

FACULTAD DE ARQUITECTURA E INGENIERÍA

MAESTRÍA EN DISEÑO MECÁNICO MENCIÓN FABRICACIÓN DE AUTOPARTES DE VEHÍCULOS

Optimización del múltiple de escape para un vehículo de competición con motor de combustión interna de cuatro tiempos y cuatro cilindros

Autor: Edwin Salomón Arroyo Terán

Director: Ing. Juan Carlos Rocha Hoyos Msc.

Co-Director: Ph.D. Edilberto Antonio Llanes Cedeño

INTRODUCCIÓN

- Incrementar potencia en vehículos de competición.
- Influencia de la configuración y dimensiones del múltiple de escape en el rendimiento del MCI.
- Uso de herramientas computacionales 1D/3D para reducir costosos ensayos experimentales.

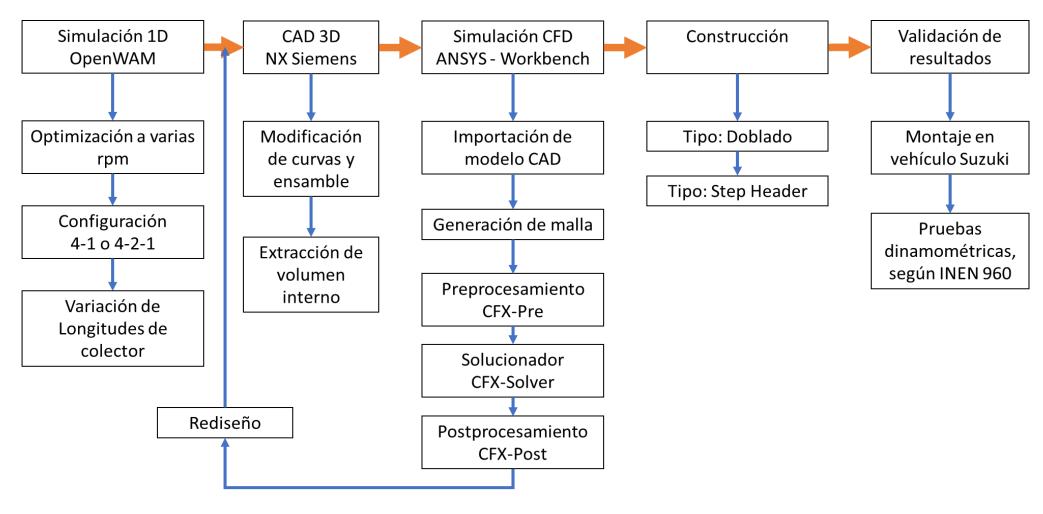
OBJETIVOS

 Diseñar y construir el múltiple de escape para un vehículo con motor de combustión interna de cuatro tiempos y cuatro cilindros, mediante la simulación computacional 1D/3D y su validación experimental a través de pruebas dinamométricas.

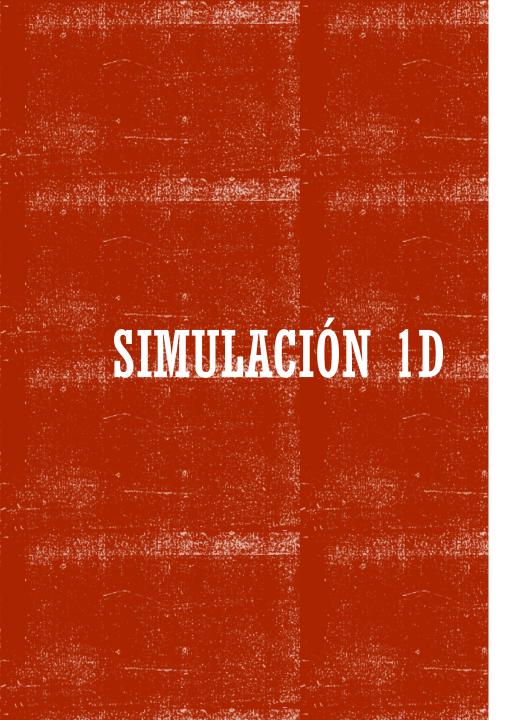
- Analizar las configuración de múltiple 4-2-1 y 4-1, con sus respectivas dimensiones mediante la herramienta de simulación 1D OpenWAM.
- Diseñar el múltiple de escape en el software NX Siemens y realizar un análisis computacional de fluidos en el paquete CFX de Ansys.
- Fabricar el modelo de colector diseñado bajo dos técnicas de construcción.
- Realizar pruebas dinamométricas con el vehículo, para probar los múltiples de escape construidos.

VEHÍCULO UTILIZADO EN LA INVESTIGACIÓN

Suzuki Twin Cam 1.3

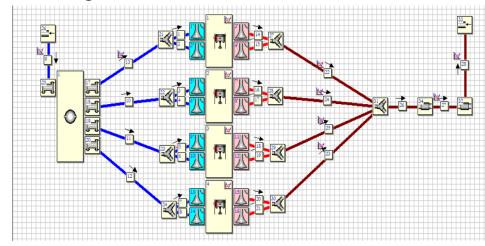

Tabla 1. Especificaciones del motor

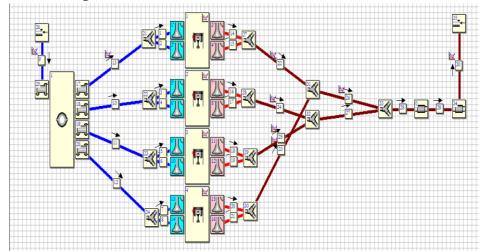
- 1. Lapecinicaciones del motor			
Parámetro	Valor		
Motor	G13B, DOHC		
Cilindrada	1298 cm³		
Diámetro x carrera	$74 \times 75.5 \text{ mm}$		
Relación de compresión	10:1		
Orden de encendido	1-3-4-2		
Reglaje de encendido -	6 ± 1/850		
básico APMS	°APMS/rpm		
Sistema de combustible	MPF-i		
Combustible	Gasolina		
Régimen de ralentí	$850 \pm 50 \text{rpm}$		
Temperatura de trabajo de motor	80°C		
Relación Aire-Combustible AFR	14.7:1		
Diámetro válvula de admisión	29.1 mm		
Apertura válvula de admisión	8° APMS		
Cierre válvula de admisión	36° DPMI		
Diámetro válvula de escape	24.9 mm		
Apertura válvula de escape	42° APMI		
Cierre válvula de escape	10° DPMS		



MÉTODO

Software:


-OpenWAM



CONFIGURACIÓN Y PARÁMETROS

Configuración 4-1

Configuración 4-2-1

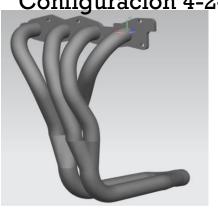
Parámetros de tubería del múltiple de escape

Parámetro	Original		Conf. 4-1	_	onf. 2-1
	Primario	Secundario	_	Primario	Secundario
Diámetro de entrada (mm)	35	31	35	35	41.45
Longitud (mm)	L1: 312 L2: 277 L3: 244 L4: 259	318	500 a 800	250 a 400	250 a 400
Diámetro de salida (mm)	35	31	35	35	41.45
Método numérico	Lax Wendroff				

Software:

-Modelado: NX Siemens

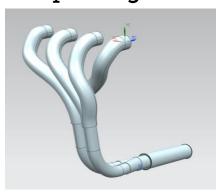
-CFD: Ansys CFX



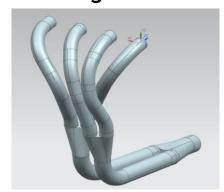
Modelado 3D

Múltiple original

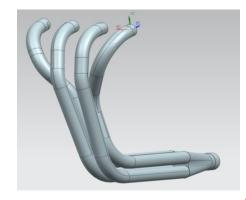
Configuración 4-2-1



Configuración 4-1



• Extracción de volumen interno


Múltiple original

Configuración 4-2-1

Configuración 4-1

Mallado

Elementos: tetraédricos.

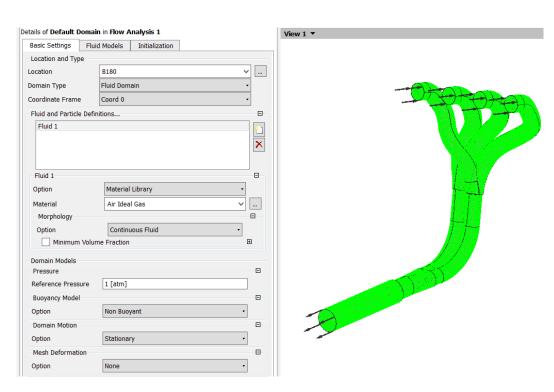
Tamaño: 3 y 5 mm

Calidad de mallado: Factor de Skewness

Rangos de Skewness y calidad de elemento

Skewness	Calidad de mallado
1	Degradado
0.9 < 1	Malo
0.75 - 0.9	Pobre
0.5 - 0.75	Razonable
0.25 - 0.5	Bueno
>0 - 0.25	Excelente
0	Equilátero

Nota: Calidad de mallado según Ansys 18.0

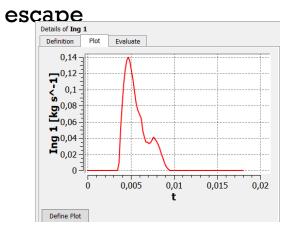


CONFIGURACIÓN CFX-PRE

Análisis Estático

Parámetro Condición	
Tipo de análisis	Estático
Material del dominio	Aire (Gas ideal)
Presión de referencia	1 [atm]
Transferencia de calor	Energía térmica
Modelo de turbulencia	$\kappa - \varepsilon$
Condición de pared	Sin deslizamiento (No Slip Wall)
Criterio de convergencia	Tipo: / Objetivo: 1 x 10 ⁻⁴

Condición de frontera	Tipo	Valor
	Presión total	1.18 [bar]
Ingreso	Intensidad de turbulencia	5%
	Temperatura estática	973 [K]
Salida	Presión estática	1.038 [bar]


CONFIGURACIÓN CFX-PRE

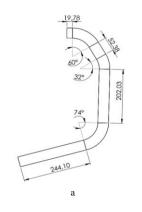
Análisis Transitorio

Parámetro	Condición
Tipo de análisis	Transitorio
Material del dominio	Aire - Gas ideal
Presión de referencia	1 [atm]
Transferencia de calor	Energía térmica
Modelo de turbulencia	$\kappa - \varepsilon$.
Condición de pared	Sin deslizamiento (No Slip Wall)
Temperatura de inicialización de dominio	293 [K]
Criterio de convergencia	Tipo: RMS / Objetivo: 10 ⁻⁴

Caso	Tiempo de duración [s]	Pasos de tiempo [s]
Múltiple original	18.2882 x 10 ⁻³	1.44 x 10 ⁻⁴
Configuración 4-1	18.240 x 10 ⁻³	2.28×10^{-4}
Configuración 4-2-1	18.2882 x 10 ⁻³	1.44×10^{-4}

Condiciones de frontera en el ingreso del múltiple de

Outline Function: I	ng2	×	
Details of Ing2			
Basic Settings			
Option	Interpolation (Data Input)		
Argument Units	S		
Result Units	kg s^-1		
Interpolation Data			
Option	One Dimensional		
Coordinate	Value	^	
1 0 0.	13946	≡	
2 0.000144 0.	14014		
3 0.000288 0.	13276		
4 0.000432 0.	12601		
5 0.000576 0.	11239		
C 0.00072 0	10220	<u> </u>	
Coordinate			
Value			
Add	Remove	7	
Extend Min			
✓ Extend Max			

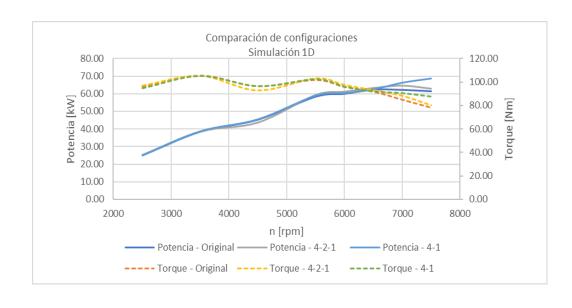

CONSTRUCCIÓN

• Tipo A: Doblado

• Tipo B: Stepheader

PRUEBAS DINAMOMÉTRICAS

- Dinamómetro MAHA LPS 3000 (CCICEV, Quito, Ecuador)
- Según Norma INEN 960, basada en ISO 1585, ISO 3173
- Factor de corrección según ISO 1585, JIS D 1001, SAE J 1349


$$\alpha_a = \left(\frac{99}{P_p}\right)^{1.2} * \left(\frac{T_p}{298}\right)^{0.5}$$

RESULTADOS Y ANÁLISIS

SIMULACIÓN 1D

Mejor desempeño:

- Configuración 4-2-1: entre 5 500 a 6 500 rpm.
- Configuración 4-1: en altas revoluciones, sobre las 6 500 rpm.

Incremento de potencia máxima, respecto al múltiple original:

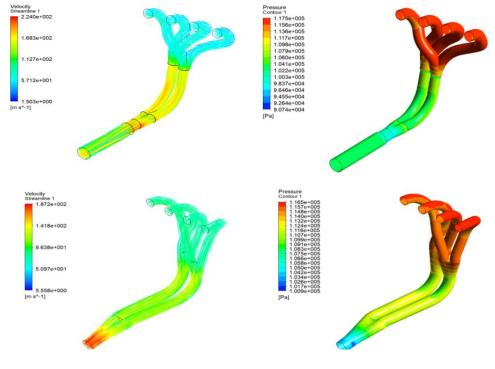
Configuración 4-2-1: 3.57 %

Configuración 4-1: 10.1 %

Incremento de torque máximo, respecto al múltiple original:

• Configuración 4-2-1: 0.13 %

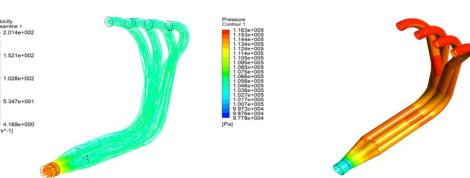
• Configuración 4-1: 0.07 %



SIMULACIÓN 3D: ANÁLISIS ESTÁTICO

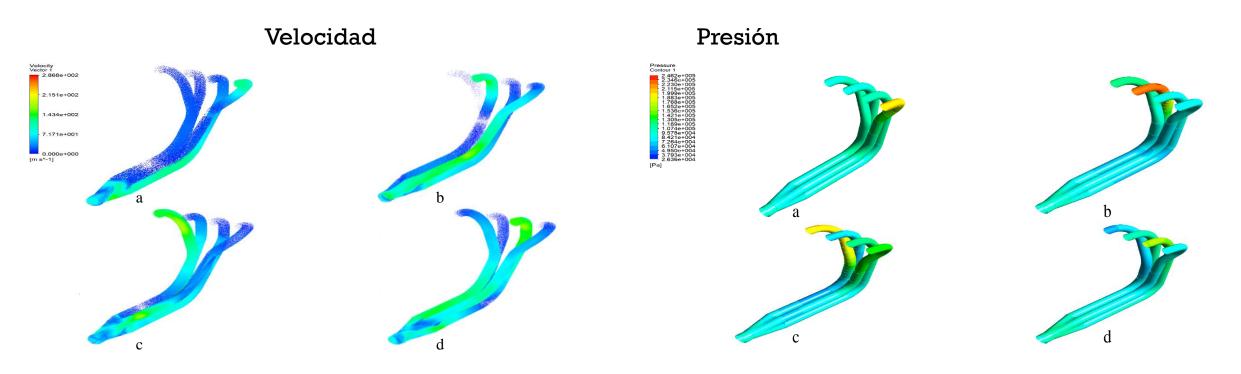
Múltiple original

Diseño 4-2-1


Diseño 4-1

Incremento de Velocidad de entrada, respecto al múltiple original

Configuración 4-2-1: 28,33%


Configuración 4-1: 32,22%

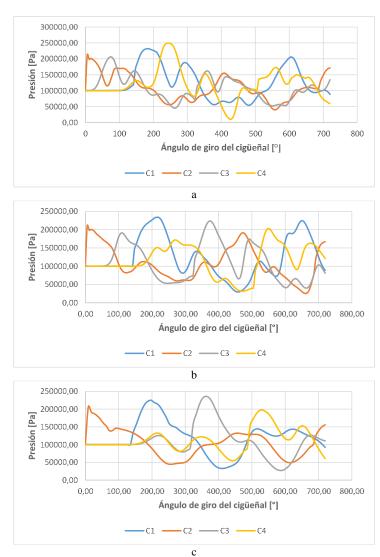
SIMULACIÓN 3D: ANÁLISIS TRANSITORIO

Configuración 4-1

Incremento de Velocidad en la salida, respecto al múltiple original

Configuración 4-2-1: 2 %

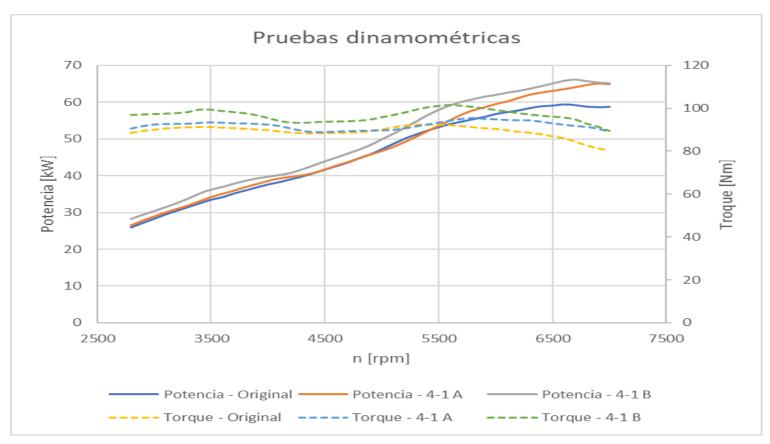
• Configuración 4-1: 16%


SIMULACIÓN 3D: ANÁLISIS TRANSITORIO

PRESIÓN EN LA ENTRADA DEL MÚLTIPLE

Múltiple original

Diseño 4-2-1


Diseño 4-1

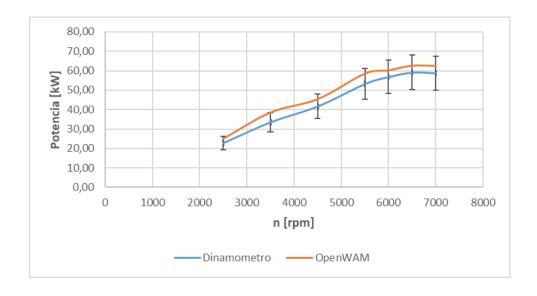
Incidencia de un cilindro a otro según el orden de encendido.

PRUEBAS DINAMOMÉTRICAS

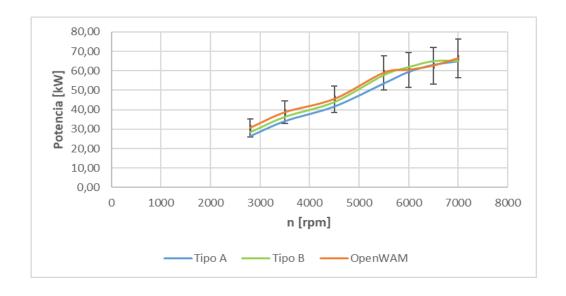
Incremento de potencia máxima respecto al múltiple original

- Configuración 4-1 tipo A: 8,41 %
- Configuración 4-1 tipo B: 10,33 %

Incremento de torque máximo respecto al múltiple original


- Configuración 4-1 tipo A: 3,26 %
- Configuración 4-1 tipo B: 8,83 %

SIMULACIÓN 1D VS PRUEBAS DINAMOMÉTRICAS


Múltiple original: Error promedio 9

%

Múltiple 4-1: Error promedio

Tipo A: 8 % Tipo B: 4 %

El análisis del flujo en modelos tridimensionales permitió observar la evolución del fluido en el interior de la tubería, lo cual no es posible con el modelo unidimensional.

En el estudio CFD en estado transitorio se verificó el efecto de los gases combustionados de un cilindro a otro, lo cual es limitado en el caso estacionario. Se encontró que en la configuración 4-2-1 existe mayor influencia entre las presiones generadas en cada colector, por lo que se hace necesario una sintonización de escape adecuada conectando los cilindros desfasados 180° según el orden de encendido.

Incremento en la velocidad de entrada y salida de los gases en los diseños de múltiples analizados.

La configuración 4-2-1 alcanza mejores resultados entre 5500 a 6500 rpm, mientras que la configuración 4-1 tiene mejor respuesta en altas revoluciones, sobre los 6500 rpm.

Existe una influencia importante en el rendimiento del motor según del tipo de construcción del múltiple de escape. El tipo B (stepheader) alcanza mejores resultados.

El múltiple de escape propuesto, de configuración 4-1, incrementa la potencia máxima respecto al sistema original en 8.41~% y 10.33~%, según la construcción tipo A y tipo B, respectivamente; así como también, un aumento de torque de 3.26~% para el tipo A y 8.83~% para el tipo B; el aporte más significativo al desempeño del motor lo hace en altas revoluciones, esto es, sobre las $5~000~\rm rpm$.

La metodología empleada mediante la simulación unidimensional, resultó ser una herramienta útil para predecir el rendimiento del motor, con diferencia mínima en los resultados y curvas características, respecto a los datos experimentales obtenidos en un dinamómetro de chasis.

CONCLUSIONES

Utilizar simulaciones 1D con el software OpenWAM, para el diseño de múltiples de escape para vehículos con motor de encendido provocado de cuatro cilindros y cuatro tiempos.

Evaluar la influencia en el desempeño del motor al usar otros materiales durante la construcción del múltiple de escape, como tubos galvanizados o acero inoxidable.

Diseñar geometrías de múltiples de construcción sencilla, que pueda llevarse a cabo con los materiales y herramientas disponibles en el medio, reduciendo el número de curvaturas y secciones a fin de facilitar el proceso de ensamblaje y soldadura de todos los miembros del múltiple de escape.

Utilizar un factor de corrección de potencia según las normas ISO 1585, JIS D 1001 o SAE J 1349, que permita comparar los valores obtenidos independientemente de las condiciones atmosféricas durante las pruebas dinamométricas.

Implementar dentro la UISEK un banco de pruebas dinamométrico calibrado acorde a la normativa INEN.

