14.5 Release

Lecture 8 Mesh Quality

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Introduction to ANSYS Meshing

What you will learn from this presentation

- Impact of the Mesh Quality on the Solution
- Quality criteria
- Methods for checking the mesh quality
- Tools to improve quality in Meshing
- Pinch
- Virtual topology

ANSYS Preprocessing Workflow

ANSYS Meshing Process in ANSYS Meshing

ANSYS Impact of the Mesh Quality

Good quality mesh means that...

- Mesh quality criteria are within correct range
 - Orthogonal quality ...
- Mesh is valid for studied physics
 - Boundary layer ...
- Solution is grid independent
- Important geometric details are well captured

Bad quality mesh can cause;

- Convergence difficulties
- Bad physic description
- Diffuse solution

User must...

- Check quality criteria and improve grid if needed
- Think about model and solver settings before generating the grid
- Perform mesh parametric study, mesh adaption ...

November 20, 2012

Table of Design Points						
	А	В	с	D	E	F
1	Name 💌	P1 - Sweep Method 3 Sweep Element Size	P2 - Sweep Method 2 Sweep Element Size	P3 - Sweep Method Sweep Element Size	P4 - Face Sizing Element Size	P6 - Dp 💌
2		m	m	m	m 💌	Pa
3	Current	0.04	0.04	0.04	0.02	747.88
4	DP 1	0.02	0.02	0.02	0.01	500.44
5	DP 2	0.01	0.01	0.01	0.005	361.4
6	DP 3	0.005	0.005	0.005	0.0025	307.6
7	DP 4	0.0025	0.0025	0.0025	0.00125	299.86
*						

- Example showing difference between a mesh with cells failing the quality criteria and a good mesh
- Unphysical values in vicinity of poor quality cells

Impact of the Mesh Quality on the Solution **ANSYS**[®]

• Diffusion example

November 20, 2012

- Solution run with multiple meshes
- Note : For all runs the computed Y+ is valid for wall function (first cell not in laminar zone)

ANSYS Grid Dependency

- Hexa cells can be stretched in stream direction to reduce number of cells
- Bias defined on inlet and outlet walls
- Bias defined on inlet edges
 - 16 000 cells (~DP2)
 - Delta P = 310 Pa (~DP3)

- Hexa: Concentration in one direction
 - Angles unchanged
- Tetra: Concentration in one direction
 - Angles change
- Prism: Concentration in one direction
 - Angles unchanged
- Solution for boundary layer resolution
 - Hybrid prism/tetra meshes
 - Prism in near-wall region, tetra in volume
 - Automated
 - Reduced CPU-time for good boundary layer resolution

ANSYS Mesh Statistics and Mesh Metrics

Displays mesh information for Nodes and Elements

List of quality criteria for the Mesh Metric

- Select the required criteria to get details for quality
- It shows minimum, maximum, average and standard deviation

Different physics and different solvers have different requirements for mesh quality

Mesh metrics available in ANSYS Meshing include:

- Element Quality
- Aspect Ratio
- Jacobean Ration
- Warping Factor
- Parallel Deviation
- Maximum Corner Angle
- Skewness
- Orthogonal Quality

For Multi-Body Parts, go to corresponding body in Tree Outline to get its separate mesh statistics per part/body

Ξ	Statistics				
	Nodes	219			
Elements 8		88			
	Mesh Metric	Orthogonal Quality	•		
	Min 🗌	Jacobian Ratio	^		
	Max 🗌	Warping Factor Parallel Deviation	_		
	Average	Maximum Corner Angle			
Standard Deviation		Skewness			
		Orthogonal Quality	~		

Nodes	17973
Nodes	1/9/3
Elements	91020
Mesh Metric	Orthogonal Quality
Min	0.232336378900267
Max 📃	0.993658044699929
Average	0.850623612128101
Standard Deviation	8.69790479924024E-02

ANSYS Mesh Quality Metrics

Where A_i is the face normal vector and f_i is a vector from the centroid of the cell to the cent

Where *Ai* is the face normal vector and *fi* is a vector from the centroid of the cell to the centroid of that face, and *Gi* is a vector from the centroid of the cell to the centroid of the adjacent cell, where *ei* is the vector from the centroid of the face to the centroid of the edge

At boundaries and internal walls

ci is ignored in the computations of OQ

0	1
Worst	Perfect

ANSYS Mesh Quality Metrics

Skewness

Two methods for determining skewness:

1. Equilateral Volume deviation:

Skewness = $\frac{\text{optimal cell size} - \text{cell size}}{\text{optimal cell size}}$ Applies only for triangles and tetrahedrons

2. Normalized Angle deviation:

Skewness = max
$$\left[\frac{\theta_{\text{max}} - \theta_{\text{e}}}{180 - \theta_{\text{e}}}, \frac{\theta_{\text{e}} - \theta_{\text{min}}}{\theta_{\text{e}}}\right]$$

Where θ_e is the equiangular face/cell (60 for tets and tris, and 90 for quads and hexas)

- Applies to all cell and face shapes
- Used for hexa, prisms and pyramids

ANSYS Mesh Quality

Mesh quality recommendations

Low Orthogonal Quality or high skewness values are not recommended

Generally try to keep minimum orthogonal quality > 0.1, or maximum skewness < 0.95. However these values may be different depending on the physics and the location of the cell

Fluent reports negative cell volumes if the mesh contains degenerate cells

Skewness mesh metrics spectrum

Excellent	Very good	Good	Acceptable	Bad	Unacceptable
0-0.25	0.25-0.50	0.50-0.80	0.80-0.94	0.95-0.97	0.98-1.00

Orthogonal Quality mesh metrics spectrum

Unacceptable	Bad	Acceptable	Good	Very good	Excellent
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00
© 2012 ANSYS, Inc.	November 20, 2012		14		Release 14.5

2-D:

Length / height ratio: δx/δy

3-D

- Area ratio
- Radius ratio of circumscribed / inscribed circle

Limitation for some iterative solvers

- A < 10 ... 100
- (CFX: < 1000)

Large aspect ratio are accepted where there is no strong transverse gradient (boundary layer ...)

Checked in solver

- Volume Change in Fluent
 - Available in Adapt/Volume
 - $3D: \sigma_i = V_i / V_{nb}$

💶 Volume Ad	aption		X
Options Magnitude Ochange	Min (m3) 0.2579764 Max Volume (m3)	Max (m3) 8.171111 Max Volume Change	
Manage Controls	1	2.5	
Adapt	Mark Compute	Close Help	

- Expansion Factor in CFX
 - Checked during mesh import
 - Ratio of largest to smallest element volumes surrounding a node

Recommendation: Good: $1.0 < \sigma < 1.5$ Fair: $1.5 < \sigma < 2.5$ Poor: $\sigma > 5 \dots 20$

ANSYS Mesh Metric Graph

- Displays Mesh Metrics graph for the element quality distribution
- Different element types are plotted with different color bars
- Can be accessed through menu bar using Metric Graph button

.III Metric Graph

- Axis range can be adjusted using controls button (details next slide)
- Click on bars to view corresponding elements in the graphics window
 - Use to help locate poor quality elements

ANSYS Mesh Metric Graph Controls

Controls

- Elements on Y-Axis can be plotted with two methods;
 - Number of Elements
 - Percentage of Volume/Area
- Options to change the range on either axis
- Specify which element types to include in graph
 - Tet4 = 4 Node Linear Tetrahedron
 - Hex8 = 8 Node Linear Hexahedron
 - Wed6 = 6 Node Linear Wedge (Prism)
 - Pyr5 = 5 Node Linear Pyramid
 - Quad4 = 4 Node Linear Quadrilateral
 - Tri3 = 3 Node Linear Triangle
 - Te10, Hex20, Wed15, Pyr13, Quad8 & Tri6 non-linear elements

Number of Bars: 1	0 Update	Y-Axis
Range		
Min	Max	
X-Axis 0.219517	0.999736	Reset
Y-Axis 0	60385	Reset
	CQuad8 CQuad	14

ANSYS Section Planes

Displays internal elements of the mesh

- Elements on either side of plane can be displayed
- Toggle between cut or whole elements display
- **Elements on the plane**

Edit Section Plane button 🔯 can be used to drag section plane to new location

Clicking on "Edit Section Plane" button will make section plane's anchor to appear

Multiple section planes are allowed

ANSYS Mesh Quality Check for CFX

- The CFX solver calculates 3 important measures of mesh quality at the start of a run and updates them each time the mesh is deformed
- Mesh Orthogonality
- Aspect Ratio
- Expansion Factor

+ Mesh Statistics +		+ +	Good
Domain Name: Air Duct			0000
Minimum Orthogonality Angle [degrees]	=	20.4 ok	(OK)
Maximum Aspect Ratio	=	13.5 ок 🗕	
Maximum Mesh Expansion Factor	=	700.4 !	
Domain Name: Water Pipe			- Accentable
Minimum Orthogonality Angle [degrees]	=	32.8 ok 🧹	Acceptable
Maximum Aspect Ratio	=	6.4 OK	(ok)
Maximum Mesh Expansion Factor	=	73.5 !	
Global Mesh Quality Statistics :			
Minimum Orthogonality Angle [degrees]	=	20.4 ok	Questionable
Maximum Aspect Ratio	=	13.5 OK	
Maximum Mesh Expansion Factor	=	700.4 ! 🦰	

Mesh Quality Check for Fluent ANSYS®

Grid check tools available

- **Check : Perform various mesh consistency** checks
- *Report Quality* : lists worse values of orthogonal quality and aspect ratio
- TUI command mesh/check-verbosity sets the level of details in the report

💶 G:mesh dependancy FLUENT [3d, pbns, sstkw] [ANSYS CFD]

💅 - 📓 - 🞯 🎯 🛛 🔂 🕀 🧶 🗶 🥒 🔍 🛄 - 🔄 - 1

Scale...

Display...

General

Mesh

Solver

Type.

Problem Setup General

Models

Materials

Cell Zone Conditions Boundary Conditions

Mesh Interfaces

Dynamic Mesh

Phases.

File Mesh Define Solve Adapt Surface Display Report Parallel View Help

Check

Velocity Formulation

Absolute

Report Quality

ANSYS Factors Affecting Quality

Cutcell

ANSYS Virtual Topology

When to use?

- To merge together a number of small (connected) faces/edges
- To simplify small features in the model
- To simplify load abstraction for mechanical analysis
- To create edge splits for better control of the surface mesh control

Virtual cells modify topology

- Original CAD model remains unchanged
- New faceted geometry is created with virtual topology

Restrictions

- Limited to "developable" surfaces
- Virtual Faces cannot form a closed region © 2012 ANSYS, Inc. November 20, 2012

Details of "Virtual Topology" 4			
Ξ	Definition		
	Method	Automatic	
	Behavior	Low	
	Advanced		
	Generate on Update	No	
	Merge Face Edges	Yes	
	Lock position of dependent edge splits	Yes	
Ξ	Statistics		
	Virtual Faces	1	
	Virtual Edges	0	
	Virtual Split Edges	0	
	Virtual Split Faces	0	
	Virtual Hard Vertices	0	
	Total Virtual Entities	1	

23

ANSYS Creating Virtual Topology

- To acces VT menu, click on Model and then on Virtual Topology
- Right click on VT menu to access automated and manual VT tools

Creates VT automatically

Creates VT manually

ANSYS Automatic Virtual Topology

Automatically creating Virtual Faces

- Left Click Virtual Topology in Model Tree
- Set *Behaviour* in *Details*
 - Controls aggressiveness of automatic VT algorithm
 - Low: merges only the worst faces (and edges)
 - Medium & High: try to merge more faces
- Select if Face Edges shall be merged
- Right Click Virtual Topology and click Generate Virtual Cells

Manually creating a Virtual Face

- RMB on Model tree and select Insert Virtual Topology
- Select Virtual Topology from the Tree Outline
- Pick faces or edges, RMB and Insert Virtual Cell

All VT entities created can be seen in different colors if Virtual Topology is selected in Tree Outline

© 2012 ANSYS, Inc. November 20, 2012

ANSYS Virtual Topology : Example

Without Virtual cells:

Statistics Nodes

Elements

Average

Standard Deviation

Min Мах

Mesh Metric

Edges are respected while creating surface mesh

122036

640547

Skewness

0.245608757966614

0.131328150948273

With Virtual cells:

Small faces are merged to form a single virtual face and edges of the original set of faces are no longer respected for meshing

-	Statistics				
	Nodes	120644			
	Elements	635831			
	Mesh Metric	Skewness			
	Min	8.0149887573544E-06			
	Max	0.860292667417595			
	Average	0.24688413449344			
	Standard Deviation	0.12782486922467			

ANSYS Project to underlying Geometry

- Virtual topologies are a faceted representation of the original geometry.
 By default mesh is projected to the facets
- Improved projection can be obtained by projecting back to the underlying geometry

ANSYS Virtual Topology : Example

Creating edge split

- **Select Virtual Topology from the Tree Outline**
- Pick the edge(s)
- RMB and select 'Virtual Split Edge at +' or 'Virtual Split Edge' to split the edge at the location specified by the selection, or to enter the split ratio in the Details window, respectively

Split Ratio

With edge splits:

We can add edge constrains to improve the mesh

Edge splits can be moved interactively. Pick the virtual edge, hold the F4 key and move the red node along the edge with the mouse

© 2012 ANSYS. Inc. November 20, 2012

- Pinch control removes small features at the mesh level
 - Slivers
 - Short Edges
 - Sharp Angles
- The Pinch feature works on vertices and edges only
- The Pinch feature is supported for the following mesh methods:
 - Patch Conforming Tetrahedrons
 - Thin Solid Sweeps
 - Hex Dominant meshing
 - Quad Dominant Surface Meshing
 - Triangles Surface meshing
- Not supported for
 - CutCell
 - Patch Independent
 - Multizone
 - General Sweep

🍘 Method

ANSYS Pinch Control

Pinch features can be defined 2 ways

- Automatically : pinches created based on global pinch tolerance in Mesh Detail
- Manually : pinch created one by one by user with local tolerance

All pinches are listed in Model Tree under Mesh menu with methods and local controls

November 20, 2012

ANSYS Workshops 5 (Applications Choice)

