre individuos de una colmena o colonia que permite la obtención de recursos importantes para su supervivencia y mejora su adaptación al medio.
- Un ejemplo, es el método utilizado por las hormigas o abejas que el obtener alimento, resulta vital para el desarrollo y protección de su colmena, estableciéndose como base fundamental la división de tareas entre sus individuos.

Introducción

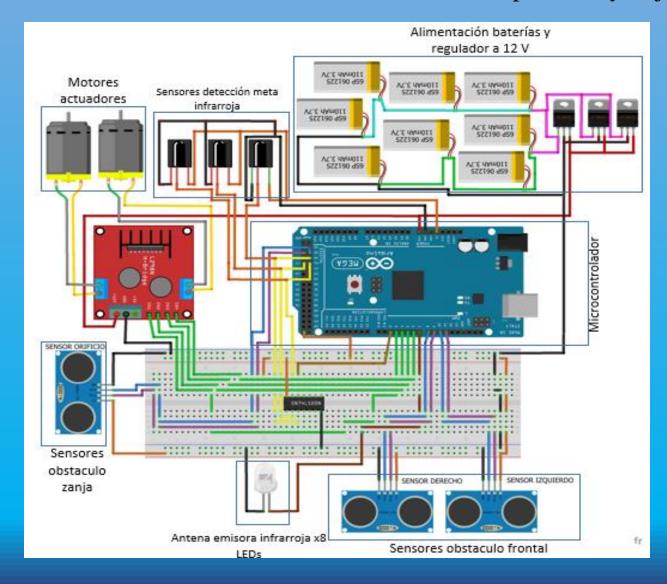
• El emular este tipo de comportamiento de forma electrónica permite el uso individual de agentes robóticos preparados para una función puntual que componen un sistema global o más complejo, lo que resulta beneficioso ya que permite tener un mayor ahorro de energía a menor costo por agente especialista, al evitar el uso de robots innecesarios para realizar un trabajo específico.

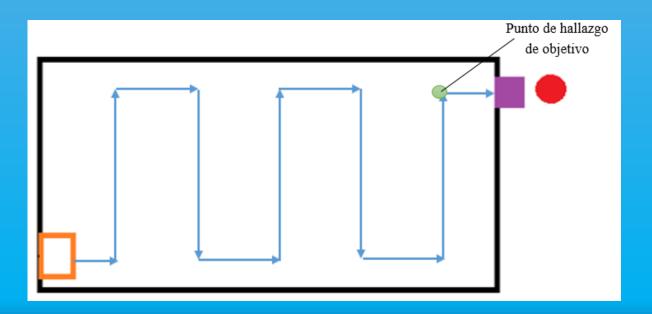


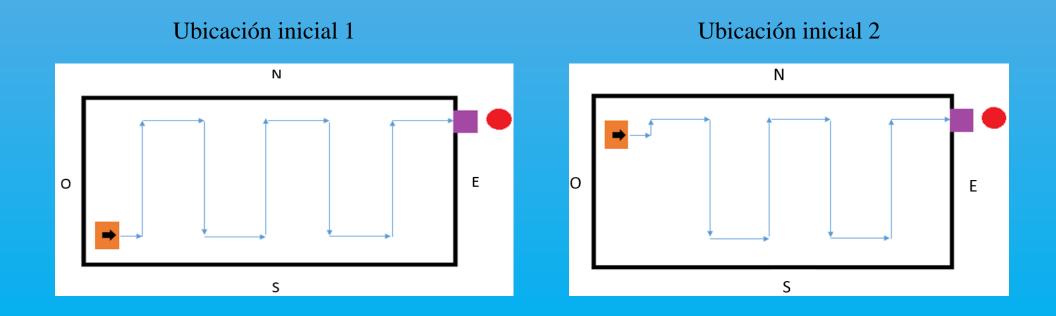
Objetivo

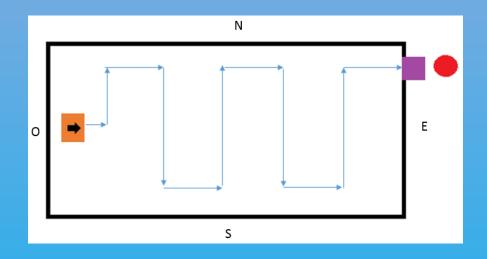

• El propósito de esta tesis es desarrollar un algoritmo aplicable a una plataforma robótica con características de tipo explorador, que cumple funciones de búsqueda por objetivo en un ambiente controlado, mediante el uso de instrucciones ordenadas en lenguaje C interpretable por el microcontrolador ATmega 2560 de la empresa Arduino, para realizar un reconocimiento ordenado y ubicación de obstáculos deprimidos en un entorno controlado.

• Para el desarrollo del presente proyecto se realizó tres implementaciones que determinan si el algoritmo desarrollado es funcional, estas son:


Diseño mecánico de explorador y ambiente controlado

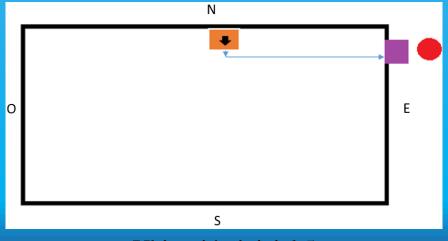

Diseño electrónico de explorador y objetivo.


Características Eléctricas


- 12 [V]
- 0,99 [A]
- 12 [W]

- Diseño del algoritmo de control:
- El explorador debe realizar un barrido de forma exhaustiva hasta hallar el objetivo propuesto, como se muestra en la figura:

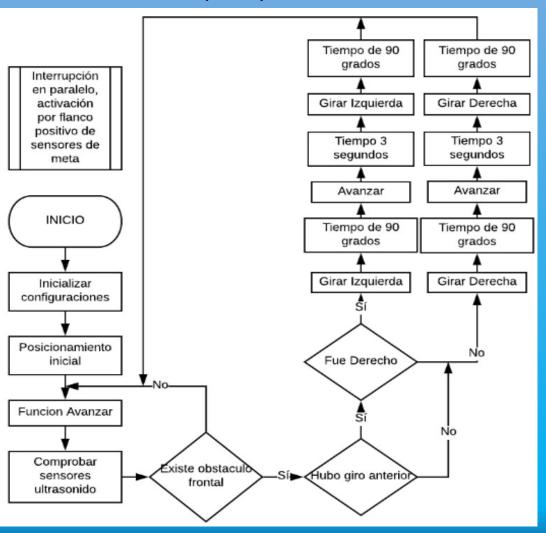
• Para realizar las pruebas se colocó al buscador en distintos puntos de partida como se muestra a continuación:

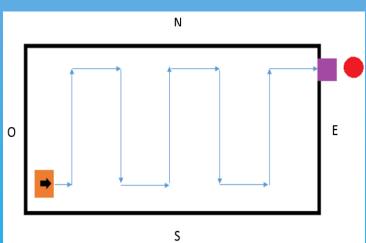


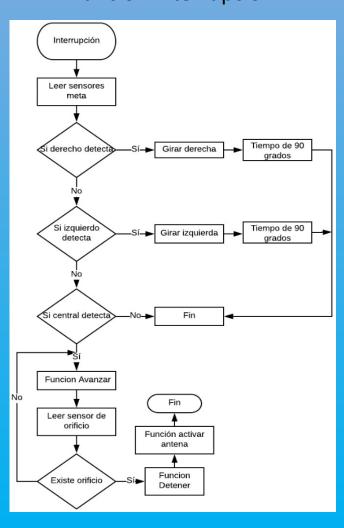
O E

Ubicación inicial 3

Ubicación inicial 4

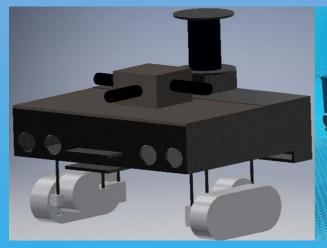


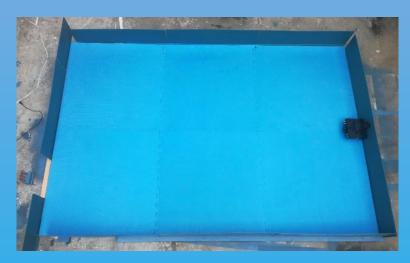

Ç


• El agente esta controlado por algoritmos de función principal y de interrupción para detección de la meta.

Función interrupción

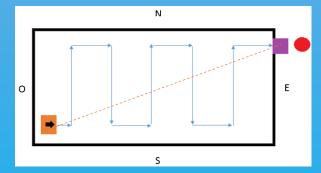
Función principal




Resultados

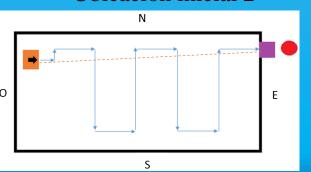
Agente explorador

Panel objetivo de diodos infrarrojos

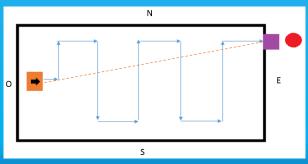


Resultados:

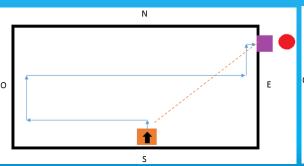
Application of the second	4" 4	4 2.7	4	4	4.5	4 5 35 3
Liembos	promedio del	explotacion po	or omieba s	v dustamena	i directa	objetivo-meta
		embrer emerge be	or brosser?	,		o o jour o amoun

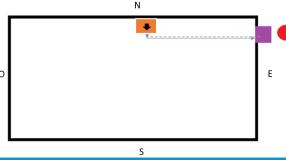

Ubicación inicial	Promedio tiempo experimental en [s]	Distancia aproximada del recorrido por barrido en [m].	Distancia línea recta partida- objetivo en [m]
1	107,33	9,44	3,2
2	90,33	7,74	3,09
3	97,66	8,59	3,01
4	73,25	5,3	1,95
5	28,6	2,1	1,68

Ubicación inicial 1



Nota: tiempos promedio obtenidos de pruebas en tabla 5.


Ubicación inicial 2


Ubicación inicial 3

Ubicación inicial 4

Ubicación inicial 5

Discusión de resultados:

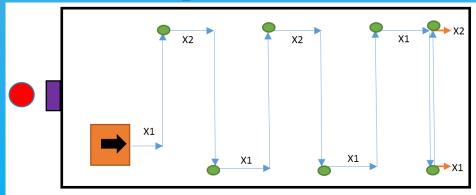
Factor de tiempo de barrido.								
Ubicación inicial	Tiempo promedio de barrido en [s]	Distancia recorrida en barrido en [m]	Numero de giros	Porcentaje de éxito	Distancia recorrida línea recta en [m]	Factor de tiempo de barrido en [s/m]		
1	107,33	9,44	7	60	3,2	33,54		
2	90,33	7,74	7	60	3,09	29,23		
3	97,66	8,59	7	60	3,01	32,45		
4	73,25	5,3	4	80	1,95	37,56		
5	28,6	2,1	1	100	1,68	17,02		
					Promedio	33		

Nota: El factor tiempo de barrido es la relación de tiempo de barrido para llegar a un objetivo, que en línea recta tomaría menor tiempo.

Discusión de resultados.

- Factores de Falla
 - Velocidad diferente entre motores
 - Arranque brusco
 - Vibración durante las pruebas
 - Partida no direccionada hacia el objetivo

Conclusiones y Recomendaciones


- El proyecto desarrollado, es un avance en exploración utilizando sistemas de enjambre, este trabajo es un primer acercamiento a este tipo de proyectos, y presenta un modelo básico de un explorador que puede desenvolverse en un ambiente controlado, realiza un barrido ordenado sujeto a fallas, que para futuros trabajos pueden ser corregidas y controladas.
- El consumo energético del buscador es de 0,99 [A] a 12 [V], por lo que considerando el tiempo de descarga de las baterias calculado de 4,9 [h] x2, el explorador tiene una autonomía capaz de realizar el barrido de busqueda 329 veces en un área de $6[m^2]$.
- Se cumple el objetivo propuesto de un explorador capaz de realizar el reconocimiento por medio de barrido exhaustivo, con un tiempo de barrido proporcional al factor de tiempo de 33 [s/m] y la distancia entre el explorador y la meta en línea recta.

15

Conclusiones y Recomendaciones

El mantener una velocidad igual entre ambos motores es un factor importante para lograr desplazamientos rectos y giros perpendiculares precisos en 90°, es por esto que, se requiere implementar un control de **velocidad** con sensores (encoder), giroscopio, brújula, acelerómetro o sistemas de ubicación como GPS local.

Se propone en proyectos posteriores la implementación de más buscadores que interactúen entre sí al mismo tiempo en distintos ambientes y otros agentes especializados en distintas áreas de exploración, corrección de fallas, transporte de recursos, entre otros.

 Cuando X1 = X2 = 0, cambiar el sentido de exploración.

Ubicación inicial no functional para algoritmo propuesto

GRACIAS POR SU ATENCION