

# FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL

# CARRERA DE INGENIERÍA CIVIL

"EVALUACIÓN DEL DESEMPEÑO Y OPTIMIZACIÓN ESTRUCTURAL DE UNA VIVIENDA DE TRES PISOS UBICADA EN MANTA, ECUADOR, MEDIANTE ANÁLISIS NO LINEAL Y DISIPADORES TADAS"

## **AUTOR:**

Darwin Alfredo Acaro Zambrano

## **TUTOR:**

Luis Alberto Soria Nuñez, Msc.

DECLARACIÓN JURAMENTADA

Yo, DARWIN ALFREDO ACARO ZAMBRANO, con cédula de ciudadanía número

172017187-3, declaro bajo juramento que el trabajo aquí desarrollado es de mi autoría, que no

ha sido previamente presentado para ningún grado a calificación profesional; y, que he

consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, cedo mis derechos de propiedad intelectual

correspondientes a este trabajo a la UNIVERDIDAD INTERNACIONAL SEK, según lo

establecido por la ley de propiedad intelectual, por su reglamento y por la normativa

institucional vigente.

D.M Quito, Julio del 2025

Darwin Alfredo Acaro Zambrano

Correo: acarodarwin7@gmail.com

II

#### **DECLARATORIA**

El presente Trabajo de Titulación titulado:

"EVALUACIÓN DEL DESEMPEÑO Y OPTIMIZACIÓN ESTRUCTURAL DE UNA VIVIENDA DE TRES PISOS UBICADA EN MANTA, ECUADOR, MEDIANTE ANÁLISIS NO LINEAL Y DISIPADORES TADAS"

Realizado por:

Darwin Alfredo Acaro Zambrano

Como requisito para la obtención del título de:

#### **INGENIERO CIVIL**

Ha sido dirigido por el profesor:

Ing. Luis Alberto Soria Nuñez, Msc.

Quien considera que constituye un trabajo original de su autor.

Luis Alberto Soria Nuñez, Msc.

**TUTOR** 

# "EVALUACIÓN DEL DESEMPEÑO Y OPTIMIZACIÓN ESTRUCTURAL DE UNA VIVIENDA DE TRES PISOS UBICADA EN MANTA, ECUADOR, MEDIANTE ANÁLISIS NO LINEAL Y DISIPADORES TADAS"

Por

# Darwin Alfredo Acaro Zambrano

Aprobado:

| Ing. Lu             | is Alberto Soria Nuñez, Msc, Tutor       |                     |
|---------------------|------------------------------------------|---------------------|
| Ing. Lu             | is Alberto Soria Nuñez, presidente del T | ribunal             |
| Arq. Sa             | ntiago Rolando Morales Molina, Miemb     | ro del Tribunal     |
| Ing. Hu             | go Marcelo Otañez Gómez, Miembro de      | l Tribunal          |
| Aceptado y Firmado: |                                          | 26 septiembre, 2025 |
|                     | Ing. Luis Alberto Soria Nuñez, Msc       | 2.                  |
|                     |                                          |                     |
| Aceptado y Firmado: |                                          | 26 septiembre, 2025 |
|                     | Ing. Hugo Marcelo Otañez Gómez           | Z.                  |
|                     |                                          |                     |
| Aceptado y Firmado: |                                          | 26 septiembre, 2025 |
|                     | Arq. Santiago Rolando Morales Mo         | lina.               |
|                     |                                          |                     |
|                     |                                          |                     |
|                     | 26                                       | 5, septiembre, 2025 |
|                     | Ing. Luis Alberto Soria Nuñez            |                     |
|                     | Presidente(a) del Tribunal               |                     |

Universidad Internacional SEK

# **DEDICATORIA**

Esta tesis está dedicada a Dios padre, origen de toda sabiduría y fortaleza, cuya presencia ha sido mi orientación constante en cada fase de este proceso educativo. A través de su gracia, he encontrado la motivación y el valor requeridos para afrontar los retos que se me presentaron.

A mis padres, quienes, con su amor incondicional, sacrificio y valores, han sido los pilares fundamentales de mi vida. Su apoyo constante y su ejemplo de esfuerzo y compromiso han sido fundamentales para mi crecimiento personal y académico.

A mi novia, por ser fuente de inspiración y apoyo inquebrantable. Su presencia y su fe en mi me han impulsado a seguir adelante, incluso en los momentos más difíciles, brindándome la motivación necesaria para alcanzar esta meta.

A todos ellos, mi más sincero agradecimiento, ya que sin su amor respaldo y confianza, este logro no habría sido posible.

#### **AGRADECIMIENTO**

Quiero expresar mi más sincero y profundo agradecimiento a todas las personas que han sido parte fundamental de este logro académico. Sin su respaldo, este trabajo no se habría realizado. Primero quiero expresar mi gratitud a Dios padre, fuente de sabiduría y fortaleza, quien me ha orientado con su luz y me ha proporcionado paciencia y resistencia para afrontar los retos de este proyecto.

Mi más profundo agradecimiento al Sr. Marco Lema y Sra. Silvia Cuesta, quienes, por su generosidad y respaldo incondicionales se convirtieron en personajes paternalistas durante este proceso. Agradezco estar a mi lado en los momentos de adversidad, por ofrecerme siempre su guía y seguridad, y por apoyarme para continuar avanzando cuando más lo requería.

A mis padres, quienes han sido cimientos de amor, dedicación y respaldo durante toda mi existencia. Su confianza inquebrantable en mí, su dedicación y sus lecciones son el fundamento en el que he edificado mi formación y mi porvenir.

A todos mis amigos, que han representado un constante recurso de motivación y estimulo. Agradezco su confianza en mí, por estar conmigo en este proceso y por mantenerme concentrados en mis objetivos.

A todos aquellos de forma directa o indirecta, han aportado con su respaldo y amistad a lo largo de este recorrido, les expreso mi más sincero agradecimiento.

#### RESUMEN

Este estudio evalúa el desempeño sísmico y optimiza la estructura de una vivienda de tres pisos en Manta – Ecuador mediante análisis no lineal y la implementación de disipadores de energía TADAS (Tened Absorber-Damper System) utilizando software como ETABS, por lo que se modeló la vivienda, ejecutando análisis estáticos y dinámicos no lineales para la identificación de vulnerabilidades estructurales críticas. Es así como se inició con el levantamiento de información en la vivienda ubicada en la ciudad de Manta, en el que se aplicó formulario FEMA P-154, obteniendo un resultado preliminar de vulnerabilidad baja, pero, en la inspección directa se observó fallas en la estructura y la relación de los valores de viga columna son aceptables. Es por ello que, se realizó el modelado en ETABS, aplicando análisis estático donde las derivas están dentro del límite, también se realizó el análisis dinámico donde sus derivas están dentro del límite de la norma. En análisis no lineal de pushover versus deriva mostraron valores máximos de 0,021565 y 0,040608 para el eje X y Y. Por lo tanto, se propuso la simulación para implementar disipadores TADAS, pues, en el análisis no lineal pushover se identificó una vulnerabilidad de 0,019203, evidenciando, reducción de la respuesta sísmica. Se concluye que, estos resultados permiten ofrecer directrices prácticas para la evaluación y reforzamiento de viviendas en zonas sísmicas activas, contribuyendo significativamente al campo de la ingeniería estructural y proporcionando una base para futuras investigaciones sobre la resistencia sísmica de edificaciones residenciales.

#### PALABRAS CLAVE

Análisis, Vivienda, Reforzamiento estructural, Disipadores TADAS, FEMA.

#### **ABSTRACT**

This study evaluates the seismic performance and optimizes the structure of a three-story house in Manta - Ecuador through nonlinear analysis and the implementation of TADAS (Tened Absorber-Damper System) energy dissipaters using software such as ETABS, so the house was modeled, performing nonlinear static and dynamic analysis for the identification of critical structural vulnerabilities. Thus, information was collected in the house located in the city of Manta, in which the FEMA P-154 form was applied, obtaining a preliminary result of low vulnerability, but, in the direct inspection, flaws were observed in the structure and the ratio of the column beam values are acceptable. For this reason, ETABS modeling was performed, applying static analysis where the drifts are within the limit, however, in the dynamic analysis in the Y direction the values are higher than the established limit. In nonlinear pushover versus drift analysis showed maximum values of 0.021565 and 0.040608 for both axes. Therefore, the simulation was proposed to implement TADAS dissipators, since, in the nonlinear pushover analysis, a vulnerability of 0.0192023 was identified, evidencing a reduction of the seismic response. It is concluded that, these results allow offering practical guidelines for the evaluation and reinforcement of houses in active seismic zones, contributing significantly to the field of structural engineering and providing a basis for future research on the seismic resistance of residential buildings.

#### **KEYWORDS (5)**

Analysis, Housing, Structural reinforcement, TADAS dissipaters, FEMA.

# ÍNDICE DE CONTENIDOS

| 1. | DE   | CLARACIÓN JURAMENTADAl       | Ι |
|----|------|------------------------------|---|
| 2. | DE   | DICATORIA                    | V |
| 3. | AG   | RADECIMIENTOV                | Ί |
| 4. | RES  | SUMENVI                      | Ι |
| 5. | AB   | STRACTVII                    | Ι |
| 6. | ÍNI  | DICE DE FIGURASXIV           | V |
| 7. | ÍNI  | DICE DE TABLASXVII           | Ι |
| 8. | Cap  | pítulo 1: Aspectos Generales | 1 |
|    | 8.1. | Tema de investigación        | 1 |
|    | 8.2. | Planteamiento del Problema   | 1 |
|    | 8.3. | Objetivos                    | 2 |
|    | 8.3. | .1. Objetivo general         | 2 |
|    | 8.3. | .2. Objetivos específicos    | 2 |
|    | 8.4. | Justificación                | 3 |
|    | 8.5. | Antecedentes                 | 5 |
|    | 8.6. | Hipótesis                    | 8 |
|    | 8.6. | .1. Hipótesis general        | 8 |
|    | 8.6. | .2. Hipótesis especificas    | 8 |
|    | 8.7. | Alcance                      | 8 |
|    | 8.8  | Limitaciones                 | 9 |

| 9. Capí | tulo 2: Marco teórico                                         | 10 |
|---------|---------------------------------------------------------------|----|
| 9.1.    | Disipación de Energía en Estructuras                          | 10 |
| 9.1.1   | . Definición e Importancia de los Disipadores de Energía      | 10 |
| 9.1.2   | . Tipos de Disipadores de Energía                             | 12 |
| 9.1.3   | Principio de Funcionamiento de los Disipadores de Energía     | 13 |
| 9.2.    | Disipadores TADAS                                             | 14 |
| 9.2.1   | . Aspectos Generales de los Disipadores TADAS                 | 14 |
| 9.2.2   | Principios de Funcionamiento de los Disipadores TADAS         | 16 |
| 9.2.3   | . Condiciones de Funcionamiento de los Disipadores TADAS      | 17 |
| 9.2.4   | Ventajas y Desventajas de los Disipadores TADAS               | 19 |
| 9.2.5   | . Impacto de los disipadores TADAS en la Ingeniería Sísmica   | 20 |
| 9.3.    | Normativas y Directrices Relacionadas                         | 22 |
| 9.3.1   | . Norma Ecuatoriana de la Construcción (NEC-15)               | 22 |
| 9.3.2   | Directrices de FEMA y ASCE                                    | 23 |
| 9.4.    | Metodologías de Evaluación de Desempeño con Disipadores TADAS | 24 |
| 9.4.1   | . Análisis sísmico estático                                   | 25 |
| 9.4.2   | . Análisis dinámico Espectral                                 | 27 |
| 9.4.3   | . Análisis dinámico no lineal                                 | 29 |
| 10. Ca  | apítulo 3: Materiales y Métodos                               | 30 |
| 10.1.   | Enfoque                                                       | 30 |
| 10.2.   | Métodos                                                       | 30 |
| 10.3.   | Técnicas e instrumentos                                       | 31 |

| 10.4.  | Procedimiento                                        | 32 |
|--------|------------------------------------------------------|----|
| 10.5.  | Levantamiento de información de campo                | 33 |
| 10.5.  | .1. Determinación vivienda a evaluar                 | 33 |
| 10.5.  | .2. Levantamiento de información preliminar          | 33 |
| 10.5.  | .3. Evaluación de vulnerabilidad mediante FEMA P-154 | 41 |
| 11. Ca | apítulo 4: Propuesta                                 | 43 |
| 11.1.  | Descripción del proyecto                             | 43 |
| 11.2.  | Sistema estructural                                  | 44 |
| 11.2.  | .1. Modelación de la Estructura                      | 44 |
| 11.3.  | Análisis de cargas                                   | 45 |
| 11.3.  | .1. Análisis de fuerzas gravitatorias                | 45 |
| 11.4.  | Parámetros de ingreso                                | 47 |
| 11.4.  | .1. Materiales                                       | 47 |
| 11.4.  | .2. Geometría de secciones                           | 49 |
| 11.4.  | .3. Cargas                                           | 51 |
| 11.5.  | Análisis de espectro de aceleración NEC 15           | 53 |
| 11.6.  | Irregularidad en planta                              | 55 |
| 11.7.  | Irregularidad en elevación                           | 56 |
| 11.7.  | .1. Tipo 1                                           | 56 |
| 11.7.  | .2. Tipo 2                                           | 56 |
| 11.7.  | .3. Tipo 3                                           | 56 |
| 11.7.  | .4. Tipo 4                                           | 56 |

|     | 11.7.5. | 1          | ıpo 5                                           | 56 |
|-----|---------|------------|-------------------------------------------------|----|
|     | 11.7.6. | R          | esumen                                          | 57 |
| 1 . | 1.8.    | Cálc       | culo de cortante basal                          | 57 |
| 1 . | 1.9.    | Dist       | ribución vertical de fuerzas sísmicas laterales | 58 |
| 1 : | 1.10.   | Cor        | rección del cortante basal                      | 58 |
|     | 11.10.1 |            | Sismo estático                                  | 58 |
|     | 11.10.2 | 2.         | Sismo dinámico                                  | 59 |
|     | 11.10.3 | 3.         | Espectro inelástico                             | 60 |
| 1 : | 1.11.   | Che        | queos                                           | 62 |
| 1 . | 1.12.   | Aná        | lisis no lineal vivienda actual (NSP)           | 80 |
|     | 11.12.1 | l <b>.</b> | Modelo constitutivo del hormigón No confinado   | 80 |
|     | 11.12.2 | 2.         | Modelo constitutivo del Acero                   | 81 |
| 1 . | 1.13.   | Aná        | lisis de carga PUSHOVER                         | 81 |
|     | 11.13.1 | l <b>.</b> | Objetivo de desplazamiento                      | 82 |
|     | 11.13.2 | 2.         | Curva de Capacidad                              | 83 |
|     | 11.13.3 | 3.         | Punto de desempeño (Método FEMA 440)            | 85 |
|     | 11.13.4 | ŀ.         | Criterios de aceptación                         | 87 |
| 1 . | 1.14.   | Dise       | eño de disipadores TADAS para la vivienda       | 97 |
|     | 11.14.1 |            | Propuesta de reforzamiento                      | 97 |
|     | 11.14.2 | 2.         | Esquema del Reforzamiento estructural           | 97 |
|     | 11.14.3 | 3.         | Masa por piso                                   | 98 |
|     | 11.14.4 | l.         | Desplazamientos                                 | 99 |

| 11.14.5.      | Fuerzas por piso                                                | . 100 |
|---------------|-----------------------------------------------------------------|-------|
| 11.14.6.      | Tabla de diseño                                                 | . 100 |
| 11.14.7.      | Propiedades del disipador                                       | . 101 |
| 11.14.8.      | Estructuración del sistema de refuerzo                          | . 103 |
| 11.14.9.      | Representación de las diagonales rigidizadoras                  | . 104 |
| 11.15. Aná    | ilisis estructural (Estructura reforzada)                       | . 106 |
| 11.15.1.      | Análisis estático de la estructura reforzada                    | . 106 |
| 11.16. Aná    | ilisis no lineal Tadas                                          | . 110 |
| 11.16.1.      | Curva de capacidad estructura reforzada (método ASCE 41-13 NSP) | . 110 |
| 11.16.2.      | Curva de capacidad y punto de desempeño de estructura reforzada | . 111 |
| 11.17. Aná    | ilisis de los resultados                                        | . 123 |
| 11.17.1.      | Análisis comparativo                                            | . 124 |
| 12. Capítulo  | 5: Conclusiones y Recomendaciones                               | . 129 |
| 12.1. Con     | aclusiones                                                      | . 129 |
| 12.2. Rec     | omendaciones                                                    | . 130 |
| 13. Bibliogra | afia                                                            | . 131 |
|               |                                                                 |       |

# ÍNDICE DE FIGURAS

| Figura 1 Tipos de disipadores                         | 12 |
|-------------------------------------------------------|----|
| Figura 2 Disipador TADAS                              | 15 |
| Figura 3 Funcionamiento de Disipador TADAS            | 17 |
| Figura 4 Comportamiento del disipador TADAS           | 19 |
| Figura 5 Niveles de desempeño                         | 24 |
| Figura 6 Tipos de análisis sísmico estático           | 26 |
| Figura 7 Construcción de espectros de respuesta       | 27 |
| Figura 8 Análisis dinámico espectral                  | 28 |
| Figura 9 Mapa de ubicación vivienda                   | 33 |
| Figura 10 Ubicación vivienda                          | 34 |
| Figura 11 Esquema ubicación de columnas               | 36 |
| Figura 12 Ubicación de columnas (3D)                  | 37 |
| Figura 13 Toma de datos de columnas                   | 37 |
| Figura 14 Toma de datos de la altura de columnas      | 38 |
| Figura 15 Toma de datos del espesor de las losas      | 39 |
| Figura 16 Toma de datos agujero de la grada           | 39 |
| Figura 17 Toma de datos de la altura total de la casa | 40 |
| Figura 18 Toma de datos de todo el borde de losa      | 41 |
| Figura 19 Fachada de la vivienda                      | 43 |
| Figura 20 Dimensiones de cada eje                     | 44 |
| Figura 21 Altura de Entrepisos                        | 45 |
| Figura 22 Carga muerta                                | 46 |
| Figura 23 Carga viva                                  | 47 |
| Figura 24 Datos de hormigón                           | 48 |

| Figura 25 Datos acero de refuerzo                                                  | 49 |
|------------------------------------------------------------------------------------|----|
| Figura 26 Col 40x40                                                                | 50 |
| Figura 27 Viga banda 40x25 (asumido)                                               | 50 |
| Figura 28 Losa 25                                                                  | 51 |
| Figura 29 Definición patrones de carga                                             | 51 |
| Figura 30 Combinaciones de cargas                                                  | 52 |
| Figura 31Espectro Sísmico de aceleraciones                                         | 54 |
| Figura 32 Coeficiente de Importancia, Reducción y Sistemas Estructurales           | 57 |
| Figura 33 Análisis de Respuesta Sísmica y Estática                                 | 59 |
| Figura 34 Configuración de Casos de carga para espectro de Respuesta               | 60 |
| Figura 35 Espectro elástico e inelástico                                           | 62 |
| Figura 36 Vista en planta                                                          | 63 |
| Figura 37 Vista en elevación                                                       | 64 |
| Figura 38 Vista en elevación 2, 3 ,4,5 y 6                                         | 66 |
| Figura 39 Carga lateral por piso (Sx)                                              | 67 |
| Figura 40 Carga lateral por piso (Sy)                                              | 68 |
| Figura 41 Cortes por piso (Sx)                                                     | 69 |
| Figura 42 Cortes por piso (Sy)                                                     | 69 |
| Figura 43 Deriva máxima del piso (Sx)                                              | 70 |
| Figura 44 Deriva máxima del piso (Sy)                                              | 71 |
| Figura 45 Cortante dinámico por piso (Dx)                                          | 72 |
| Figura 46 Cortante dinámico por piso (Dy)                                          | 73 |
| Figura 47 Deriva dinámica máxima del piso (Dx)                                     | 74 |
| Figura 48 Deriva dinámica máxima del piso (Dy)                                     | 75 |
| Figura 49 Vista en elevación de la columna P-M-M relación de interacción ACI318-19 | 77 |

| Figura 50 Vista 3D de la columna P-M-M relación de interacción ACI318-19           | 78  |
|------------------------------------------------------------------------------------|-----|
| Figura 51 Vista en 3D de las columnas de la estructura                             | 79  |
| Figura 52 Modelo no lineal de Mander para concreto                                 | 80  |
| Figura 53 Modelo Constitutivo del Acero (Modelo de Park)                           | 81  |
| Figura 54 Asignación de Cargas en el Análisis Pushover según Modos de Vibración    | 82  |
| Figura 55 Nodo Control Ubicación                                                   | 83  |
| Figura 56 Curva de Capacidad                                                       | 84  |
| Figura 57 Vista 3D hinges vigas columnas no lineal de la vivienda existente (revB) | 88  |
| Figura 58 Vista 3D Pushover XY no lineal vivienda existente (revB)                 | 88  |
| Figura 59 Vista en 3D Pushover vs deriva X no lineal vivienda existente (RevB)     | 90  |
| Figura 60 Vista en 3D Pushover vs deriva Y no lineal vivienda existente (RevB)     | 90  |
| Figura 61 Vista en 3D Hinges X no lineal vivienda existente (RevB)                 | 91  |
| Figura 62 Vista en 3D Hinges Y no lineal vivienda existente (RevB)                 | 91  |
| Figura 63 Esquema del Reforzamiento                                                | 98  |
| Figura 64 Vista en 3D de la masa por piso                                          | 99  |
| Figura 65 Propuesta de Dispositivos TADAS                                          | 101 |
| Figura 66 Propiedad direccional de soporte (diseño TADAS)                          | 103 |
| Figura 67 Vista en 3D de disipadores TADAS                                         | 104 |
| Figura 68 Sección de las diagonales del disipador TADAS                            | 105 |
| Figura 69 Asignación de Rótulas plásticas en diagonales                            | 105 |
| Figura 70 Deriva máxima del piso Dx (diseños disipadores)                          | 107 |
| Figura 71 Deriva máxima del piso Dy (diseño disipadores)                           | 108 |
| Figura 72 Vista 3D hinges vigas columnas TADAS no lineal (revD)                    | 117 |
| Figura 73 Vista 3D Pushover X-Y no lineal TADAS (revD)                             | 118 |
| Figura 74 Vista en 3D Pushover vs deriva X no lineal TADAS (RevD)                  | 119 |

| Figura 75 Vista en 3D Pushover vs deriva Y no lineal TADAS (RevD)                        |
|------------------------------------------------------------------------------------------|
| Figura 76 Comparativa derivas y curva capacidad entre estructura existente con uso de    |
| TADAS                                                                                    |
| Figura 77 Comparación de derivas inelásticas máximas en direcciones UX y Uy              |
| Figura 78 Comparación de los Modos de Vibración modal en ambas estructuras               |
| Figura 79 Radio de ductilidad ante amenazas sísmicas en ambas estructuras                |
| Figura 80 Comparación de punto de desempeño, para los diferentes métodos empleados (UX). |
|                                                                                          |
| Figura 81Comparación de punto de desempeño, para los diferentes métodos empleados (UY).  |
|                                                                                          |

# ÍNDICE DE TABLAS

| Tabla 1. Ficha de evaluación rápida de vulnerabilidad sísmica adaptado de FEMA P-154 | 31  |
|--------------------------------------------------------------------------------------|-----|
| Tabla 2. Evaluación de vulnerabilidad sísmica adaptado de FEMA P-154                 | 42  |
| Tabla 3 Peso propio de losa alivianada esp=25cm                                      | 45  |
| Tabla 4. Definiciones de patrones de carga auto sísmica                              | 52  |
| Tabla 5. Lista de materiales por historia                                            | 52  |
| Tabla 6 Cortante basal corregido                                                     | 59  |
| Tabla 7 Análisis de respuesta Dinámico                                               | 59  |
| Tabla 8 Factor aceleración corregido                                                 | 60  |
| Tabla 9. Espectro inelástico sentido X                                               | 61  |
| Tabla 10. Participación de masas modal                                               | 76  |
| Tabla 11. Torsión en planta                                                          | 77  |
| Tabla 12 Punto de desempeño (T=225años)                                              | 85  |
| Tabla 13 Punto de desempeño (T=975 años)                                             | 86  |
| Tabla 14 Cortante Basal Vs Desplazamiento                                            | 87  |
| Tabla 15. Comparativa con Pushover en X                                              | 92  |
| Tabla 16. Comparativa con Pushover en Y                                              | 94  |
| Tabla 17 Límite de distorsiones Máximas permitidas para Estructuras                  | 97  |
| Tabla 18. Masa por piso                                                              | 98  |
| Tabla 19. Desplazamientos                                                            | 99  |
| Tabla 20. Fuerzas por piso                                                           | 100 |
| Tabla 21. Valores de cálculo para TADAS                                              | 100 |
| Tabla 22 Control de deriva Inelástica                                                | 106 |
| Tabla 23. Relación de participación de masa modal (diseños disipadores)              | 109 |

| Tabla 24. Relación entre desplazamiento máximo y promedio de pisos (diseños disipadores |     |
|-----------------------------------------------------------------------------------------|-----|
|                                                                                         | 109 |
| Tabla 25 Curva Bilineal de la Estructura Reforzada (T=975 años)                         | 110 |
| Tabla 26 Curva desempeño de la estructura reforzada (T=225 años)                        | 111 |
| Tabla 27 Curva de desempeño de la estructura reforzada (T=975 años)                     | 112 |
| Tabla 28 Evaluación de desempeño (Estructura Reforzada)                                 | 113 |
| Tabla 29 Evaluación de desempeño (Estructura Reforzada)                                 | 115 |

#### Capítulo 1: Aspectos Generales

#### 8.1. Tema de investigación

Evaluación del desempeño y optimización estructural de una vivienda de tres pisos en Manta, Ecuador, mediante Análisis No Lineal y Disipadores TADAS.

#### 8.2. Planteamiento del Problema

La ciudad de Manta ubicada en la costa central de Ecuador ha experimentado un crecimiento urbano significativo en las últimas décadas. Sin embargo, existe falta de planificación adecuada y construcción informal de viviendas, siendo, un problema crítico en una región con alta actividad sísmica, donde muchas edificaciones no cumplen con las normativas sismorresistentes, incrementando el riesgo de daños severos y pérdidas humanas durante eventos sísmicos (López, 2019).

La falta de adherencia a las normativas de construcción sismorresistentes se debe en gran parte a la insuficiencia de recursos y conocimientos técnicos entre los constructores locales. Loor et al. (2021) destaca que la mayoría de las viviendas en Manta fueron construidas sin supervisión técnica ni inspecciones rigurosas, resultando en estructuras con deficiencias críticas que comprometen su estabilidad. Esto es particularmente preocupante dado que Ecuador se encuentra en una zona de alta peligrosidad sísmica, con una larga historia de terremotos destructivos (Instituto Geofísico, 2016).

A pesar de la existencia de la Norma Ecuatoriana de la Construcción (NEC-15), que establece los requisitos mínimos para el diseño y construcción de estructuras sismorresistentes, la implementación de estas normativas ha sido limitada. Esto se debe, en parte, a la falta de capacitación y concienciación sobre la importancia de seguir estos estándares. Cunalata y Caiza (2022) señalan que es crucial promover la adopción de la NEC-15 para mejorar la seguridad de las edificaciones en zonas sísmicamente activas.

En respuesta a esta problemática, surge la necesidad de explorar y aplicar tecnologías innovadoras que puedan mejorar la resistencia sísmica de las edificaciones existentes. Los disipadores de energía TADAS (Tuned Absorber-Damper System) han demostrado ser una solución efectiva para absorber y disipar la energía generada por movimientos sísmicos, reduciendo así las demandas sobre la estructura principal y mejorando su desempeño durante eventos sísmicos (American Society of Civil Engineers, 2017).

# 8.3. Objetivos

## 8.3.1. Objetivo general

Evaluar la vulnerabilidad sísmica de una vivienda de tres pisos en Manta, Ecuador, utilizando el software ETABS para realizar análisis estructurales detallados y proponer medidas de reforzamiento mediante la implementación de disipadores de energía TADAS, conforme a la normativa NEC-15, con el fin de mejorar significativamente su capacidad de resistencia sísmica.

#### 8.3.2. Objetivos específicos

- Diseñar y modelar la estructura de la vivienda en ETABS, realizando análisis lineales y
  no lineales para evaluar el comportamiento bajo cargas sísmicas, y cuantificar los
  desplazamientos y esfuerzos internos.
- Evaluar el comportamiento estructural de la edificación, identificando y cuantificando deficiencias y vulnerabilidades estructurales mediante los criterios establecidos en la normativa NEC-15, y determinar su impacto en la seguridad sísmica.
- Proponer y simular alternativas de reforzamiento estructural, incluyendo la implementación de disipadores de energía TADAS, para reducir la vulnerabilidad sísmica en al menos un 20%, asegurando el cumplimiento con los requisitos de la normativa NEC-15.

#### 8.4. Justificación

La ciudad de Manta enfrenta a una alta vulnerabilidad sísmica debido a su ubicación geográfica y la falta de cumplimiento con normativas sismorresistentes en la construcción de muchas de sus edificaciones (Instituto Geofísico, 2016). Por lo tanto, esta investigación se justifica por la necesidad de desarrollar y aplicar estrategias efectivas para el reforzamiento sísmico de las estructuras existentes. En particular, la implementación de disipadores de energía TADAS (Tuned Absorber-Damper System) ofrece una solución innovadora y eficiente para absorber y disipar la energía generada por los movimientos sísmicos, reduciendo así las demandas sobre la estructura principal y mejorando su desempeño durante eventos sísmicos (American Society of Civil Engineers, 2017).

El enfoque en una vivienda de tres pisos en Manta permite una evaluación detallada y práctica de cómo los disipadores de energía TADAS pueden ser integrados en edificaciones residenciales típicas de la región. Utilizando herramientas avanzadas de modelado y análisis estructural como el software ETABS, este estudio busca identificar y corregir vulnerabilidades críticas en la estructura, asegurando que las soluciones propuestas sean tanto técnicamente viables como económicamente accesibles.

La implementación de disipadores de energía TADAS no solo mejora la seguridad sísmica de la vivienda en estudio, sino que también proporciona un modelo replicable para otras edificaciones en Manta y en regiones con condiciones sísmicas similares. Por lo tanto, contribuye significativamente al campo de la ingeniería estructural, proporcionando directrices prácticas para la evaluación y reforzamiento de viviendas vulnerables. Al hacerlo, se promueve la adopción de tecnologías avanzadas y prácticas de construcción más seguras, con el potencial de salvar vidas y reducir daños en futuras catástrofes sísmicas.

Además, esta tesis se alinea con los objetivos del Proyecto SARA (South America Risk Assessment) y las directrices de la Norma Ecuatoriana de la Construcción (NEC-15),

garantizando que las recomendaciones y metodologías desarrolladas sean conformes con las mejores prácticas tanto internacionales como locales en ingeniería sísmica (South America Risk Assessment, 2018; Instituto Ecuatoriano de Normalización, 2015). Cabe mencionar que, en el 2013 inició el proyecto SARA de la fundación GEM (Global Earthquake Model), quienes facilitaron una herramienta para la evaluación de peligros y riesgos sísmicos, donde participaron 50 expertos de la región Andina. El proyecto se basa en peligro sísmico, exposición — vulnerabilidad, resiliencia — vulnerabilidad social, escenarios urbanos y estimación nacional — subnacional de pérdidas. Este proyecto se relaciona con la tesis propuesta debido a que se considera el modelado de la exposición y vulnerabilidad física en países propensos a terremotos, así como los datos de la amenaza sísmica y las estrategias de gestión de riesgos (Fundación GEM, 2020).

En resumen, esta investigación no solo aborda una necesidad crítica de seguridad pública en Manta, sino que también en el conocimiento técnico y práctico sobre el uso de disipadores de energía en la ingeniería sísmica. Además, radica en su potencial para ofrecer soluciones tangibles y efectivas que mejoren la resiliencia de las comunidades frente a los desastres naturales.

#### 8.5. Antecedentes

La ciudad de Manta es una de las zonas con mayor actividad sísmica del país, lo que plantea serios desafíos para la construcción y mantenimiento de edificaciones seguras. Históricamente, Ecuador ha experimentado terremotos devastadores como el ocurrido en abril de 2016, causando daños significativos en infraestructura y pérdidas humanas considerables. Este evento subrayó la urgente necesidad de mejorar las prácticas de construcción y reforzamiento estructural en áreas de alta vulnerabilidad sísmica (Instituto Geofísico, 2016).

El crecimiento urbano de Manta ha sido rápido y, en muchos casos, desordenado. La falta de planificación urbana y construcción informal han dado lugar a numerosas edificaciones que no cumplen con las normativas sismorresistentes. Según el estudio de López (2019), aproximadamente el 70% de las viviendas en Manta carecen de un diseño estructural adecuado para resistir terremotos, aumentando significativamente el riesgo de colapso en caso de un evento sísmico.

Además, Loor et al. (2021) señala que, muchas de estas viviendas fueron construidas sin supervisión técnica ni inspecciones rigurosas, resultando estructuras con deficiencias críticas que comprometen su estabilidad por la falta de recursos y conocimientos técnicos adecuados entre los constructores locales, quienes a menudo recurren a métodos de construcción tradicionales inadecuados para áreas de alta sismicidad.

En respuesta a la necesidad de mejorar la resistencia sísmica de las edificaciones, el gobierno ecuatoriano ha desarrollado la Norma Ecuatoriana de la Construcción (NEC) como la NEC-15, que establece los requisitos mínimos para el diseño y construcción de estructuras sismorresistentes basado en principios internacionales reconocidos, proporcionando directrices claras para la evaluación y reforzamiento de edificaciones existentes (Instituto Ecuatoriano de Normalización, 2015).

La aplicación efectiva de esta normativa ha sido limitada debido a la falta de recursos y capacitación entre los profesionales de la construcción. Según Cunalata y Caiza (2022), es esencial que las autoridades locales promuevan la capacitación y adopción de las mismas para mejorar la seguridad de las edificaciones. Por lo tanto, el uso de disipadores de energía como sistema TADAS (Tuned Absorber-Damper System) ha demostrado ser una estrategia efectiva para la mejora de la resistencia sísmica de las estructuras, pues, están diseñados como mecanismo de absorción y disipación de la energía generada por movimientos sísmicos, reduciendo las demandas sobre la estructura principal, mitigando el riesgo de daños severos (American Society of Civil Engineers, 2017).

De tal modo, representa una solución innovadora que ha ganado aceptación en varias regiones sísmicamente activas del mundo. Estudios realizados por el Federal Emergency Management Agency (FEMA) han demostrado que pueden reducir significativamente las fuerzas internas y desplazamientos en las estructuras durante un terremoto, mejorando el desempeño general, aumentando la seguridad para los ocupantes (Cunalata y Caiza, 2022).

En investigaciones recientes sugieren que puede ser altamente beneficiosa para mejorar la seguridad sísmica de las viviendas en áreas de alta vulnerabilidad. El Proyecto SARA (South America Risk Assessment) enfatiza la necesidad de adoptar tecnologías avanzadas y enfoques basados en la evidencia para la reducción de riesgos sísmicos en la región (South America Risk Assessment, 2018).

De igual modo, en el trabajo Aguiar et al. (2016) destacan que los disipadores TADAS son eficaces para reducir las deformaciones y fuerzas internas en las estructuras durante eventos sísmicos. Estos dispositivos funcionan mediante la absorción de la energía sísmica, disminuyendo el impacto en los elementos estructurales principales; concluyendo que la integración de disipadores de energía en el diseño de edificaciones puede mejorar significativamente su desempeño sísmico.

Por otro lado, en estudios realizados en Japón y Estados Unidos, donde los disipadores de energía se han implementado ampliamente, respaldan su efectividad. Aguilar et al. (2012) evaluaron el desempeño de edificios equipados con disipadores TADAS durante el terremoto de Tohoku en 2011 y encontraron que experimentaron menores daños en relación con otros que no contaban con el mismo, reforzando la viabilidad técnica y beneficios prácticos de adoptar disipadores de energía en zonas sísmicamente activas.

En el contexto ecuatoriano, la integración de disipadores de energía en las estrategias de reforzamiento estructural aún es incipiente, pero, está ganando tracción. Cunalata y Caiza (2022), han comenzado a explorar la aplicación de disipadores de energía en edificaciones de hormigón armado. En este sentido, los estudios preliminares sugieren que la implementación de disipadores TADAS podría ser una solución efectiva para mejorar la seguridad sísmica de las estructuras en el país.

A pesar de los avances, existen varios desafíos para la implementación en Ecuador debido a la falta de capacitación y recursos técnicos entre los profesionales de la construcción. Además, la percepción de altos costos iniciales puede disuadir a los propietarios y constructores de adoptar estas tecnologías. Sin embargo, los beneficios a largo plazo, en términos de reducción de daños y protección de vidas, justifican la inversión en tecnologías de reforzamiento sísmico. La promoción de programas de capacitación y concienciación sobre los beneficios de los disipadores de energía podría facilitar su adopción. Las autoridades locales y las instituciones educativas tienen un papel crucial en este proceso, proporcionando apoyo técnico y recursos para la implementación de estas soluciones innovadoras.

#### 8.6. Hipótesis

## 8.6.1. Hipótesis general

El reforzamiento estructural de la vivienda en estudio mediante la implementación de disipadores de energía TADAS, siguiendo las directrices del FEMA-154 y el proyecto SARA, disminuirá significativamente su vulnerabilidad sísmica y mejorará su capacidad para resistir eventos sísmicos futuros.

## 8.6.2. Hipótesis especificas

- La instalación de disipadores de energía TADAS en la vivienda de estudio, conforme a las directrices de FEMA-154 y el proyecto SARA, resultará en una reducción significativa de los desplazamientos y esfuerzos internos durante eventos sísmicos.
- La aplicación de las técnicas de análisis no lineal para evaluar el desempeño sísmico y el reforzamiento de la estructura con disipadores de energía TADAS, siguiendo la metodología del FEMA-154 y el proyecto SARA, mejorará la capacidad de la vivienda para disipar energía sísmica, aumentando así su resistencia estructural.

#### 8.7. Alcance

El alcance de esta tesis se define por los límites y parámetros dentro de los cuales se llevará a cabo la investigación sobre la implementación de disipadores de energía TADAS en una vivienda de tres pisos en Manta, Ecuador. Este estudio aborda tanto los aspectos técnicos como prácticos de la evaluación y reforzamiento estructural para mejorar la resistencia sísmica de la edificación.

Por ende, el estudio se centrará en una vivienda de tres pisos ubicada en la ciudad de Manta, pues, representa construcciones residenciales de la región, caracterizadas por una alta vulnerabilidad sísmica debido al incumplimiento de normativas sismorresistentes. Se realizará una evaluación detallada de la vulnerabilidad sísmica de la vivienda utilizando el software

ETABS para la evaluación sísmica basado en un análisis lineal, dinámico no lineal (método FNA e integración directa), dinámico espectral y modelado estructural.

Además, se incluirá el diseño y la simulación de la implementación de disipadores de energía TADAS en la estructura de la vivienda a través de la selección y configuración (número, tipo y ubicación óptima), simulaciones comparativas (desempeño estructural con y sin los disipadores TADAS). Para ello, se considerará normativas como NEC-15, FEMA-154 y Proyecto SARA. Por último, se aplicará la evaluación técnica y económica, en el que se incluye el análisis de costos asociados a la instalación de los disipadores en comparación con los beneficios esperados en términos de reducción de daños y mejora de la seguridad sísmica.

#### 8.8. Limitaciones

La implementación de disipadores de energía TADAS en una vivienda de tres pisos en Manta presenta varias limitaciones. Una de ellas, es que la precisión de los datos de entrada y capacidades del software ETABS pueden no capturar completamente el comportamiento no lineal complejo de la estructura. Además, las simulaciones se basan en escenarios sísmicos específicos, lo que no abarca toda la variabilidad de eventos sísmicos posibles.

Otra limitación es que la instalación y mantenimiento de los disipadores TADAS pueden enfrentar desafíos prácticos que afectan el desempeño real. Finalmente, los factores económicos y sociales también pueden influir en la adopción de la tecnología, incluso la revisión bibliográfica puede no incluir actualizaciones más recientes en el campo.

## Capítulo 2: Marco teórico

## 9.1. Disipación de Energía en Estructuras

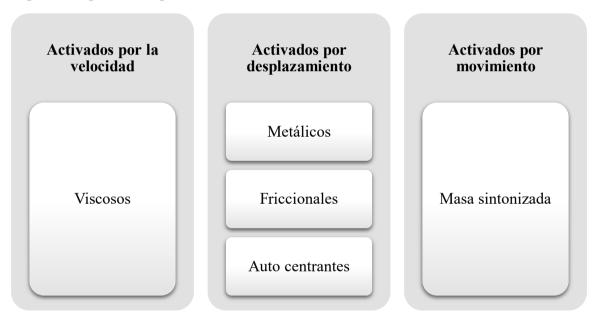
## 9.1.1. Definición e Importancia de los Disipadores de Energía

Los disipadores de energía se definen como dispositivos cuya finalidad es la absorción y disipación de la energía que se induce a una estructura como consecuencia de la existencia de un evento sísmico. Se caracterizan por actuar como amortiguadores ayudando en la reducción del nivel de fuerza que se transmite a los elementos esenciales de la estructura, lo cual ayuda a incrementar la resistencia en casos de temblores. Por lo tanto, son esenciales para evitar que las construcciones sufran daños significativos que impidan que continúen siendo utilizadas o habitables (Guerrero et al., 2020).

Según explica Ayala et al. (2020) los disipadores de energía hacen posible aislar el exceso de energía que recibe una determinada estructura cuando se presente un evento sísmico. Permiten que la construcción soporte altos niveles de presión y fuerza, de tal manera que se mantenga en pie ya que distribuyen el impacto de manera equilibrado evitando que se produzcan grades daños estructurales. Su implementación dentro de los diseños es importante porque constituyen en un elemento que aporta estabilidad frente a movimientos telúricos.

Los disipadores de energía absorben la energía sísmica que ingresa al edificio, disipándola y evitando que la estructura sufra de daños considerables. Son colocados en la estructura actuando como opositores del movimiento sísmico, es decir generan fuerzas contrarias lo cual ayuda a lograr estabilidad. Es decir, al momento de un evento telúrico, los disipadores ejercen un efecto de amortiguación, disminuyendo tanto la fuerza sísmica como el desplazamiento. De esta manera, las estructuras tienen mayores posibilidades de mantenerse en pie de una manera segura (Sioingeniería, 2025).

Desde el punto de vista de Guerrero (2018) los disipadores de energía son importantes por las siguientes razones:


- Disminuye la deformación de las estructuras debido a que se disipa la fuerza sísmica y se reduce la incidencia de daño.
- Disminuye la posibilidad de que la estructura pierda funcionalidad o colapse gracias al amortiguamiento de la fuerza provocada por el evento sísmico.
- Cumplen la función de ser fusibles estructurales, ya que pueden ser reemplazados de manera fácil si han sufrido algún tipo de daño después de haber soportado la fuerza de un sismo.
- Si bien el uso de disipadores es una inversión, el costo de la construcción generalmente aumenta un 5%, sin embargo, los beneficios se observan en el largo plazo, reduciendo potencialmente los daños que pueden sufrir las estructuras.
- Disminuyen el costo de reparación ya que centralizan el impacto en los daños en sí mismos, por lo que la estructura no sufre daños y el reemplazo de los disipadores es más económico.
- Disminuye la pérdida de rigidez de la estructura, lo que significa que el daño acumulado a lo largo de la vida útil de la construcción es menor ya que la energía sísmica se disipa de manera equilibrada.
- Reduce los costos de construcción, ya que el uso de disipadores de energía hace posible cumplir con la normativa antisísmica estipulada por las autoridades competentes.
- Hace posible la rehabilitación y el reforzamiento de las construcciones ya que no se necesita aumentar la cimentación, pero si aumenta la capacidad para disipar las fuerzas que se producen en el contexto de enfrentar eventos telúricos de todas las intensidades.

Por lo tanto, los disipadores de energía tienen como característica principal que evitan hacer resistencia en relación con el movimiento de la construcción, su función principal es la absorción de la energía, siguiendo el comportamiento de la estructura. De esta manera, la edificación no sufre ningún tipo de deformación manteniéndose estable y reduciendo el riesgo de daños considerables e incluso de desplome (Sioingeniería, 2025).

#### 9.1.2. Tipos de Disipadores de Energía

Los principales disipadores de energía según explica Rodríguez (2025) se clasifican tal como se muestra en la Figura 1:

Figura 1 Tipos de disipadores



Fuente: Adaptado de Rodríguez (2025).

En relación con los disipadores activados por velocidad Rodriguez (2025) explica que estos funcionan disipando la energía por medio del uso de las velocidades relativas que se presentan entre los puntos de unión de los dispositivos. El movimiento determina el tipo de respuesta fuerza – desplazamiento, dentro de estos se encuentran los denominados como viscosos, los cuales disminuyen la vibración y la respuesta dinámica de la construcción gracias a sus materiales viscoelásticos.

Los disipadores activados por desplazamiento se caracterizan por la disipación de la energía en función de los desplazamientos de carácter relativo que se presentan entre los diferentes puntos en los cuales se conecta el dispositivo. Dentro de los más utilizados se encuentran los friccionales, auto centrantes y los metálicos. Su implementación permite absorber y distribuir el impacto de tal manera que la estructura no presente daños considerables en el contexto de un evento sísmico (Sioingeniería, 2025).

Respecto a los disipadores activados por movimiento, se conoce que una de sus principales características es que interrumpen el flujo normal de la energía que presenta la estructura por medio la vibración que realiza un sistema secundario. De esta manera la estructura alcanza mayor estabilidad, disminuyendo de manera considerable el riesgo de potenciales daños. Se tiene como referencia los disipadores de masa sintonizada, los mismos que se componen de una mesa pesada conectada con el uso de amortiguadores y resortes (Rodriguez, 2025).

# 9.1.3. Principio de Funcionamiento de los Disipadores de Energía

El principio fundamental del funcionamiento de los disipadores de energía es la transformación de la energía externa producido por un sismo u otro similar en otro tipo de energía la cual puede ser calo o fricción con la finalidad de que el impacto no genere daños en la estructura. De esta manera se logra que la acumulación de energía se disipe por medio de acciones como la amortiguación de tal manera que se reduzca el impacto y por tanto las consecuencias producidas por los movimientos sisimicos que se presentan. (Genatios y Lafuente, 2016).

Por lo tanto, al implementar dentro de las estructuras disipadores sísmicos se produce un efecto de amortiguamiento en función de la dirección e intensidad del movimiento telúrico con la finalidad de proteger la estructura.

El uso de disipadores brinda entre un 50% y un 100% de seguridad estructural, porque incrementa la capacidad sismorresistente y se reducen de manera significativa los costos por reparación de daños. Como parte de los principios también se debe tomar en cuenta la

valoración del tipo de disipadore más adecuado en función de las diferentes características de las estructuras (Cedeño y Palma, 2020).

Además, Genatios y Lafuente (2016) que los disipadores de energía sísmica, al actuar como amortiguadores permiten que la estructura vibre por medio de movimientos oscilatorios hasta llegar a un estado de reposo. Los factores que intervienen en este proceso son la fricción que se produce en los puntos de unión, las microfisuras que se presentan tanto en la mampostería como en el concreto y las vibraciones radiadas dirigidas hacia el suelo. El equilibrio de estos elementos facilita que la estructura recupere su posición original.

Según menciona Sellés (2021) estos elementos facilitan que la energía recibida por una estructura se disperse desde el suelo a todas las estructuras que encuentran en él. Parte de los principios de su funcionamiento es la baja resistencia frente a movimientos lentos, sin embargo, son altamente eficaces cuando se presentan movimientos bruscos actuando como un cinturón de seguridad. El adecuado funcionamiento depende de la valoración de las características de la edificación y del suelo, con el fin de implementar el tipo de disipador que brinde mayor nivel de seguridad.

#### 9.2. Disipadores TADAS

# 9.2.1. Aspectos Generales de los Disipadores TADAS

Los disipadores TADAS cuyas siglas provienen de su nombre en inglés Triangular Plate Added Damping and Stiffness, se encuentran compuestos por placas de forma triangular, las cuales son de material de acero y se encuentran colocadas en forma paralela. La base de cada una se encuentra soldada a otra placa que se caracteriza por ser rígida, y se encuentra cerca a la condición de vínculo empotrado. Al estar conectada con el otro extremo hace posible el movimiento que se realiza de manera libre y verticalmente. Por su parte, el amortiguador es el que aporta resistencia horizontal ayudando a seguir el desplazamiento del piso por medio del proceso de deformación y flexión de las placas individuales (Lino, 2022).

En los casos en los cuales se utilizan para condiciones asociadas al viento o sismos de baja intensidad el disipador debe ser diseñado tomando en cuenta el rango elástico. Cuando se trata de sismos de mayor fuerza las placas deben deformarse de manera inelástica de tal forma que puedan disipar la energía de entrada. La definición del tamaño de las placas, así como de la cantidad de las mismas, dependerá de las características de la estructura y de las necesidades de disipación de energía (Aguiar et al., 2016). En la Figura a continuación se puede observar de mejora manera cómo se estructuran y su comportamiento en casos de sismo.

BEAM

BEAM

TAMAS BLEVIENT

TAMAS BLEVIENT

TOMAS SECTION

CROSS SECTION

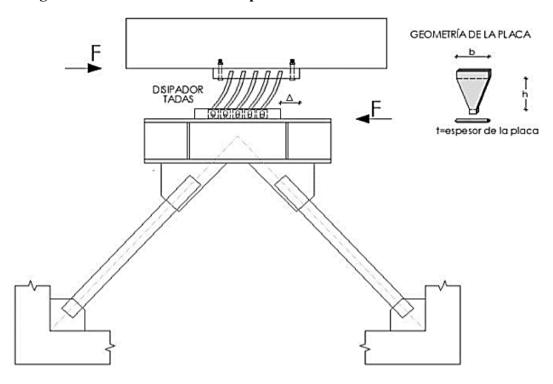
COmportamiento en caso de sismo

Figura 2 Disipador TADAS

Fuente: Tomado de (Disipa, 2021).

Como se observa en la Figura 2 la manera en que se encuentra construido el disipador TADAS ayuda a que las placas se deformen por flexión realizando una curvatura simple cuando se presentan sismos. De esta manera la fuerza se distribuye de forma uniforme, aportando eficiencia al momento de evitar que las estructuras reciban impactos que puedan provocar algún tipo de daño permanente. Por esta razón es fundamental que el diseño sea adaptado a las particularidades de cada edificación.

Como menciona Lino (2022) una de las características fundamentales del TADAS es que el efecto producido como consecuencia de las cargas gravitatorias de la edificación puede estar totalmente separado del disipador.


La razón es que se utiliza el extremo que se no posee agujeros de tipo ovalado, de esta manera, no existe ningún tipo de restricción cuando se dan grandes deformaciones y desplazamientos. Con este tipo de disipador las estructuras alcanzan mayor plasticidad y flexibilidad favoreciendo la respuesta inelástica, sin que exista algún tipo de riesgo de que la placa sufra inestabilidad independientemente de la carga axial.

#### 9.2.2. Principios de Funcionamiento de los Disipadores TADAS

El funcionamiento de los disipadores TADAS se base en la disipación de la energía a través de la deformación de los sismos por medio de la deformación de las platinas que lo componen, los mismos que tienen la capacidad de soportar diferentes ciclos de histéresis sin necesidad de llegar a la falla. De esta manera la estructura se mantiene estable y sin experimentar daños ya que se logra canalizar el impacto provocado por los movimientos telúricos que se presenten (Aguiar et al., 2016).

Como explica Guerrero (2022), cuando los disipadores TADAS experimentan una carga lateral provocada por un sismo, las placas experimentan una deformación por flexión hasta alcanzar un rango plástico. Por lo tanto, considerando las propiedades que posee el acero, las láminas producen un ciclo de histéresis de tal manera que se equilibran las cargas laterales considerando los dos sentidos. Por esta razón, cuando se presentan sismos la energía y en consecuencia los daños se concentran en los disipadores, ya que actúan como fusibles que mantienen la estabilidad de la estructura. La Figura 3 muestra el funcionamiento:

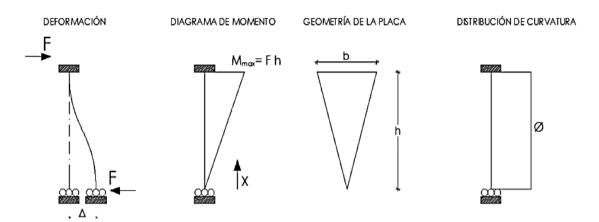
Figura 3 Funcionamiento de Disipador TADAS



Fuente: Tomado de Guerrero (2022).

El área superior se encuentra conectada a una viga, la misma que está unida a un empotramiento móvil, mientras que por el otro se articula para favorecer el desplazamiento vertical que se presenta a lo largo de los agujeros ovalados, permitiendo que la energía se disipe con el fin de reducir el impacto. Las partes, tanto superior como inferior, del disipador TADAS realizan un desplazamiento lateral, además se presenta un desplazamiento relativo entre estas partes. A fin de no tener ningún tipo de limitación o restricción en el proceso de los movimientos laterales, es necesario que el borde articulado pueda levantarse. De esta manera, la estructura se mantiene estable ante los efectos de un movimiento sísmico (Aguiar et al., 2016).

# 9.2.3. Condiciones de Funcionamiento de los Disipadores TADAS


El adecuado funcionamiento de los disipadores TADAS, según explica Guerrero (2022) requiere del cumplimiento de las siguientes condiciones:

- Las platinas que hacen parte del TADAS deben diseñarse de tal manera que sean los primeros elementos en influir, la razón es que si no se hace de esta manera se debería utilizar otro componente dentro de la estructura lo cual generaría que sea más rígida. Es importante que las platinas sean de acero cuya característica principal es el bajo esfuerzo de influencia.
- Es importante que el contraviento Chevron, lugar en el que se localizan las platinas, tengan un mayor rigidez y resistencia para asegurar que no entre en fluencia de manera anticipada. De esta manera se asegura que al recibir el impacto provocado por los sismos den el apoyo necesario a las platinas ayudando a que la deformación, favorezca la protección de la estructura.
- Los aspectos relacionados con el apoyo del dispositivo corresponden al
  empotramiento que se realiza en el extremo superior el cual está conectado
  directamente al pórtico de concreto, además la articulación que se presenta en el
  extremo inferior se encuentra conectada al arriostramiento.

A decir de Aguiar et al. (2016) las condiciones descritas ayudan a que los disipadores TADAS experimenten procesos de deformación adecuados, ayudando en la protección de la estructura. La forma triangular de la platina debe ser proporcional al área transversal del elemento, de tal manera que durante un sismo la curvatura sea uniforme en toda el área, para que la totalidad del elemento entre al mismo tiempo en fluencia. De esta manera, se evita que la platina sufra algún tipo de falla, que afecte directamente a la estructura.

El comportamiento adecuado del disipador TADAS al recibir carga lateral se puede observar en la Figura 4:

Figura 4 Comportamiento del disipador TADAS



Fuente: Tomado de Guerrero (2022).

Como explica Cano (2020) el comportamiento de carácter mecánico de las platinas TADAS se modela de manera similar a las conexiones de hacer que se someten a momento, ya que hacen que la relación entre el momento y la rotación se simplifique pasando a un modelo bilineal determinado por las áreas de fluencia inicial y final de la falla. Uno de los aspectos centrales del disipador TADAS es que, al ser la platina de material de acero, el cálculo de las áreas en más factible, lo cual aporta en la protección y reducción del nivel de riesgo en las estructuras cuando experimentan eventos sísmicos.

### 9.2.4. Ventajas y Desventajas de los Disipadores TADAS

De acuerdo con Mena (2019) y Zhi et al. (2024) los disipadores TADAS tienen varias ventajas tal como se detallan a continuación:

- Facilitan la disminución de demanda sísmica, pues, absorben y disipan la energía sísmica debido a la deformación del acero del que se forman.
- Presentan efectividad en edificaciones alta porque no alteran la arquitectura.
- La energía disipada es máxima porque los ciclos del disipador TADAS son aproximadamente rectangulares.
- Proporcionan un buen nivel de seguridad.
- Facilitan la optimización de elementos estructurales.

- Permite un diseño compacto y ligero, ideal para utilizar en espacios reducidos, logrando mayor flexibilidad.
- Son compatibles con diversos componentes o estructuras.
- Permiten cumplir con normativas y regulaciones respecto a la seguridad.
- Disminuyen las fuerzas que transmiten y provocan daño hacia la estructura principal.

Respecto a las desventajas, Genatios y Lafuente (2016) detallan las siguientes:

- Este tipo de disipadores necesitan contar con mantenimiento periódico con el fin de asegurar la efectividad.
- El costo inicial relacionado con el diseño e instalación puede ser alto.
- La instalación puede ser compleja en estructuras existentes.
- Puede presentar limitación en la escalabilidad provocando que se complique el incremento de calor sin afectar el rendimiento o durabilidad.
- Posterior al sismo las estructuras presentan deformaciones afectando la recuperación del funcionamiento estructural.
- Los dispositivos histeréticos metálicos se deben reemplazar después del sismo, pues,
   caso contrario la estructura muestra desplazamientos residuales.
- Los dispositivos de fricción con el tiempo cambian la superficie de rozamiento,
- Los dispositivos de fluidos viscosos dificultan de instalación y revisión periódica para identificar fugas de fluido.

### 9.2.5. Impacto de los disipadores TADAS en la Ingeniería Sísmica

La ingeniería sísmica se encarga del diseño y la construcción de estructuras cuya característica principal sea que estas puedan soportar las fuerzas e impactos que se generan en eventos telúricos. En este sentido, el uso de disipadores TADAS dentro de este campo hace posible que su implementación al momento de construir edificaciones minimice el riesgo de daños

estructurales, garantizando una mayor estabilidad al momento de experimentar movimientos sísmicos (Disipa, 2021).

Además, Zhi et al. (2024) mencionan que el uso de este tipo de disipadores ayuda a reducir la fuerza sísmica que se trasmite a la estructura. Al cumplir la función de absorber la energía y disiparla la construcción alcanza mayor equilibrio ya que la fuerza se distribuye hacia todos los elementos que hacen parte de la edificación por lo que se evita daños estructurales que pueden dejarla inservible o inhabitable. En las edificaciones de alturas elevados no es necesario modificar la arquitectura ya que el interés se centra en la configuración del disipador ya que debe basarse en parámetros y características específicos.

Desde el punto de vista de Cano (2020) los disipadores TADAS aportan en el fortalecimiento de la estabilidad estructural. La razón es que reducen el impacto de la fuerza sísmica evitando los colapsos o el desplome provocado por las vibraciones. Gracias a que actúan como atenuantes del desplazamiento de la estructura mientras se desarrolla un sismo. Los disipadores dan a la construcción cierta flexibilidad por lo que hacen que al desplazarse el movimiento sea controlado de manera moderada lo cual también hace posible la protección de otras estructuras, principalmente instalaciones de agua, luz, entre otras, las cuales no presentan la capacidad de soportar el impacto de grandes fuerzas.

Por lo tanto, la aporta en la reducción de la respuesta sísmica de las estructuras, protección ante colapso, reducción de costos de mantenimiento, reducen impacto ambiental debido a que algunos disipadores pueden ser diseñados de materiales sostenibles. De igual manera, representa un impacto social porque protegen la vida de las personas ya que la estructura está protegida.

En el contexto ecuatoriano, según el Colegio de Ingenieros Civiles de Manabí (2025) costo o precio de los disipadores TADAS está en \$6.500. Aunque en Ecuador no se producen este tipo de disipadores hay proveedores internacionales como Grupo Prisma que hace envíos.

Cabe mencionar que, en el país se han identificado tres edificaciones que han aplicado disipadores TADAS como el Hospital Rodríguez Zambrano en Manta en el 2018 (Aguiar R., 2018; Caballero et al., 2023). Asimismo, desde abril del 2025 en la ciudad de Manta se está construyendo el edificio Mawa, al igual que el lanzamiento en enero del edificio La Luz ubicado en el sector La Carolina de la ciudad de Quito, donde se incorpora los disipadores (Constructura Rosero, 2025; Colegio de Ingenieros Civiles de Manabí, 2025).

#### 9.3. Normativas y Directrices Relacionadas

#### 9.3.1. Norma Ecuatoriana de la Construcción (NEC-15)

La Norma Ecuatoriana de la Construcción (NEC-15) determina los requisitos mínimos que facilita el diseño y la construcción de las estructuras sismorresistentes del país, esto con la finalidad de garantizar la seguridad y estabilidad de edificaciones en sitios sísmicos (Ministro de Desarrollo Urbano y Vivienda, 2015).

En la cual se encuentran la NEC-SE-DS (Peligro Sísmico Diseño Sismorresistente), donde se detalla los requisitos para diseñar estructuras para hacer frente a peligros sísmicos. Por ende, en el diseño sísmico se determina factores relacionados con la aceleración sísmica, configuración estructural y ductilidad de materiales (Ministro de Desarrollo Urbano y Vivienda, 2023). Las bases de diseño son las siguientes:

- Se utiliza la filosofía del diseño según desempeño
- Analiza las características sísmicas del suelo (aceleraciones, desplazamientos y velocidades).
- Evalúa el comportamiento lineal y no lineal.
- Se toma en cuenta el factor de la zona y curvas de peligro.
- Emplazamiento del suelo.
- Importancia estructural (coeficiente).

- En estructuras de uso normal, la estructura debe soportar desplazamientos laterales, redundancia, resistencia y ductilidad.
- Para la resistencia mínima se toma en cuenta las fuerzas sísmicas.

De igual modo, se considera la NEC-SE-RE (Riesgo sísmico, Evaluación, Rehabilitación de estructuras) debido a que detalla los requisitos que facilita la rehabilitación de cualquier estructura, por lo que se debe determinar el objetivo, estrategias, levantamiento de información, modelación criterios de aceptación, diseño y rehabilitación (Ministerio de Desarollo Urbano y Vivienda, 2023).

## 9.3.2. Directrices de FEMA y ASCE

La normativa FEMA (Federal Emergency Management Agency) establece criterios y sugerencias que permiten la evaluación de la resistencia sísmica para la mejora de las estructuras como FEMA 356 y P-154. La primera normativa ayuda en la rehabilitación sísmica de edificios existentes, en el que se establece requisitos técnicos, satisfaciendo una variedad de niveles de rendimiento y tengan en cuenta la variación de los riesgos sísmicos (Federal Emergency Management Agency, 2000).

En cuanto a FEMA P-154 establece requisitos para la evaluación rápida de los edificios para determinar su seguridad y usabilidad esperadas durante y después de los terremotos. Se utiliza esta información para planificar y priorizar la vulnerabilidad, necesidades de respuesta a emergencias y proyectos de mitigación (Federal Emergency Management Agency, 2015). Además de ASCE 41-17 (Seismic Evaluation and Retrofit of Existing Buildings) para determinación de vulnerabilidad sísmica y transferencia de carga (American Society of Civil Engineers, 2017).

#### 9.4. Metodologías de Evaluación de Desempeño con Disipadores TADAS

La evaluación del desempeño se refiere al proceso para analizar el rendimiento y eficacia de un elemento o estructura, es decir, la capacidad para la resistencia de cargas, en el que se identifica los aspectos a mejorar como el funcionamiento y cumplimiento de los requisitos de seguridad (Puente y Romero, 2023). Los componentes principales del desempeño estructural son los siguientes:

- Análisis de la estructura: se basa en la evaluación de la geometría, materiales y configuración estructural:
- Análisis de cargas: se evalúas las cargas que actúan sobre la estructura, así como estáticas y dinámicas.
- Evaluación de resistencia y rigidez: se analiza la capacidad de la estructura para resistir carga y mantener su integridad después de sismos.
- Evaluación de seguridad y bienestar: se analiza si la estructura puede garantizar seguridad de las personas cuando se presenta un sismo.

De acuerdo con Puente y Romero (2023) la evaluación del desempeño presenta los siguientes niveles:



Figura 5 Niveles de desempeño

Fuente: Adaptado de Puente y Romero (2023)

Por lo tanto, con la evaluación del desempeño se puede tomar decisiones para optimización estructural. La cual consiste en un mecanismo para mejorar la configuración de la estructura que permita cumplir con los requisitos de diseño y funcionamiento como el peso, resistencia, costo y estabilidad (Mei y Wang, 2021). La optimización puede ser de diversos tipos, tal como se detalla a continuación:

- Forma: facilita encontrar la solución para disminuir la utilización de recursos y aumentar el rendimiento, es decir, las coordenadas nodales de las estructuras.
- Tamaño: permite contar o determinar el tamaño oportuno de la estructura para mitigar impactos, especialmente de la sección transversal de las estructuras.
- Topología: ayuda a definir la topología adecuada de la estructura para aplicar soluciones respectivas, pues, se concentra en los nodos para eliminar los elementos estructurales innecesarios.
- Materiales: en este caso de termina el material adecuado para emplear como solución en la infraestructura analizada (Mei y Wang, 2021).

La optimización se puede emplear en el diseño de estructuras para la configuración, así como en el análisis para evaluar el rendimiento y la rehabilitación estructural con el fin de prolongar la vida útil de la misma.

#### 9.4.1. Análisis sísmico estático

El análisis sísmico estático se trata de una metodología que emplea una carga sísmica equivalente para la evaluación de la respuesta de una estructura ante cargas. Se aplica en la evaluación de respuesta de una estructura frente a cargas y con esto de diseña para la resistencia de la edificación o estructura. Además, evalúa la vulnerabilidad sísmica estructural que permite la determinación de aspectos a mejorar (Rupay et al., 2023). Los tipos de análisis sísmico estático se muestran a continuación:

Figura 6 Tipos de análisis sísmico estático

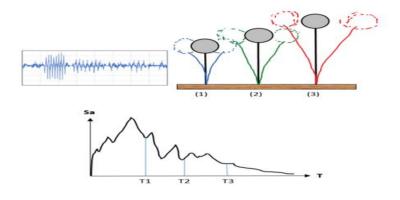
Análisis Sísmico estático lineal

Análisis Sísmico estático No lineal

Fuente: Adaptado de Rupay et al. (2023)

- Análisis sísmico estático lineal: evalúa la respuesta de una estructura ante cargas sísmicas, asumiendo que se comporta de manera lineal. Toma en cuenta el rango estático, factor de ductilidad de materiales.
- Análisis sísmico estático no lineal: evalúa la respuesta de una estructura frente cargas sísmicas no lineales del comportamiento estructural, considerando las deformaciones de afluencia y comportamiento.

Según Salas y Hernández (2021) los métodos derivados de la metodología de análisis sísmico estático son los siguientes:

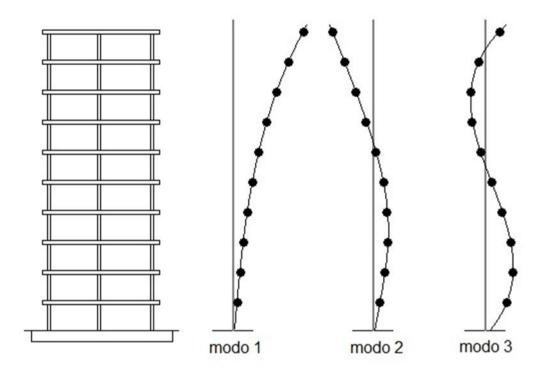

• Método de la carga sísmica equivalente: Se utiliza para evaluar la respuesta de una estructura ante cargas utilizando una carga sísmica equivalente estática, pues, se modelan las fuerzas estáticas empleadas de forma externa tanto en lo ancho y alto de la estructura, donde la aceleración es similar al terreno debido a que provoca fuerza inercia igual a la masa que representa el comportamiento sísmico para estimación de deformaciones y esfuerzos, aceptando movimiento de traslación (Salas y Hernández, 2021).

De igual manera, en la simplificación se debe considerar ciertos criterios como la altura no debe ser mayor a 3 niveles o 9 metros; estructura simétrica en ambas direcciones, rigidez tensional, componente vertical continuo y masas alineadas de manera vertical.

Además, es importante considerar la zona sísmica, características de suelo, tipo de uso y resistencia mínima de diseño.

• Método del espectro de respuesta: Se utiliza para evaluar la respuesta de una estructura ante cargas sísmicas, utilizando el espectro de respuesta de la estructura, pues, considera las propiedades de vibración. Se emplea en el cálculo de las fuerzas de inercia y fuerza máxima debido a un sismo. Para ello, es importante definir un modelo estructural de las propiedades, añadir masas en los nodos, configura la carga del espectro, analizar la frecuencia y dirección del sismo (Kangle y Yerudkar, 2020).

Figura 7 Construcción de espectros de respuesta




Fuente: Tomado de Kangle y Yerudkar (2020).

#### 9.4.2. Análisis dinámico Espectral

El análisis dinámico espectral es una metodología utilizada para la evaluación de respuestas de una estructura frente a cargas dinámicas como sismos o vientos fuertes. Por ende, emplea un análisis de las vibraciones de la estructura con el propósito de identificar las fuerzas o desplazamientos. Siendo importante desacoplar las ecuaciones de equilibrio dinámico en individuales, obteniendo la respuesta máxima según grado de libertad, luego de vuelven acoplar para tener repuestas modal máximo y se combina con la respuesta dinámica (Dominguez y Ramos, 2023).

Figura 8 Análisis dinámico espectral



Fuente: Tomado de Carabalí (2020)

Por lo tanto, ayuda en el desacoplamiento del sistema de ecuación diferencial para la transformación en un sistema independiente y combinación modal. Para este cálculo se consideran dos modos de vibración:

- Método de autovalores: facilita la determinación de forma modal y frecuencia en un mecanismo de vibración libre.
- Métodos por vectores Ritz: permite identifica modos por fuerzas externas (Dominguez y Ramos, 2023).

En este contexto, esta metodología considera las propiedades dinámicas estructurales como la contribución a los modos y vibración para identificar el comportamiento real de la estructura frente a eventos sísmicos.

#### 9.4.3. Análisis dinámico no lineal

El análisis dinámico no lineal toma en cuenta la geometría, condiciones de contorno, materiales, cargas y fuerzas de inercia. Además, se analiza la proporcionalidad de los desplazamientos y fuerzas, donde se presentan cambios en las variables, es decir, evolucionan con el tiempo.

#### • Time-History por el método FNA

Es un método que facilita el análisis estructural mediante el cálculo de respuesta dinámica frente a cargas que pueden variar a través del tiempo. Por ende, resuelve problemas no lineales del análisis de tiempo, especialmente, en los comportamientos de aisladores y disparadores. En la que se puede emplear una disminución de grados de libertad en vectores Ritz dependiente de la distribución de carga. De tal modo, utiliza la respuesta para representar la fuerza no lineal por modal, estimando los momentos de inercia en los grados de libertad y el vector Ritz para la evaluación modal (Andrade, 2023).

# • Time-History por el método de Integración Directa

Se trata de un método numérico que integra de forma directa las ecuaciones no lineales del comportamiento estructural para la evaluación de respuesta ante cargas dinámicas. Ofrece precisión para evaluar la respuesta, flexibilidad y eficiencia en términos de tiempo. Se utilizan para el diseño de estructuras, analizar vibraciones y estabilidad estructural de cargas dinámicas no lineales para garantizar la estabilidad.

En este caso se debe comenzar definiendo el modelo estructural, propiedades geométricas y mecánicas, luego considerar las cargas dinámicas a aplicar, amplitud, duración y frecuencia. Luego se integran ecuaciones de movimiento no lineal utilizando método numérico como Newmark o Wilson-θ. Por último, se evalúa la respuesta de la estructura, aceleración, velocidad y desplazamiento estructural (Chopra, 2012).

### Capítulo 3: Materiales y Métodos

### 10.1. Enfoque

En este estudio se consideró un enfoque mixto. A nivel cuantitativo se realizó cálculos para el análisis estructural, cuantificar deficiencias, medidas de reforzamiento, modelado lineal y no lineal. En cuanto al enfoque cualitativo se analizó la resistencia sísmica y los resultados del desempeño estructural de la vivienda.

#### 10.2. Métodos

Los métodos utilizados para el desarrollo del trabajo se describen a continuación:

### Método descriptivo:

Se detalló las características de la vivienda como la descripción arquitectónica, distribución por cada planta, aspectos generales, etc.

#### Método analítico:

Se efectúa análisis de la vivienda considerando el tipo de sistema de construcción, cimentación columnas, vigas y losas, es decir, desde el punto de vista estructural.

#### • Método experimental:

Se realizó la evaluación de la vulnerabilidad sísmica de la vivienda mediante análisis lineal y no lineal respecto al comportamiento bajo cargas sísmicas, y cuantificar los desplazamientos y esfuerzos interno; es decir, el desempeño de la estructura, cimentación y movimiento sísmico. Para ello, se utilizó el software ETABS para realizar análisis estructurales detallados. Con esto se estableció y simuló alternativas de reforzamiento estructural, implementación de disipadores de energía TADAS para reducir la vulnerabilidad sísmica en al menos un 30%, asegurando el cumplimiento con los requisitos de la normativa NEC-15.

#### 10.3. Técnicas e instrumentos

En cuanto a las técnicas e instrumentos se consideró la observación directa mediante visitas de campo para identificar la situación actual de la vivienda, para ello, se utilizó como instrumento la ficha de visualización adaptada de FEMA P-154, en el que se detalla la información general de la vivienda, responsable de la evaluación, datos constructivos y ocupación. De igual mod, en la ficha se detalla la tipología del sistema estructural, factores (altura, irregularidad, código de construcción y tipo de suelo). Una vez calificado o seleccionado el puntaje se va sumando y se considera los criterios para la calificación como:

- Vulnerabilidad baja (>2,5).
- Vulnerabilidad media (2-2,5).
- Vulnerabilidad alta (< 2).

**Tabla 1.** Ficha de evaluación rápida de vulnerabilidad sísmica adaptado de FEMA P-154

| FOTOGRA FIA Y ESQUEMA ESTRUCTURA L DEL INMUE                       | BLE           |        | DATO                                    | EDIFIC                | ACIÓN     |         |         |          |             |                   |                     |      |    |
|--------------------------------------------------------------------|---------------|--------|-----------------------------------------|-----------------------|-----------|---------|---------|----------|-------------|-------------------|---------------------|------|----|
| 500                                                                |               |        |                                         | de la E               | dificació | n:      |         |          |             |                   |                     |      |    |
|                                                                    |               |        | Direcci<br>Tipo de                      |                       |           |         |         |          |             |                   |                     |      |    |
|                                                                    | 000           |        | DATO                                    | DEL PR                |           | NAL     |         |          |             |                   |                     |      | _  |
| ESQUEMA ESTRUCTURAL EN PLANTA Y ELEVACIÓ                           | N             |        | Nombre                                  | del eva<br>del eval   | luador:   |         |         |          |             | Fecha             |                     |      |    |
|                                                                    |               |        | Registr                                 | o SENES               | CYT       |         |         |          |             | reuna             |                     |      |    |
|                                                                    |               |        |                                         | CONST                 |           | ON Y OC | UPA CIO | ON       |             |                   |                     |      |    |
|                                                                    |               |        |                                         | de Piso<br>constru    |           |         |         |          |             | Remode<br>e Const | elacion:<br>rucción |      |    |
| TIPOLO                                                             | GIA DEL SIS   | TEN    | A E ST                                  | RUCTU                 | RAL       |         |         |          |             |                   | DE 112100100        |      | _  |
| Madera                                                             | W1            |        | H. Arm                                  | ado pre               | efabrica  | do      |         |          |             |                   |                     | PC   |    |
| Mam postería sin refuerzo                                          | URN           | 1      | Pórtic                                  | o acero               | lam ina   | do      |         |          |             |                   |                     | S1   |    |
| Mam postería reforzada                                             | RM            |        |                                         | oacero                |           |         |         | ales     |             |                   |                     | S2   |    |
| Mixta Acero Hormigón o Madera Hormigón                             | MX            |        |                                         | oacero                |           |         |         |          |             |                   |                     | S3   |    |
| Pórtico Hormigón Armado                                            | C1            |        | Pórtico                                 | oacero                | lam ina   | do con  | muros   | es truct | urales      | de H. Ar          | mado                | \$4  |    |
| Pórtico H. Armado con muros estructurales                          | C2            |        | Portice                                 | oacero                | con pa    | redes n | nampo   | stería   |             |                   |                     | S5   |    |
| Pórtico H. Armado con mampos tería confinadas in refuerzo          | C3            |        | 100000000000000000000000000000000000000 |                       |           |         |         |          |             |                   |                     |      |    |
| PUNTAJES BÁ                                                        | SICOS, MODIFI | CAD    | ORES Y                                  | PUNTA                 |           |         |         | A ESTR   | III SAIII S |                   |                     |      |    |
| PARÁM ETRO 8 CALIFICATIVO 8 DE LA ESTRUCTURA                       | W1            | URW    | i RM                                    | MX                    | C1        | C2      | C3      | PC       | S1          | S2                | l \$3               | S4   | S  |
| PUNTA JEBÁ SICO                                                    | 4,4           | 1,8    | 2,8                                     | 1,8                   | 2,50      | 2,8     | 1,6     | 2,4      | 2,6         | 3                 | 2                   | 2,8  | 2  |
| ALTURA DE LA EDIFICACIÓN                                           |               |        | 4                                       |                       |           | A       |         |          |             | Å                 | ļ                   |      | į  |
| Baja altura (< 4 pisos)                                            | 0             | 0      | 0                                       | 0                     | 0         | 0       | 0       | 0        | 0           | 0                 | 0                   | 0    | 0  |
| Media altura (4 a 7 pisos)                                         | N/A           | NA     | 0,4                                     | 0,2                   | 0,4       | 0,4     | 0,2     | 0,2      | 0,2         | 0,4               | N/A                 | 0,4  | 0, |
| Gran altura (>7 pisos)                                             | N/A           | N/A    | N/A                                     | 0,3                   | 0,6       | 0,8     | 0,4     | 0,4      | 0,6         | 0,8               | N/A                 | 0,5  | 0, |
| IRREGULA RIDA DES                                                  |               | !      | ·^                                      | A                     |           |         |         | A        | A           |                   |                     | A    | A  |
| regularidad vertical                                               | -2,5          | -1     | -1                                      | -1,5                  | -1,5      | -1      | -1      | -1       | -1          | -1,5              | -1,5                | -1   | -1 |
| regularidad en planta                                              | -0,5          | -0,5   | -0,5                                    | -0,5                  | -0,5      | -0,5    | -0,5    | -0,5     | -0,5        | -0,5              | -0,5                | -0,5 | -0 |
| CODIGO DE LA CONSTRUCCIÓN                                          | -             | 8. 1   | 9 0                                     |                       | 92        |         |         | 1 0      |             | 67                |                     | 3 3  | -  |
| Pre-código moderno ( construido antes de 1977) o auto construcción | 0             | -0,2   | -1                                      | -1,2                  | -1,2      | -1      | -0,2    | -0,8     | -1          | -0,8              | -0,8                | -0,8 | -0 |
| Construido en etapa de transición (entre 1977 - 2001)              | 0             | 0      | 0                                       | 0                     | 0         | 0       | 0       | 0        | 0           | 0                 | 0                   | 0    | 0  |
| Post código moderno (construido a partir de 2001)                  | 1             | N/A    | 2,8                                     | 1                     | 1,4       | 2,4     | 1,4     | 1        | 1,4         | 1,4               | 1                   | 1,6  | 1  |
| SUELO                                                              |               |        | -A                                      | A                     |           |         |         | A        | A           |                   |                     |      | A  |
| Suelo Tipo C                                                       | 0             | -0,4   | -0,4                                    | -0,4                  | -0,4      | -0,4    | -1,4    | -0,4     | -0,4        | -0,4              | -0,4                | -0,4 | -0 |
| Suelo Tipo D                                                       | 0             | -0,6   | -0,8                                    | -0,6                  | -0,6      | -0,8    | -0,4    | -0,6     | -0,6        | -0,6              | -0,6                | -0,6 | -0 |
| Suelo Tipo E                                                       | 0             | -0,8   | -0,4                                    | -1,2                  | -0,8      | -0,8    | -0,8    | -1,2     | -1,2        | -1,2              | -1,2                | -1,2 | -0 |
| PUNTA JE FINA L, S                                                 |               |        |                                         |                       | ğ         |         |         |          |             |                   |                     |      |    |
|                                                                    | A DO DE VULNE |        |                                         |                       |           |         |         |          |             |                   |                     |      |    |
| S < 2.4<br>2.0 > S > 2.5                                           | Al            | tavulr | erabilid                                | ad (Nece<br>edia Vuln |           |         | special |          |             | 10                |                     |      | _  |
| S>2.5                                                              |               |        |                                         | aia Vulne             |           |         |         |          |             | 100               |                     |      | _  |
| UB SERVACIONES:                                                    |               |        | D                                       | Par varie             |           |         |         |          |             |                   |                     |      | _  |

Fuente: Adaptado de FEMA P-154 según MIDUVI (2023)

#### 10.4. Procedimiento

Para llevar a cabo la investigación se realizó el siguiente procedimiento:

- Determinar la vivienda a evaluar.
- Realizar levantamiento de la información de la vivienda.
- Aplicar la evaluación de vulnerabilidad mediante la ficha de FEMA P-154.
- Realizar modelamiento estructural de vivienda de tres pisos con ETABS, considerando
  el análisis lineal y no lineal respecto al comportamiento bajo cargas sísmicas para
  cuantificación de desplazamientos y esfuerzos internos. Esto se realizó antes de la
  implementación de los disipadores TADAS.
- Analizar el comportamiento estructural de la vivienda para identificar deficiencias y vulnerabilidad, así como el nivel de seguridad sísmica.
- Efectuar análisis de los resultados obtenidos, determinando estrategia de reforzamiento estructural con disipadores de energía TADAS.
- Simular el reforzamiento con implementación de disipadores de energía TADAS en ETABS.

Cabe mencionar que, para el modelo no lineal se toma en cuenta la caracterización de la vivienda, el proceso inicia con el modelado estructural no lineal mediante el modelo matemático para el análisis estructural utilizando ETABS, en el que se define el modelo 3D de la estructura, elementos (columnas) y cargas (vivas, muertas y sísmicas o espectros). Posteriormente, se efectúa el análisis no lineal basado en el modelo de comportamiento inelástico, Pushover (estático no lienal), dinámico no lineal (time-history) y comportamiento no lineal. Para ello, se tomó en cuenta las normas como NEC-SE-DS (Diseño Sismorresistente), NEC-SE-C (Concreto), NEC-SE-A (Acero), NEC-SE-RE (Rehabilitación Estructural), así como FEMA (356 y P-154) y ASCE 41-17.

#### 10.5. Levantamiento de información de campo

#### 10.5.1. Determinación vivienda a evaluar

La parroquia Tarqui se ubicó a 200 km de la zona cero del terremoto del 16 de abril, por consiguiente, las edificaciones sufrieron daños, por lo que actualmente, algunas viviendas se reconstruyeron y las demás fueron demolidas. No obstante, aún existen casas deshabitadas, otras tienen grietas u otros problemas en la infraestructura derivado al terremoto (González, 2022). La vivienda por evaluar se encuentra en las Calles Acacias 1012 y 4 de noviembre de la parroquia Tarqui perteneciente al norte de la ciudad de Manta. Las coordenadas son: - 0.9715449170207969, -80.70154045971508.

Figura 9 Mapa de ubicación vivienda



Ubicación parroquia Tarqui

Ubicación Vivienda

Fuente: Tomado de Google Maps (2025)

#### 10.5.2. Levantamiento de información preliminar

# 10.5.2.1. Datos generales de la vivienda

La vivienda se ubica en la calle Acacias y 4 de noviembre en la ciudad de Manta, la cual es un tipo unifamiliar de tres pisos con buen estado de conservación (Figura 10).

El año de construcción no tiene una fecha exacta, pues, no se ha especificado, pero, está construida con materiales como bloque y hormigón, indicando que es relativamente nueva o bien mantenida. Además, la casa se encuentra hipotecada al banco, por ende, aun no cuenta con escrituras. En cuanto a las características del terreno, la vivienda cuenta con una superficie de 1.000 m² ubicado en terreno plano sin pendientes significativas con acceso a la calle principal Acacias. La propiedad está ubicada cerca al edificio de apartamentos del Manta Boulevard que se destruyó con el terremoto de 2016, lo que facilita el acceso en transporte público y privado.

Figura 10 Ubicación vivienda



Tuente. Tolliado de Google Maps (2023)

Respecto a la distribución interna de la vivienda se detalla de la siguiente forma:

- Cantidad de habitaciones: tiene un total de 8 habitaciones, incluyendo dormitorios, baños, sala de estar, comedor, etc.
- Superficie por habitación: son de tamaño amplio con 700 m² de construcción distribuido en tres pisos.
- Distribución funcional: está organizado para maximizar el uso del espacio. El primer piso incluye las áreas comunes y habitaciones, mientras que, los pisos superiores están destinados a las habitaciones y zonas privadas.
- Materiales de construcción: paredes de concreto y bloque, techos de concreto, pisos de cerámica.

• Instalaciones: cuenta con sistemas de electricidad, agua potable, gas, red de telefonía, internet, cisterna y tanque de elevación.

De igual manera, la vivienda dispone de servicios y equipamientos:

- Suministros: cuenta con todos los servicios básicos: electricidad, agua potable, gas, internet, televisión por cable.
- Equipos: electrodomésticos modernos, aire acondicionado en algunas habitaciones, sistema de seguridad con cámaras de vigilancia en el exterior del cerco perimétrico.
- Condiciones de mantenimiento: los equipos y sistemas funcionan correctamente, con un mantenimiento periódico asegurado.

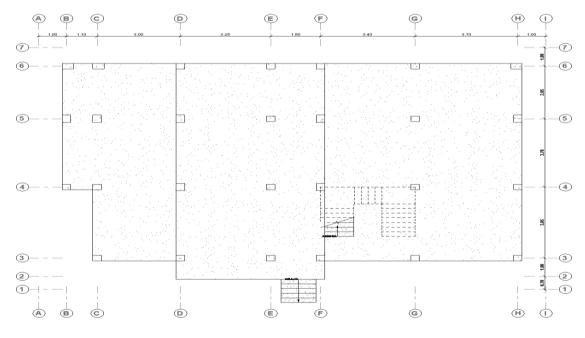
Por otra parte, el estado del entorno está relacionado con la infraestructura interna, inmediato, seguridad y acceso, tal como se describe a continuación:

- Infraestructura externa: tiene un patio amplio en la parte trasera y un garaje en la parte delantera, así como un pequeño jardín.
- Entorno inmediato: está ubicada en una zona con alta accesibilidad a servicios públicos
  y privados cerca de escuelas, hospitales, centros comerciales y supermercados;
  incluyendo cerca de un edificio de apartamentos Boulevard, facilitando el acceso a
  instituciones educativas.
- Seguridad y acceso: es un sitio seguro, pues, cuenta con vigilancia policial regular.
   Tiene acceso fácil a través de transporte público y privado, pero, no se reportan problemas frecuentes de tráfico o ruido.

En los aspectos legales, la vivienda no cuenta con escritura, pues, está hipotecada en una institución financiera y el registro catastral. La casa cumple con normativa urbanística de construcción. Sin embargo, el terreno está en una zona de riesgo, pues, cerca de la casa de estudio, algunas edificaciones quedaron inhabilitadas, ya que, fue uno de los sectores que se perjudicaron por el sismo del 2016 y está autorizado para la construcción de una propiedad de

tres pisos. Por último, la vivienda es ideal para familias grandes debido a su tamaño y distribución en tres pisos. La ubicación se encuentra cerca de servicios educativos y salud, así como a edificios de departamentos.

#### 10.5.2.2. Toma de los lados de las columnas


La vivienda tiene dos tipos de columnas, pues, solo en la primera planta son los cambios de secciones y en la segunda todas son columnas de 0.40 x 0.40.

- Primer Piso C (0.40cmx0.40cm)
- Segundo Piso y tercero C(0.40cmx0.40cm)

## 10.5.2.3. Esquema de la ubicación de columnas

A continuación, en la Figura 11 y Figura 12 se presenta el esquema de la ubicación de las columnas de la vivienda:

Figura 11 Esquema ubicación de columnas



Fuente: Elaboración propia, (2025)

Nota. La figura muestra el esquema general de la ubicación de columnas.

Figura 12 Ubicación de columnas (3D)



Fuente: Elaboración propia, (2025)

Nota. La figura muestra el esquema en 3D de la ubicación de columnas.

# 10.5.2.4. Toma de la mayor cantidad de columnas posibles

Se acudió a la vivienda para la toma de medidas de las columnas de los tres pisos, los cual se utiliza en el ingreso de datos para el análisis y modelamiento de la misma (Figura 13).

Figura 13 Toma de datos de columnas











Fuente: Elaboración propia, (2025)

Nota. La figura muestra el proceso de toma de datos de la mayor cantidad de columnas

# 10.5.2.5. Toma de la altura de columnas desde piso a losa

La columna del primer piso tiene una altura de 2,95cm como se muestra en la Figura 14.

Figura 14 Toma de datos de la altura de columnas



Fuente: Elaboración propia, (2025)

Nota. La figura muestra el proceso de toma de datos de la altura de columnas

# 10.5.2.6. Toma de datos del espesor de las losas

En la toma de datos se identificó que, el espesor de las losas es de 0,30 cm. Lo cual se obtuvo tal como se muestra en la Figura 15.

Figura 15 Toma de datos del espesor de las losas



Nota. La figura muestra el proceso de toma de datos del espesor de las losas

### 10.5.2.7. Toma de datos del agujero donde se encuentra la grada

Se realizó la toma de medidas del agujero ubicado en la grada de la vivienda, tal como se muestra en la Figura 16.

Figura 16 Toma de datos agujero de la grada













Fuente: Elaboración propia, (2025)

Nota. La figura muestra el proceso de toma de datos del agujero ubicada en la grada

### 10.5.2.8. Toma de muestras de la altura total de la casa

En la toma de datos se identificó que, la altura total de la casa desde la terraza al piso es de 8,70 metros. Lo cual se obtuvo tal como se muestra en la Figura 17.

Figura 17 Toma de datos de la altura total de la casa







Fuente: Elaboración propia, (2025)

Nota. La figura muestra el proceso de toma de datos de la altura total de la casa desde la terraza al piso Además, en la terraza no se observó las varillas de columna.

#### 10.5.2.9. Toma de medidas de todo el borde de losa en la terraza

Todo el borde de losa en la terraza es aproximadamente 17 metros. Esto se aprecia en la Figura 18.

Figura 18 Toma de datos de todo el borde de losa





Fuente: Elaboración propia, (2025)

Nota. La figura muestra el proceso de toma de datos de todo el borde de losa en la terraza

#### 10.5.3. Evaluación de vulnerabilidad mediante FEMA P-154

En este apartado se presenta la ficha de evaluación de vulnerabilidad según FEMA P-154, en el que se observó de manera rápida la estructura y obtener datos para efectuar sumatoria y la determinación de la vulnerabilidad o no; con esto se seleccionó el tipo de vivienda y la implementación del análisis.

A continuación, en la Tabla 2 se presenta el resultado de la ficha de evaluación de vulnerabilidad sísmica de la vivienda ubicada en la parroquia Tarqui.

**Tabla 2.** Evaluación de vulnerabilidad sísmica adaptado de FEMA P-154

| EVALUACIÓN VISUAL RÁPIDA DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VULN                  | ERA         | BILIDAD S                                                   | SÍSMIC        | CA PAI       | RA I         | EDIF         | ICA          | CION    | NES              |       |        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-------------------------------------------------------------|---------------|--------------|--------------|--------------|--------------|---------|------------------|-------|--------|--------------|
| FOTOGRAFIA Y ESQUEMA ESTRUCTURAL DEL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |             | DATOS E                                                     | DIFIC         | ACIÓN        | V            |              |              |         |                  |       |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | -           | Nombre de                                                   |               | icación      | 1:           |              |              |         |                  | ANT-( |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             | Dirección:                                                  |               |              |              | Cal          | le A         |         |                  |       | noviem | bre          |
| 10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4390                  |             | Tipo de us                                                  | 0:            |              |              |              |              |         | Vivier           | nda   |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATOS DEL PROFESIONAL |             |                                                             |               |              |              |              |              |         |                  |       |        |              |
| Section of the sectio | 11111                 | 111         | Nombre de                                                   | el evalua     | ador:        |              | Da           | ırwin        | Acar    |                  | ı     |        |              |
| Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |             | Cédula del                                                  |               |              |              |              |              |         | Fec<br>ha        | 09/   | 05/202 | 5            |
| ESQUEMA ESTRUCTURAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |             | Registro S                                                  | ENESC         | YT           | TÁN          | N/O          | CIT          | NA CITA | Sar              |       |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             | DATOS C                                                     | ONST          | RUCCI        | ION          | YO           | CUF          | ACIO    | JN<br>Año(s      | .)    |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             | Número de                                                   |               | ón:          |              | -            | 3            |         | nodela<br>Área d | ción: | 700a   |              |
| TIPOLOGIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DELC                  | ICTE        | MA ESTDI                                                    | исти          | DAT          |              |              |              |         |                  |       |        |              |
| Madera TIPOLOGIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W1                    | 191E        | H. Armado                                                   |               |              |              |              |              |         |                  |       | PC     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UR                    |             |                                                             |               |              |              |              |              |         |                  |       |        |              |
| Mampostería sin refuerzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M                     | <u> </u>    | Pórtico ace                                                 |               |              |              |              |              |         |                  |       | S1     |              |
| Mampostería reforzada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RM                    | <u> </u>    | Pórtico ace                                                 |               |              |              | agon         | ales         |         |                  |       | S2     |              |
| Mixta Acero Hormigón o Madera Hormigón                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MX                    |             | Pórtico acero doblado en frío                               |               |              |              |              |              |         |                  | S3    |        |              |
| Pórtico Hormigón Armado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1                    |             | Pórtico acero laminado con muros estructurales de H. Armado |               |              |              |              |              |         |                  | de H. | S4     |              |
| Pórtico H. Armado con muros estructurales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2                    |             | Pórtico ace                                                 | ro con r      | paredes      | man          | nnost        | ería         |         |                  |       | S5     |              |
| Pórtico H. Armado con mampostería confinada sin refuerzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C3                    | 1           | 1 011100 400                                                | 10 0011       | , u1 0 u 0 b |              | гросс        |              |         |                  |       | 50     |              |
| PUNTAJES BÁSICOS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MODI                  | FICA        |                                                             |               |              |              |              |              |         |                  |       |        |              |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |             | TIPOL                                                       | <u>OGÍA I</u> | DEL S        | ISTE         | EMA          | EST          | ruc     | TUR              | 4L    |        |              |
| PARÁMETROS CALIFICATIVOS DE LA<br>ESTRUCTURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W1                    | U<br>R<br>M | RM                                                          | MX            | C1           | C<br>2       | C<br>3       | P<br>C       | S1      | S2               | S3    | S4     | S<br>5       |
| PUNTAJE BÁSICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,4                   | 1,8         | 2,8                                                         | 1,8           | 2,50         | 2,<br>8      | 1,<br>6      | 2,<br>4      | 2,6     | 3                | 2     | 2,8    | 2            |
| ALTURA DE LA EDIFICACIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |             | ı                                                           | _             |              |              |              |              |         | 1                |       | 1      |              |
| Baja altura (< 4 pisos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                     | 0           | 0                                                           | 0             | 0            | 0            | 0            | 0            | 0       | 0                | 0     | 0      | 0            |
| Media altura (4 a 7 pisos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/<br>A               | N/<br>A     | 0,4                                                         | 0,2           | 0,4          | 0,           | 0,           | 0, 2         | 0,2     | 0,4              | N/A   | 0,4    | 0,           |
| Gran altura (>7 pisos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/<br>A               | N/<br>A     | N/A                                                         | 0,3           | 0,6          | 0,<br>8      | 0,           | 0,           | 0,6     | 0,8              | N/A   | 0,5    | 0,<br>5      |
| IRREGULARIDADES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             |                                                             | <u> </u>      | l            |              |              |              | l .     |                  | l     |        |              |
| Irregularidad vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2,5                  | -1          | -1                                                          | -1,5          | -1,5         | -1           | -1           | -1           | -1      | -1,5             | -1,5  | -1     | -1           |
| Irregularidad en planta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0,5                  | 0,5         | -0,5                                                        | -0,5          | -0,5         | -<br>0,<br>5 | 0,<br>5      | 0,<br>5      | 0,5     | -0,5             | -0,5  | -0,5   | 0,<br>5      |
| CÓDIGO DE LA CONSTRUCCIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |             | l                                                           | 1             |              | ر            | ر ا          | ر ا          | 1       | 1                | l     |        | ر            |
| Pre-código moderno ( construido antes de 1977) o auto construcción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                     | 0,2         | -1                                                          | -1,2          | -1,2         | -1           | 0,           | 0,           | -1      | -0,8             | -0,8  | -0,8   | 0,           |
| Construido en etapa de transición (entre 1977 - 2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                     | 0           | 0                                                           | 0             | 0            | 0            | 0            | 8            | 0       | 0                | 0     | 0      | 0            |
| Post código moderno (construido a partir de 2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     | N/<br>A     | 2,8                                                         | 1             | 1,4          | 2,           | 1,           | 1            | 1,4     | 1,4              | 1     | 1,6    | 1            |
| SUELO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |             | 1                                                           | 1             |              | <u> </u>     |              | <u> </u>     | 1       | 1                | 1     |        | 1            |
| Suelo Tipo C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                     | -<br>0,4    | -0,4                                                        | -0,4          | -0,4         | -<br>0,<br>4 | -<br>1,<br>4 | -<br>0,<br>4 | 0,4     | -0,4             | -0,4  | -0,4   | -<br>0,<br>4 |
| Suelo Tipo D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                     | 0,6         | -0,6                                                        | -0,6          | -0,6         | -<br>0,<br>6 | -<br>0,<br>4 | 0,<br>6      | 0,6     | -0,6             | -0,6  | -0,6   | -<br>0,<br>4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             |                                                             |               |              |              |              |              |         |                  |       |        | _            |
| Suelo Tipo E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                     | 0,8         | -0,4                                                        | -1,2          | -0,8         | 0,<br>8      | 0,<br>8      | 1,<br>2      | 1,2     | -1,2             | -1,2  | -1,2   | 0,<br>6      |

| GR             | ADO DE VULNERABILIDAD SI                               | ÍSMICA                       |  |  |  |  |
|----------------|--------------------------------------------------------|------------------------------|--|--|--|--|
| S < 2.4        | 2.4 Alta vulnerabilidad (Necesita evaluación especial) |                              |  |  |  |  |
| 2.0 > S > 2.5  | Media Vı                                               | ulnerabilidad                |  |  |  |  |
| S > 2.5        | Baja Vulnerabilidad                                    |                              |  |  |  |  |
| OBSERVACIONES: |                                                        |                              |  |  |  |  |
|                |                                                        |                              |  |  |  |  |
|                |                                                        |                              |  |  |  |  |
|                |                                                        |                              |  |  |  |  |
|                |                                                        | FIRMA RESPONSABLE EVALUACIÓN |  |  |  |  |
|                |                                                        |                              |  |  |  |  |

Fuente: Elaboración propia, (2025)

Nota. Tomado del levantamiento de información preliminar

# Capítulo 4: Propuesta

# 11.1. Descripción del proyecto

El anteproyecto arquitectónico es una estructura de una planta baja y alta con el propósito de vivienda exclusivamente, tal como se aprecia a continuación en la Figura 19:

Figura 19 Fachada de la vivienda



Vista de fachada principal de edificación

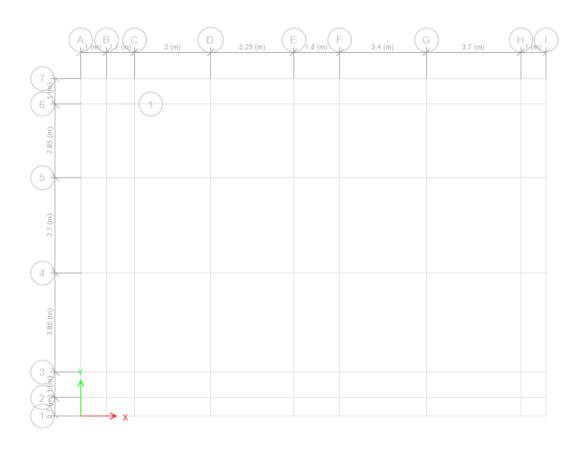


Fachada principal

Fuente: Elaboración propia, (2025)

Nota. La figura muestra la fachada de la vivienda

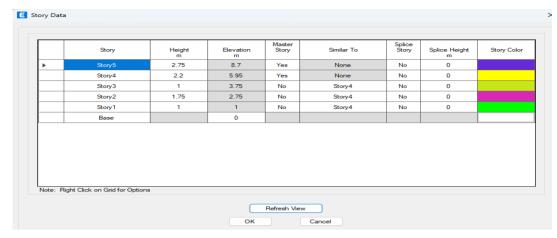
#### 11.2. Sistema estructural


El sistema estructural de la edificación se ajusta de acuerdo con lo que indica la normativa a "Pórticos de hormigón armado con vigas banda", con elementos de columnas – vigas, las rótulas plásticas se ubican en extremo de vigas – base de columnas en el primer piso. El detalle es que presenta una columna, nudo y viga fuerte a corte (Ministerio de Desarrollo Urbano y Vivienda, 2015).

#### 11.2.1. Modelación de la Estructura

Las imágenes presentadas a continuación ilustran las distintas etapas del proceso de modelado estructural desarrollado mediante software ETABS especializado de análisis y diseño, utilizado para representar con precisión el comportamiento físico y mecánico de la edificación evaluada.

## 11.2.1.1. Ejes y Alturas de entrepiso


Figura 20 Dimensiones de cada eje



*Fuente*: Etabs, (2025)

Nota. La figura muestra los ejes de la estructura.

Figura 21 Altura de Entrepisos



*Fuente*: Etabs, (2025)

Nota. La figura muestra las alturas de Entrepisos

## 11.3. Análisis de cargas

### 11.3.1. Análisis de fuerzas gravitatorias

En el análisis de fuerzas gravitacionales se considera la carga muerta y viva.

# 11.3.1.1. Determinación de Carga

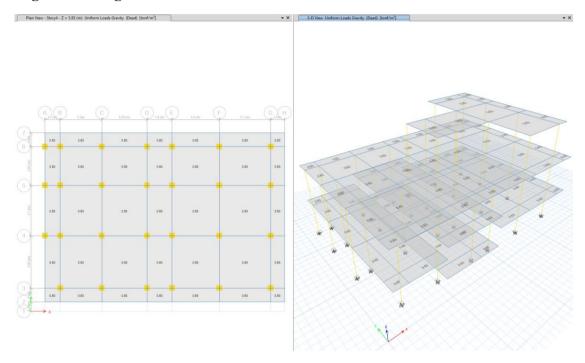
La sobrecarga considerada sobre la losa incluye objetos permanentes estimados, la carga muerta se observa en la Figura 22.

# 11.3.1.1.1.Carga Muerta

Tabla 3 Peso propio de losa alivianada esp=25cm

| Material               | Carga Gravitacional     |
|------------------------|-------------------------|
| Peso Hormigón          | 2400 kg/m <sup>3</sup>  |
|                        |                         |
| Loseta de Comprensión  | $120 \text{ kg/m}^2$    |
| 0.05x1mx1mx2400        |                         |
| Nervios Longitudinales | 96 kg/m <sup>2</sup>    |
| 0.20x1x0.1x2x2400      |                         |
| Nervios Transversales  | 76.8 kg/m <sup>2</sup>  |
| 4x0.2x0.4x0.1x2400     |                         |
| Aliviamientos          | 110 kg/m <sup>2</sup>   |
| 8*8.5                  | _                       |
| PP                     | 402.8 kg/m <sup>2</sup> |

Fuente: Elaboración propia, (2025)


Nota. La Tabla muestra Peso propio de materiales de losa.

Carga por recubrimiento superior e inferior: 40 kg/cm<sup>2</sup>

Carga por mampostería: 180 kg/cm<sup>2</sup>

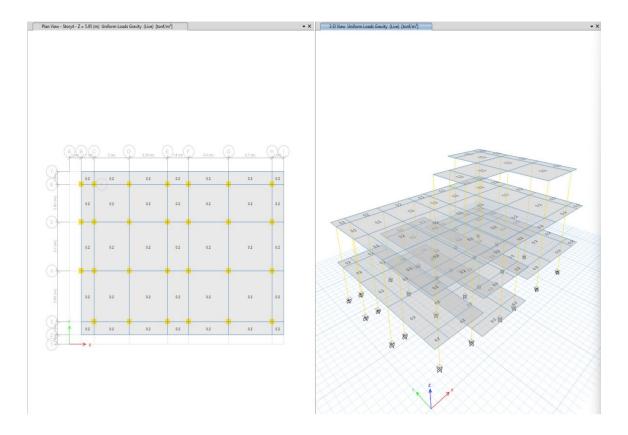
TOTAL CM: 0.63 T/m<sup>2</sup>

Figura 22 Carga muerta



*Fuente*: Etabs, (2025)

Nota. La figura muestra la carga muerta


### 11.3.1.2. Carga viva

La carga mínima considerada sobre las losas es la indicada por la normativa para residencias.

La sobrecarga de carga viva se tiene en la Figura 23.

Para determinar el valor de la carga viva, se debe considerar el uso residencial de la estructura analizada, en este caso, una vivienda unifamiliar de tres pisos ubicada en la ciudad de Manta. De acuerdo con la norma ecuatoriana de la construcción (NEC-15), se adopta una carga viva de 0.2 T/m², para las distintas áreas.

Figura 23 Carga viva



*Fuente*: Etabs, (2025)

Nota. La figura muestra la carga viva

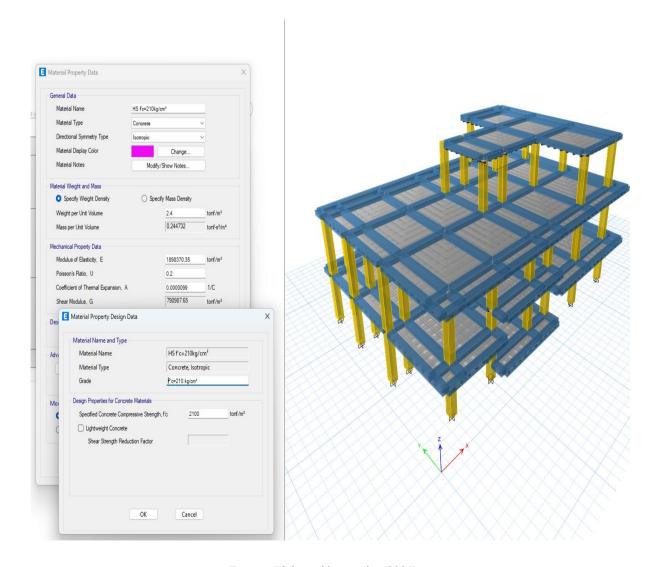
### 11.4. Parámetros de ingreso

Los parámetros de ingreso son los materiales, geometría de secciones y cargas.

### 11.4.1. Materiales

En el programa ETABS se ingresó los datos del hormigón y acero de refuerzo. En cuanto al hormigón se determinó material de concreto HS f'c = 210 kg/cm² (Figura 244). Mientras que, para el acero de refuerzo con material tipo barra uniaxial con una resistencia mínima a la fluencia de fy=4200 kg/cm², correspondiente al grado 60, cuya resistencia mínima a la tracción es de 6300 kg/cm² y la resistencia esperada también es de 6300 kg/cm². (Figura 25).

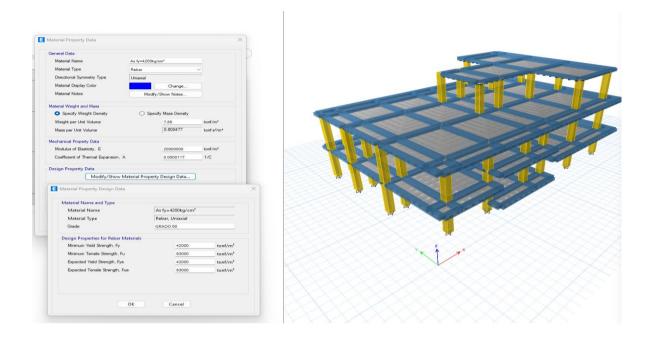
- Resistencia a compresión del hormigón: f'c=210 kg/cm<sup>2</sup>
- Límite de fluencia del acero: fy=4200 kg/cm<sup>2</sup>


• Módulo de Elasticidad del hormigón

Ecuación1: Modulo de elasticidad del hormigón con materiales asumido de Manta.

$$Ec = 13100 * \sqrt{f'c}$$
  
 $Ec = 13100 * \sqrt{210 \ kg/cm^2}$   
 $Ec = 189837.03 \ kg/cm^2$   
 $Ec = 1898370.35 \ t/m^2$ 

• Módulo de elasticidad del acero de refuerzo: E=2000000 kg/cm<sup>2</sup>


Figura 24 Datos de hormigón



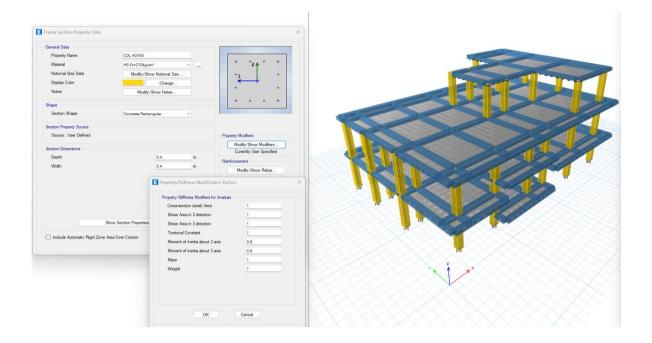
Fuente: Elaboración propia, (2025).

Nota. La figura muestra el ingreso de datos de materiales

Figura 25 Datos acero de refuerzo



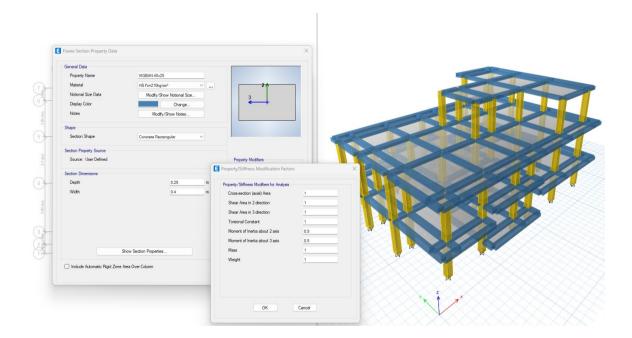
Fuente: Elaboración propia, (2025).


Nota. La figura muestra el ingreso de datos de materiales

#### 11.4.2. Geometría de secciones

En la geometría de secciones se determina la columna 40x40 cm, así como viga banda 40x25 cm y losa 25 cm. Las columnas tienen un área de sección transversal, área de corte y constante de torsión de 1 respectivamente; momento de inercia en torno a 2 y 3 ejes con 0,8; lo cual se presenta en la Figura 26 y Figura 27. La viga banda 40x25 cm de material HS f'c = 210 kg/cm², tiene un área de sección transversal, área de corte en 2 – 3 direcciones, constante de torsión, masa y peso de 1 respectivamente, momento de inercia en torno a 2 y 3 ejes de 0,5 respectivamente; con 0,8; lo cual se presenta en la Figura 27.

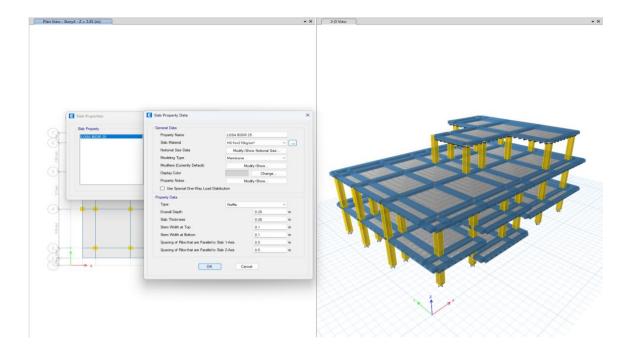
La losa 25 cm rectangular de material HS f'c =  $210 \text{ kg/cm}^2$ , profundidad total con 25 cm, espesor de la holgura en 5 cm, ancho de la base en la parte superior e inferior con 10 cm, espaciamiento de las nervaduras paralelas al eje 1-2 de la losa con 50 cm respectivamente (Figura 28).


Figura 26 Col 40x40



Fuente: Elaboración propia, (2025).

Nota. La figura muestra el ingreso de datos geometría de secciones.


Figura 27 Viga banda 40x25 (asumido)



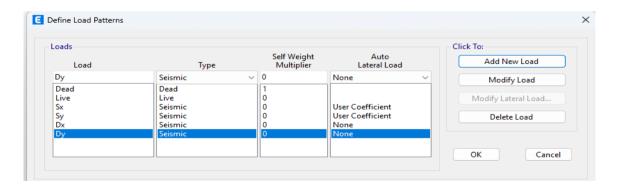
Fuente: Elaboración propia, (2025).

Nota. La figura muestra el ingreso de datos geometría de secciones

Figura 28 Losa 25



Fuente: Elaboración propia, (2025).

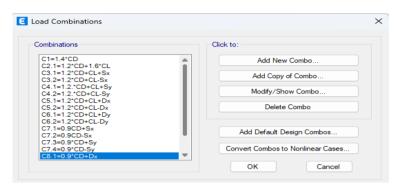

Nota. La figura muestra la geometría de la losa.

# 11.4.3. Cargas

A continuación, se detalla los patrones de carga, combinación de cargas, patrones de carga auto sísmica y lista de materiales por historia:

# • Patrones de carga

Figura 29 Definición patrones de carga




*Fuente*: Etabs, (2025).

Nota. La figura muestra el ingreso de datos de patrones de carga

# • Combinación de cargas

Figura 30 Combinaciones de cargas



*Fuente*: Etabs, (2025)

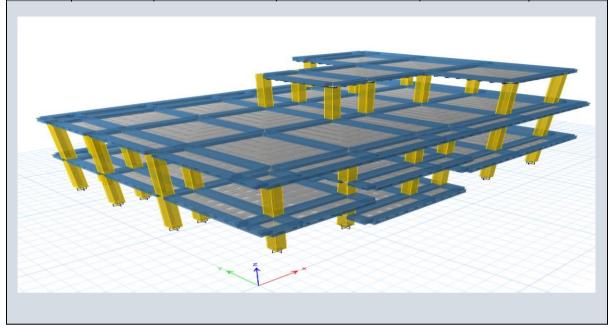
Nota. La figura muestra el ingreso de datos de combinación de cargas

# • Definiciones de patrones de carga auto sísmica

Tabla 4. Definiciones de patrones de carga auto sísmica

| Units:<br>Filtler | As<br>Noted<br>None |               | Hidden<br>Columns: | No                     |               | Sort<br>:                   | None                   |                  | Load Pa      | attern Def          | initions - Aut             | o Seismic - Us                    | ser Coefficier                    | it         |   |                       |                      |
|-------------------|---------------------|---------------|--------------------|------------------------|---------------|-----------------------------|------------------------|------------------|--------------|---------------------|----------------------------|-----------------------------------|-----------------------------------|------------|---|-----------------------|----------------------|
| :<br>Name         | Is Auto<br>Load     | X<br>Dir<br>? | X Dir Plus Ecc     | X Dir<br>Minu<br>s Ecc | Y<br>Dir<br>? | Y<br>Dir<br>Plu<br>s<br>Ecc | Y Dir<br>Minu<br>s Ecc | Ecc<br>Rati<br>o | Top<br>Story | Botto<br>m<br>Story | Ecc<br>Overwrit<br>e Story | Ecc<br>Overwrite<br>Diaphrag<br>m | Ecc<br>Overwrit<br>e Length<br>cm | C          | к | Weight<br>Used<br>Kgf | Base<br>Shear<br>Kgf |
| Sx                | No                  | No            | Yes                | No                     | No            | No                          | No                     | 0,05             | Story<br>2   | Base                |                            |                                   |                                   | 0,727<br>8 | 1 | 152696,0<br>3         | 111132,1<br>7        |
| Sy                | No                  | No            | No                 | No                     | Yes           | No                          | No                     | 0,05             | Story<br>3   | Base                |                            |                                   |                                   | 0,727<br>8 | 1 | 152696,0<br>3         | 111132,1<br>7        |

*Fuente*: Etabs, (2025)


Nota. La tabla detalla la definición de patrones de carga auto sísmica.

# • Lista de materiales por historia

Tabla 5. Lista de materiales por historia

| Units:<br>Filtler: | As Noted<br>None | Hidden Columns:              | No      | Sort:      | None                |
|--------------------|------------------|------------------------------|---------|------------|---------------------|
| Story              | Object Type      | Material                     | Weight  | Floor Area | Unit<br>Weight      |
|                    |                  |                              | tonf    | m²         | tonf/m <sup>2</sup> |
| Story5             | Column           | HS f'c=210kg/cm <sup>2</sup> | 12.672  | 72.82      | 0.174               |
| Story5             | Beam             | HS f'c=210kg/cm <sup>2</sup> | 16.296  | 72.82      | 0.2238              |
| Story4             | Column           | HS f'c=210kg/cm <sup>2</sup> | 28.5696 | 213.9      | 0.1336              |
| Story4             | Beam             | HS f'c=210kg/cm <sup>2</sup> | 43.608  | 213.9      | 0.2039              |
| Story3             | Column           | HS f'c=210kg/cm <sup>2</sup> | 7.296   | 62.62      | 0.1165              |
| Story3             | Beam             | HS f'c=210kg/cm <sup>2</sup> | 14.28   | 62.62      | 0.228               |
| Story2             | Column           | HS f'c=210kg/cm <sup>2</sup> | 21.216  | 151.28     | 0.1402              |
| Story2             | Beam             | HS f'c=210kg/cm <sup>2</sup> | 34.512  | 151.28     | 0.2281              |
| Story1             | Column           | HS f'c=210kg/cm <sup>2</sup> | 2.304   | 62.62      | 0.0736              |

| Story1 | Beam   | HS f'c=210kg/cm <sup>2</sup> | 14.28    | 62.62  | 0.228  |
|--------|--------|------------------------------|----------|--------|--------|
| Sum    | Column | HS f'c=210kg/cm <sup>2</sup> | 72.0576  | 563.24 | 0.1279 |
| Sum    | Beam   | HS f'c=210kg/cm <sup>2</sup> | 122.976  | 563.24 | 0.2183 |
| Total  | All    | All                          | 195.0336 | 563.24 | 0.3463 |



*Fuente*: Etabs, (2025)

Nota. La tabla detalla la lista de materiales por historia.

# 11.5. Análisis de espectro de aceleración NEC 15

A continuación, se presenta el cálculo de las fuerzas laterales de acuerdo con el método estático:

# 1. Factor de zona sísmica (Z)

| Zona sísmica | Manta | Sec. 10.2  |
|--------------|-------|------------|
| Costa        | VI    | Sec. 3.1.1 |

$$Z = 0.5$$

# 2. Tipo de uso de la edificación

 $Factor\ de\ importancia = otras\ estructuras$ 

$$I = 1,00$$
 Sec. 4.1

# 3. Tipo de suelo

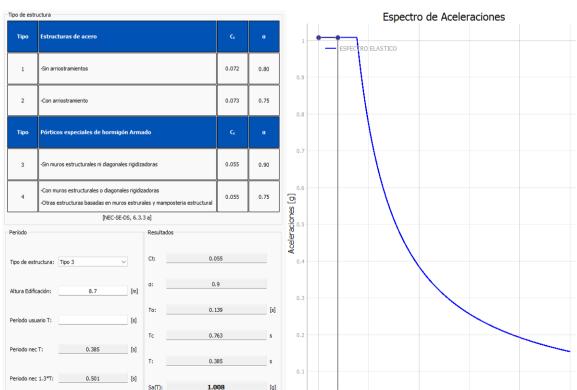
Perfil de suelo tipo = D Sec. 3.2.1

### 4. Configuración estructural

Configuración = sin muros estructurales ni diagonales rigidizadoras

$$C_t = 0.055$$
 Sec. 6.3.3  $\alpha = 0.9$ 

Altura máxima de la estructura (hn) = 8,7 m


### 5. Periodo fundamental de vibración

$$T = C_t h_n^{\alpha}$$
 $TN - NEC2015 = 0,385 \ seg$ 
 $TN - ETABS = 0,573 \ seg$ 

$$\frac{T_{ETABS}}{T_{NEC}} \le 1.4$$

% Variación = 1,48 No pasa

Figura 31Espectro Sísmico de aceleraciones



Fuente: Elaboración propia, (2025).

Nota. La figura muestra el espectro sísmico de aceleraciones (elástico)

### Cálculo de aceleración

$$To = 0.10 * Fs * \frac{Fd}{Fa}$$
 
$$Tc = 0.55 * Fs * \frac{Fd}{Fa}$$

### **NEC 2015**

### Estudio de Suelos

$$Fa = 1,12$$
  $Fa = 1,20$   $Fd = 1,11$   $Fd = 1,19$   $Fs = 1,40$   $Fs = 1,28$   $To = 0,14 seg$   $To = 0,127 seg$   $Tc = 0,76 seg$   $Tc = 0,689 seg$ 

$$Sa = \eta * Z * Fa \text{ para } 0 \le T \le Tc$$

$$Sa = \eta * Z * \left(\frac{Tc}{T}\right)^r \text{ para } T \ge Tc$$

$$\eta = 1,80$$

$$r = 1$$

$$Sa = 1,0080 \quad \text{Sec. } 3.3.1$$

#### 6. Factor de reducción de resistencia sísmica

Pórticos especiales sismorresistentes de hormigón armada con vigas de banda.

$$R = 5$$
 Sec. 6.3.4

### 7. Factor de irregularidad

### 11.6. Irregularidad en planta

$$\emptyset p = 0.90$$

### 11.7. Irregularidad en elevación

### 11.7.1. Tipo 1

Existe diferencia de hasta 50% de la inercia de un piso con respecto de otro subsiguiente:

$$\emptyset El \ sentido \ X = 0,90$$

$$\emptyset El$$
 sentido  $Y = 0.90$ 

### 11.7.2. Tipo 2

Existe diferencia de hasta 50% de la masa de un piso con respecto de otro subsiguiente:

$$\emptyset El \ sentido \ X = 1,00$$

$$\emptyset El \ sentido \ Y = 1,00$$

### 11.7.3. Tipo 3

Existe diferencia entre las medidas globales de cada planta.

$$\emptyset El \ sentido \ X = 0.90$$

$$\emptyset El \ sentido \ Y = 0,90$$

### 11.7.4. Tipo 4

No existe desplazamiento de ejes verticales. No existe discontinuidad en la resistencia que supere en un 30% piso a piso.

$$\emptyset El \ sentido \ X = 1,00$$

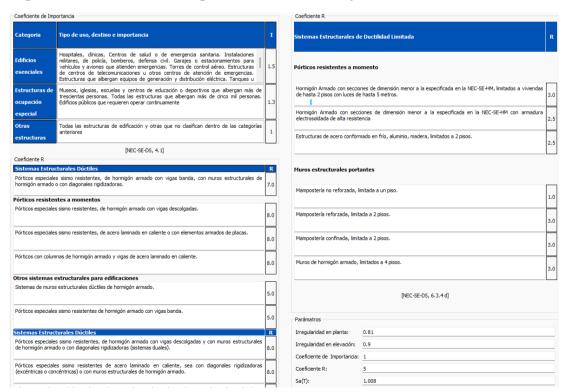
$$\emptyset El$$
 sentido  $Y = 1,00$ 

### 11.7.5. Tipo 5

No existe discontinuidad en la resistencia que supere en un 30% piso a piso.

$$\emptyset El \ sentido \ X = 1,00$$

$$\emptyset El \ sentido \ Y = 1,00$$


### 11.7.6. Resumen

$$\emptyset EAx = 0.90$$
  $\emptyset EAy = 0.90$   $\emptyset EBy = 0.90$   $\emptyset EBy = 0.90$   $\emptyset ECx = 1.00$   $\emptyset ECx = \emptyset EA * \emptyset EB * \emptyset EC$   $\emptyset Ex = 0.81$   $\emptyset Ey = 0.81$ 

#### 11.8. Cálculo de cortante basal

$$V = \frac{I * Sa}{R * \emptyset p * \emptyset e} * W$$
$$V'x = 0,2765 t$$
$$V'y = 0,2765 t$$

Figura 32 Coeficiente de Importancia, Reducción y Sistemas Estructurales



Fuente: Elaboración propia, (2025)

Nota. La figura muestra coeficientes de Importancia, reducción y sistemas estructurales.

#### Fuerza adicional

$$Ft = 0.07 * T * V$$

$$Ft = 0.00 t$$

$$V = V' - Ft$$

$$Vx = 0.2765 t$$

$$Vy = 0.2765 t$$

### 11.9. Distribución vertical de fuerzas sísmicas laterales

T(s) K

T<0,5 1

0,52,5 2

$$K = 1,0000$$

#### 11.10. Corrección del cortante basal

### 11.10.1. Sismo estático

Peso total de la estructura + carga muerta (W) = 540.71 t

Cortante Basal Inicial (V) = 0.2765

Fuerza horizontal calculada (Vo) = 149.78

Fuerza horizontal ETABS (Vo) - X = 150.1215

Fuerza horizontal ETABS (Vo) - Y = 150.1215

Cortante Basal Corregido (Vo) = 0.2765 OK

0,2765 **OK** 

Tabla 6 Cortante basal corregido

| TABLE: |           |              |       |   |             |          |
|--------|-----------|--------------|-------|---|-------------|----------|
|        |           |              |       |   |             | Base     |
| Name   | Top Story | Bottom Story | С     | K | Weight Used | Shear    |
|        |           |              |       |   | tonf        | tonf     |
| Sx     | Story5    | Base         | 0.277 | 1 | 541.9548    | 150.1215 |
| Sy     | Story5    | Base         | 0.277 | 1 | 541.9548    | 150.1215 |

Nota. La tabla detalla el cortante basal del programa etabs.

#### 11.10.2. Sismo dinámico

El valor del cortante dinámico total en el base obtenido por cualquier método de análisis dinámico, no debe ser menor al 80% del cortante basal por el método estático (NEC-SE-DS, Capitulo 6.21(b)).

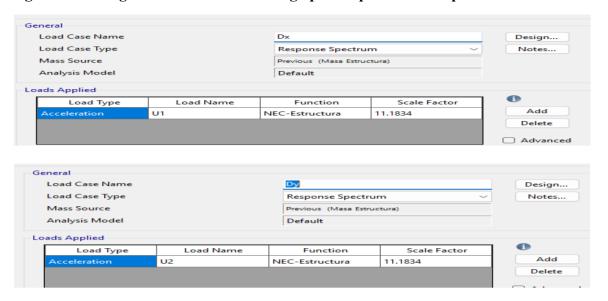
Figura 33 Análisis de Respuesta Sísmica y Estática

Filter: ([Story] = 'Story1') AND ([Output Case] = 'Dx' OR [Output Case] = 'Dy' OR [Output Case] = 'Sx' OR [Output Case] = 'Sy') AND ([Location] = 'Bottom')

|          | Story  | Output Case | Case Type   | Step Type | Step Number | Location | P<br>tonf | VX<br>tonf | VY<br>tonf | T<br>tonf-m |
|----------|--------|-------------|-------------|-----------|-------------|----------|-----------|------------|------------|-------------|
|          | Story1 | Sx          | LinStatic   |           |             | Bottom   | 0.3446    | -72.729    | -0.5361    | 524.3795    |
|          | Story1 | Sy          | LinStatic   |           |             | Bottom   | 0.5998    | -1.9139    | -75.3691   | -688.0638   |
|          | Story1 | Dx          | LinRespSpec | Max       |             | Bottom   | 1.7202    | 61.8697    | 8.4815     | 476.7208    |
| <b>)</b> | Story1 | Dy          | LinRespSpec | Max       |             | Bottom   | 0.813     | 8.5756     | 49.4133    | 447.5979    |

*Fuente*: Etabs, (2025)

Nota. La figura muestra los resultados de análisis sísmico y estático.


Tabla 7 Análisis de respuesta Dinámico

|                | EJE X-X | EJE Y-Y | Resultante |
|----------------|---------|---------|------------|
| Fuerza Dx(F) = | 61.8697 | 8.4815  | 62.4486    |
| Fuerza Dy(F) = | 8.5756  | 49.4133 | 50.1519    |

Fuente: Elaboración propia, (2025)

Nota. La figura muestra los resultados de análisis sísmico y estático.

Figura 34 Configuración de Casos de carga para espectro de Respuesta



Fuente: Elaboración propia, (2025)

Nota. La figura muestra la definición de dos casos de carga (Dx y Dy) con sus respectivas aceleraciones.

Tabla 8 Factor aceleración corregido

| %sismo (Dinámico/Estático)                    | 85%     | 85%     |
|-----------------------------------------------|---------|---------|
| Factor aceleración corregido $(\varepsilon)=$ | 11,1834 | 11.1834 |

Fuente: Elaboración propia, (2025)

Nota. La tabla muestra el factor corregido, para el cumplimiento de la norma NEC-SE-DS.

### 11.10.3. Espectro inelástico

A continuación, se presenta los resultados del espectro inelástico:

#### **Datos**

$$R = 5,00$$

$$Z = 0.50$$

$$I = 1,00$$

$$g = 980,67$$

$$\emptyset Ex = 0.81$$

$$\emptyset Ey = 0.81$$
  $n = 1.80$ 

$$\emptyset P = 0.90$$
  $r = 1$ 

$$Fa = 1,12$$
  $Fs = 1,40$ 

Fd = 1,11

To = 0.14

Tc = 0.763

Tabla 9. Espectro inelástico sentido X

|    | Es     | spectro II | nelástico sentido X                      | Espectro Inelástico sentido X |        |                                                |                                          |  |  |  |
|----|--------|------------|------------------------------------------|-------------------------------|--------|------------------------------------------------|------------------------------------------|--|--|--|
|    | T      | Sa         | $I * Sa/(R * \emptyset p * \emptyset E)$ | T                             | Sa     | $C * Z * I * g/(R * \emptyset p * \emptyset E$ | $I * Sa/(R * \emptyset p * \emptyset E)$ |  |  |  |
|    | (s)    |            | cm/s <sup>2</sup>                        | (s)                           |        | cm/s <sup>2</sup>                              | (1/g)                                    |  |  |  |
|    | 0,0000 | 0,5600     | 150,6653                                 | 0,0000                        | 0,5600 | 150,6653                                       | 0,1536                                   |  |  |  |
|    | 0,0500 | 0,7214     | 194,1004                                 | 0,0500                        | 0,7214 | 194,1004                                       | 0,1979                                   |  |  |  |
| То | 0,1388 | 1,0080     | 271,1976                                 | 0,1388                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,1500 | 1,0080     | 271,1976                                 | 0,1500                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,2100 | 1,0080     | 271,1976                                 | 0,2100                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,2700 | 1,0080     | 271,1976                                 | 0,2700                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,3300 | 1,0080     | 271,1976                                 | 0,3300                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,3900 | 1,0080     | 271,1976                                 | 0,3900                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,4500 | 1,0080     | 271,1976                                 | 0,4500                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,5100 | 1,0080     | 271,1976                                 | 0,5100                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,5700 | 1,0080     | 271,1976                                 | 0,5700                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,6300 | 1,0080     | 271,1976                                 | 0,6300                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
| Тс | 0,7631 | 1,0080     | 271,1976                                 | 0,7631                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,7000 | 1,0080     | 271,1976                                 | 0,7000                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,7500 | 1,0080     | 271,1976                                 | 0,7500                        | 1,0080 | 271,1976                                       | 0,2765                                   |  |  |  |
|    | 0,8000 | 0,9615     | 258,6971                                 | 0,8000                        | 0,9615 | 258,6971                                       | 0,2638                                   |  |  |  |
|    | 0,8500 | 0,9050     | 243,4796                                 | 0,8500                        | 0,9050 | 243,4796                                       | 0,2483                                   |  |  |  |
|    | 0,9000 | 0,8547     | 229,9530                                 | 0,9000                        | 0,8547 | 229,9530                                       | 0,2345                                   |  |  |  |
|    | 0,9500 | 0,8097     | 217,8502                                 | 0,9500                        | 0,8097 | 217,8502                                       | 0,2221                                   |  |  |  |
|    | 1,0000 | 0,7692     | 206,9577                                 | 1,0000                        | 0,7692 | 206,9577                                       | 0,2110                                   |  |  |  |

Fuente: Elaboración propia, (2025)

Nota. La tabla presenta espectro inelástico.

Figura 35 Espectro elástico e inelástico

Fuente: Elaboración propia, (2025)

Nota. La figura muestra el Espectro inelástico.

### 11.11. Chequeos

Se realizó chequeo de selección de elementos, distribución del cortante basal por piso, cortes, derivas, cortante dinámico, participación de masas, torsión en planta y análisis de la estructura.

### 11.11.1.1. Secciones de elementos

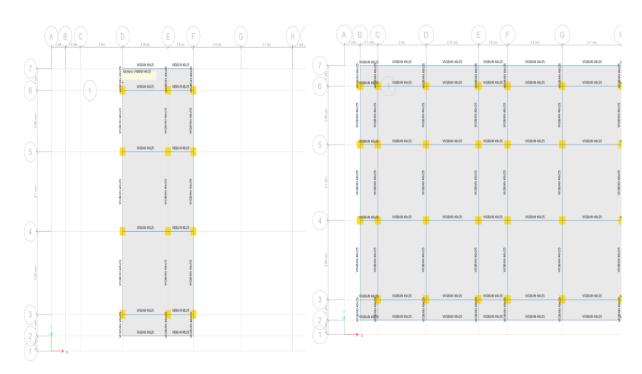

Se presenta los chequeos de las secciones de vista en planta y elevación, lo cual se aprecia en la Figura 36, Figura 37 y Figura 38.

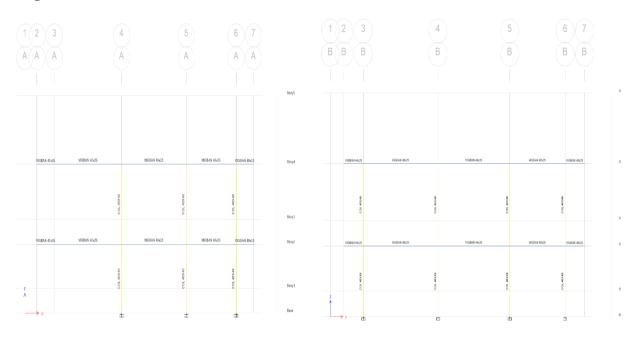
Figura 36 Vista en planta

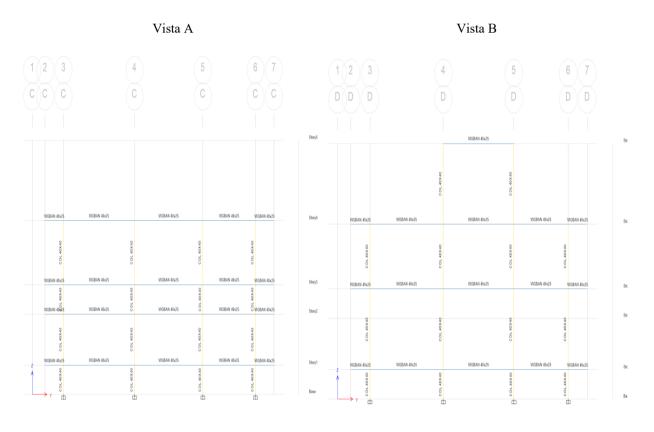


Story1 - Z = 100 cm

Story2 - Z = 275 cm




Story3 - Z = 375 cm


Story4 - Z = 595 cm

Fuente: Etabs, (2025)

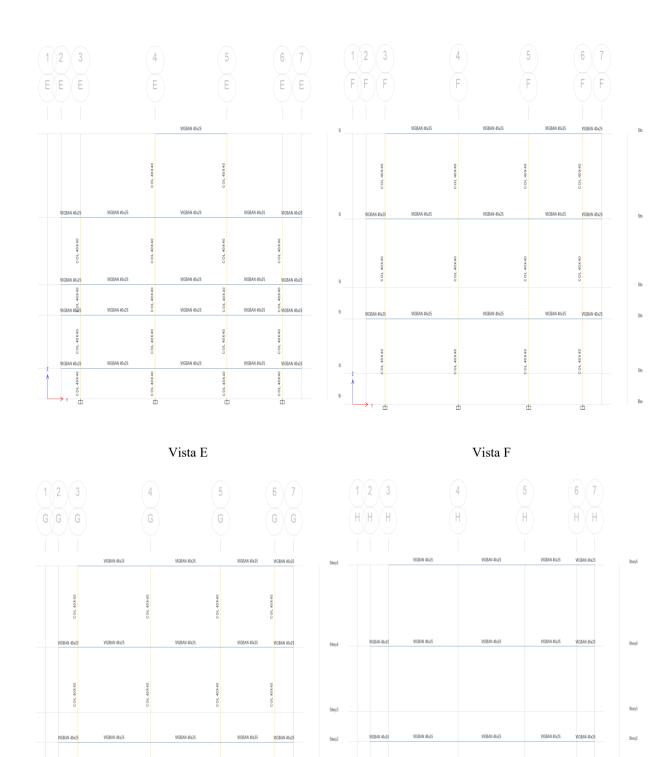
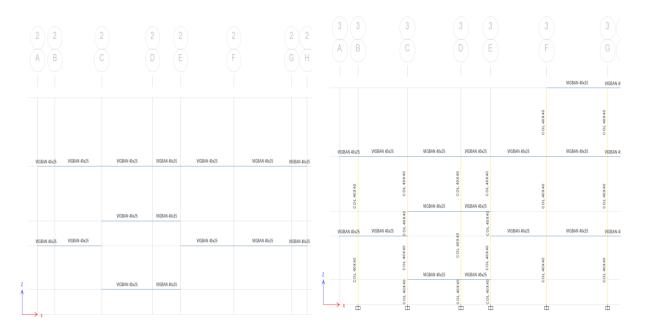
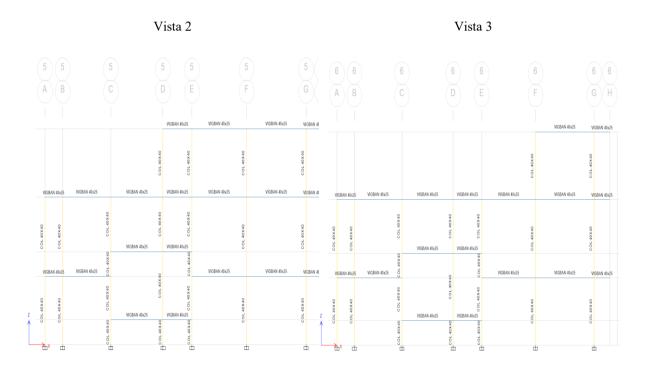

Nota. La figura muestra la vista en planta

Figura 37 Vista en elevación






Vista C Vista D




*Fuente*: Etabs, (2025)

Nota. La figura muestra la vista en elevación.

Figura 38 Vista en elevación 2, 3,4,5 y 6

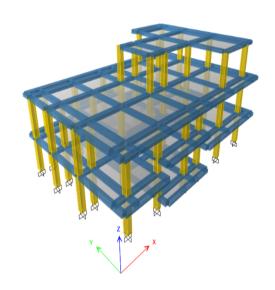




Vista 6

Nota. La figura muestra la vista en elevación.

Vista 4,5


### 11.11.1.2. Distribución del cortante basal por piso

En la distribución del cortante basal o carga lateral por piso según patrón Sx y Sy, tal como se aprecia en la Figura 39 y Figura 40.

Name
Name
StoryResp1
Show
Dophty Type:
Load Set Load Set 1
Display Goors
Global X
Global X
Legend
Legend Type
None

Story4 -

Figura 39 Carga lateral por piso (Sx)



*Fuente*: Etabs, (2025)

Nota. La figura muestra la carga lateral por piso en Sx.

Force, tonf

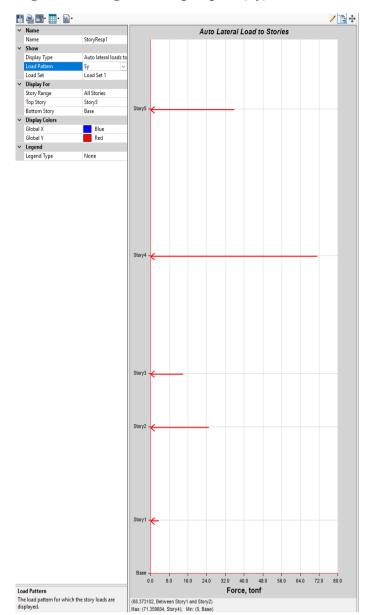
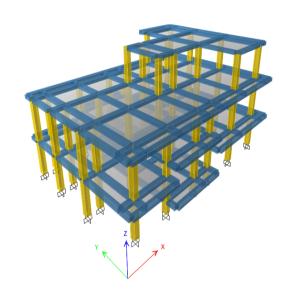
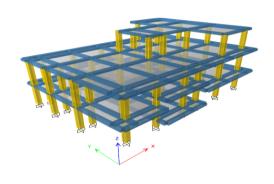



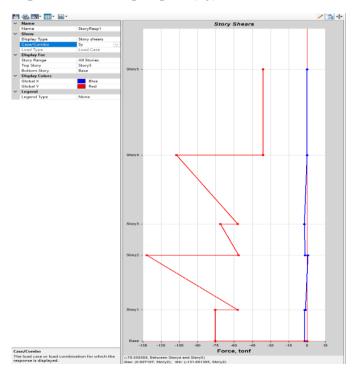

Figura 40 Carga lateral por piso (Sy)





Nota. La figura muestra la carga lateral por piso en Sy.

### **11.11.1.3.** Cortes por piso

Las fuerzas cortantes por piso según caso de carga Sx y Sy, tal como se aprecia en la Figura 41 y Figura 42.


Figura 41 Cortes por piso (Sx)



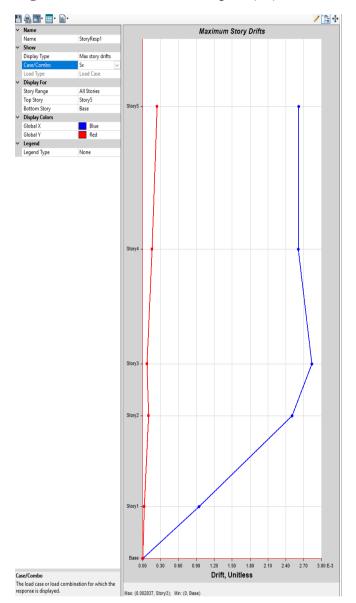


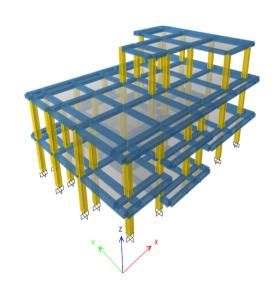
Nota. La figura muestra los cortes por piso en Sx.

Figura 42 Cortes por piso (Sy)



X X


*Fuente*: Etabs, (2025)


Nota. La figura muestra los cortes por piso en Sy.

## 11.11.1.4. Deriva máxima del piso

En la Figura 43 y Figura 44 se tiene la deriva máxima del piso en caso de carga Sx y Sy:

Figura 43 Deriva máxima del piso (Sx)





Fuente: Etabs, (2025)

Nota. La figura muestra la deriva máxima del piso.

$$Sx \rightarrow 0.75 * 5 * 0.002837 = 0.01063 \rightarrow 0k$$

Name
Name / 🏗 🌣 Maximum Story Drifts Show Display Type Case/Combo Max story drifts Sy Load Case Load Type

Display For
Story Range
Top Story
Bottom Story
Uisplay Colors
Global X
Global Y All Stories Story5 Base Blue Red ✓ Legend Legend Type 4.20 4.80 5.40 6.00 E-3 1.20 Drift, Unitless Case/Combo
The load case or load combination for which the response is displayed.

Figura 44 Deriva máxima del piso (Sy)

Nota. La figura muestra la deriva máxima del piso.

Max: (0.005369, Story4); Min: (0, Base)

$$Sy \rightarrow 0.75 * 5 * 0.005369 = 0.020 \rightarrow 0k$$

# 11.11.1.5. Cortante dinámico por piso

El cortante dinámico por piso en caso de carga Dx y Dy se observa en la Figura 45 y Figura 46:

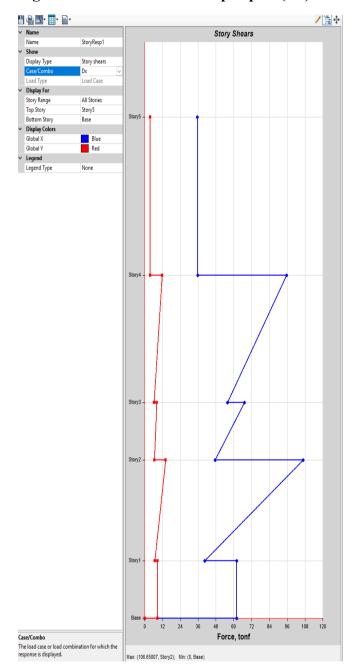
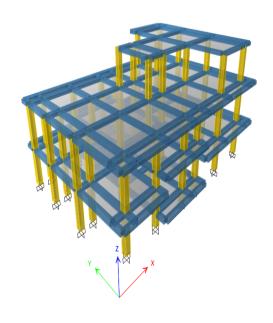




Figura 45 Cortante dinámico por piso (Dx)

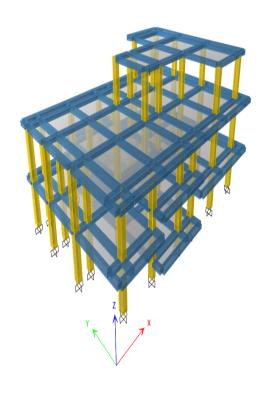


**Fuente**: Etabs, (2025)

Nota. La figura muestra el cortante dinámico.

💾 🚔 🕎 · 🟢 · 🛍 · / Έ 💠 Story Shears StoryResp1 Story Range Top Story Story5 Base Display Colors Global X Global Y Legend Type

Figura 46 Cortante dinámico por piso (Dy)

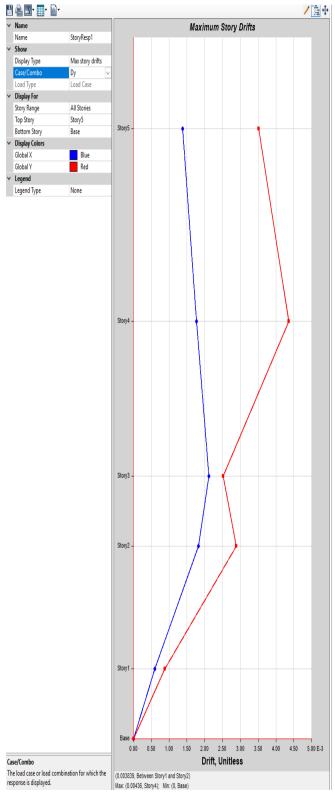

Nota. La figura muestra el cortante dinámico.

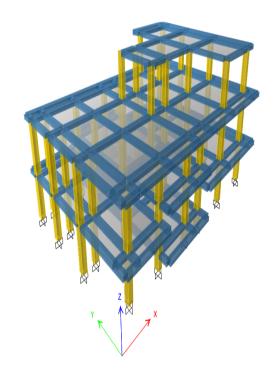
## 11.11.1.6. Deriva dinámica máxima del piso

En la Figura 47 y Figura 48 se tiene la deriva dinámica máxima del piso en caso de carga Dx y Dy:

Maximum Story Drifts StoryResp1 Display Type Max story drifts Load Case Display For All Stories Story5 Bottom Story Base Display Colors Blue Red Global X Global Y Legend Legend Type Story1 -0.30 0.60 1.20 1.50 1.80 2.10 2.40 2.70 3.00 E-3 Drift, Unitless Case/Combo The load case or load combination for which the response is displayed.

Figura 47 Deriva dinámica máxima del piso (Dx)





Nota. La figura muestra la deriva dinámica máxima del piso.

Max: (0.002518, Story3); Min: (0, Base)

$$Dx \rightarrow 0.75 * 5 * 0.002518 = 0.00944 \rightarrow 0k$$

Figura 48 Deriva dinámica máxima del piso (Dy)





Nota. La figura muestra la deriva dinámica máxima del piso.

$$Dy \to 0.75 * 5 * 0.00436 = 0.01635 \to 0k$$

## 11.11.1.7. Participación de masas

En la Tabla 10 se presenta los resultados de la participación de masas modal de los nueve modos:

Tabla 10. Participación de masas modal

| TABLE: Modal Participating Mass Ratios |      |        |            |           |        |        |        |        |         |
|----------------------------------------|------|--------|------------|-----------|--------|--------|--------|--------|---------|
| Case                                   | Mode | Period | UX         | UY        | RZ     | SumUX  | SumUY  | SumRZ  | TORSION |
|                                        |      |        |            |           |        |        |        |        |         |
|                                        |      | sec    |            |           |        |        |        |        |         |
| Modal                                  | 1    | 0.502  | 0.0034     | 0.4769    | 0.2981 | 0.0034 | 0.4769 | 0.2981 | 38%     |
| Modal                                  | 2    | 0.383  | 0.7316     | 0.0112    | 0.0021 | 0.735  | 0.4881 | 0.3002 | 20%     |
| Modal                                  | 3    | 0.336  | 0.0091     | 0.2638    | 0.4745 | 0.7442 | 0.7519 | 0.7747 | 34%     |
| riouat                                 | 3    | 0.550  | 0.0091     | 0.2030    | 0.4743 | 0.7442 | 0.7513 | 0.7747 | 3470    |
| Modal                                  | 4    | 0.159  | 0.0036     | 0.0533    | 0.0671 | 0.7478 | 0.8052 | 0.8418 | 35%     |
| Modal                                  | 5    | 0.152  | 0.0974     | 8.652E-07 | 0.0078 | 0.8452 | 0.8052 | 0.8496 | 34%     |
| Modal                                  | 6    | 0.149  | 0.0041     | 0.0403    | 0.0103 | 0.8493 | 0.8455 | 0.8599 | 34%     |
| Modal                                  | 7    | 0.088  | 0.005      | 0.0188    | 0.0398 | 0.8542 | 0.8643 | 0.8997 | 34%     |
|                                        |      |        |            |           |        |        |        |        |         |
| Modal                                  | 8    | 0.085  | 0.0066     | 0.064     | 0.0419 | 0.8609 | 0.9284 | 0.9416 | 34%     |
| Modal                                  | 9    | 0.081  | 0.0653     | 0.0017    | 0.0136 | 0.9262 | 0.9301 | 0.9552 | 34%     |
| Modal                                  | 10   | 0.055  | 0.00003254 | 0.0001    | 0.0014 | 0.9262 | 0.9302 | 0.9566 | 34%     |
| Modal                                  | 11   | 0.047  | 0.0007     | 0.0000123 | 0.0001 | 0.927  | 0.9302 | 0.9568 | 34%     |
|                                        |      |        |            |           |        |        |        |        |         |
| Modal                                  | 12   | 0.037  | 0.0001     | 0.0005    | 0.0007 | 0.9271 | 0.9307 | 0.9575 | 34%     |
| Modal                                  | 13   | 0.034  | 0.0078     | 0.0001    | 0.0062 | 0.9349 | 0.9308 | 0.9637 | 34%     |
| Modal                                  | 14   | 0.033  | 0.0153     | 0.0008    | 0.004  | 0.9502 | 0.9317 | 0.9676 | 34%     |
| Modal                                  | 15   | 0.031  | 0.0003     | 0.0319    | 0.0035 | 0.9504 | 0.9636 | 0.9712 | 34%     |

**Fuente**: Etabs, (2025)

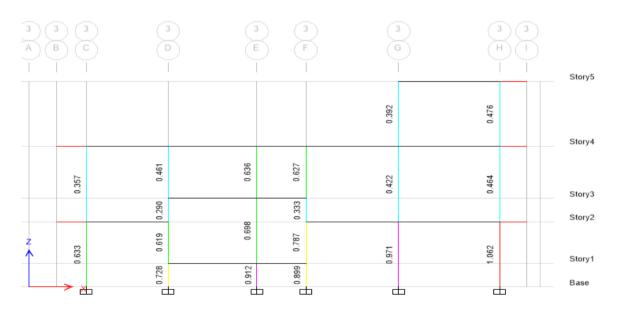
Nota. La tabla presenta la participación de masas.

### 11.11.1.8. Torsión en planta

En la Tabla 11 se presenta los resultados de la torsión en planta según dirección X – Y con su respectivo promedio, máximo y ratio.

Tabla 11. Torsión en planta

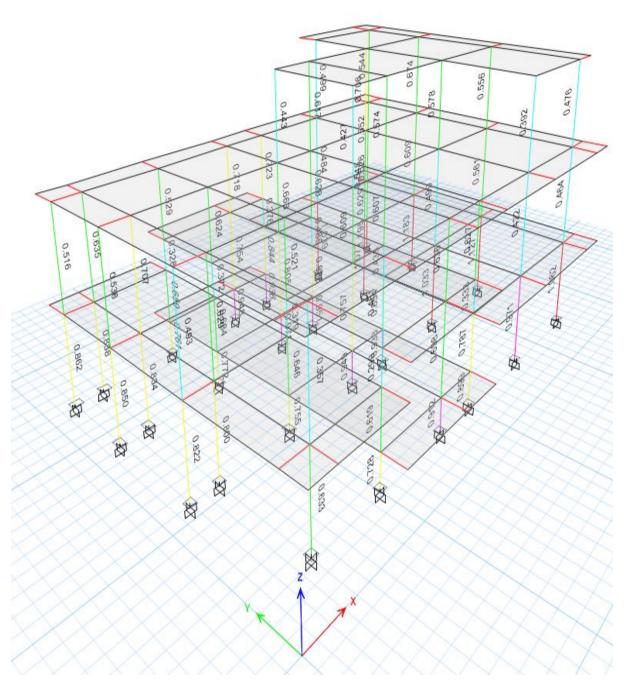
| TABLE: Story Max Over Avg Displacements |             |           |           |             |           |          |          |       |
|-----------------------------------------|-------------|-----------|-----------|-------------|-----------|----------|----------|-------|
| Story                                   | Output Case | Case Type | Step Type | Step Number | Direction | Maximum  | Average  | Ratio |
|                                         |             |           |           |             |           | m        | m        |       |
| Story5                                  | Sy          | LinStatic |           |             | Υ         | 0.037729 | 0.030983 | 1.218 |
| Story4                                  | Sy          | LinStatic |           |             | Υ         | 0.026992 | 0.01781  | 1.516 |
| Story3                                  | Sy          | LinStatic |           |             | Υ         | 0.010609 | 0.009023 | 1.176 |
| Story2                                  | Sy          | LinStatic |           |             | Υ         | 0.009811 | 0.006541 | 1.5   |
| Story1                                  | Sy          | LinStatic |           |             | Υ         | 0.001301 | 0.001126 | 1.156 |


*Fuente*: Etabs, (2025)

Nota. La tabla presenta la torsión en planta.

#### 11.11.1.9. Análisis de estructura

### En la Figura 49 y Figura 50 presenta la vista en elevación de la columnas:


Figura 49 Vista en elevación de la columna P-M-M relación de interacción ACI318-19



*Fuente*: Etabs, (2025)

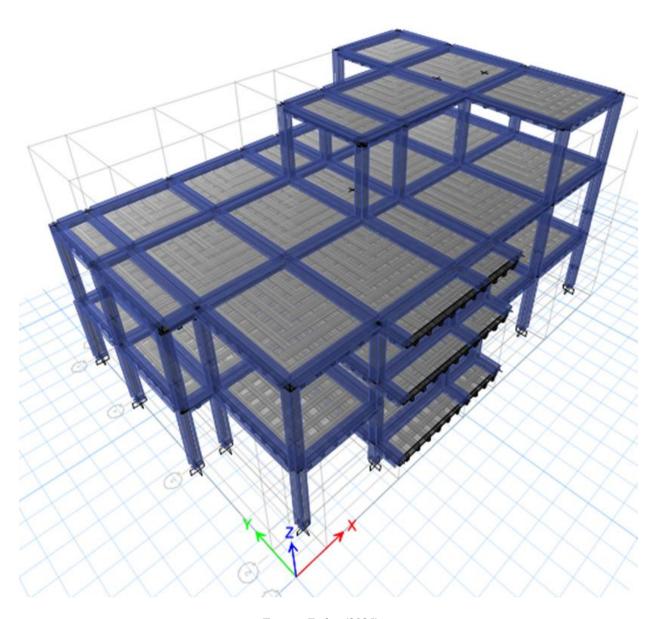

Nota. La figura muestra la vista en elevación de la columna

Figura 50 Vista 3D de la columna P-M-M relación de interacción ACI318-19



Nota. La figura muestra la vista 3D de la columna

Figura 51 Vista en 3D de las columnas de la estructura



Nota. La figura muestra la vista 3D de las columnas de la vivienda.

En este caso se identificó que, la estructura presenta en la mayoría de las secciones con sobre esfuerzo, presentando fallas en el hormigón.

#### 11.12. Análisis no lineal vivienda actual (NSP)

Se utilizó el programa ETABS para cálculos no lineales con los modelos constitutivos del acero y el hormigón. En la Figura 52 y Figura 53 se presenta los hinges de vigas columnas y la perspectiva eje 3 de la vivienda respectivamente.

### 11.12.1. Modelo constitutivo del hormigón No confinado

El modelo constitutivo del hormigón no confinado establece como responde este material ante cargas externas cuando no está sujeto a ningún tipo de confinamiento, lo que impacta de manera considerable tanto en su resistencia como en su capacidad de deformación, modelo de (Mander).

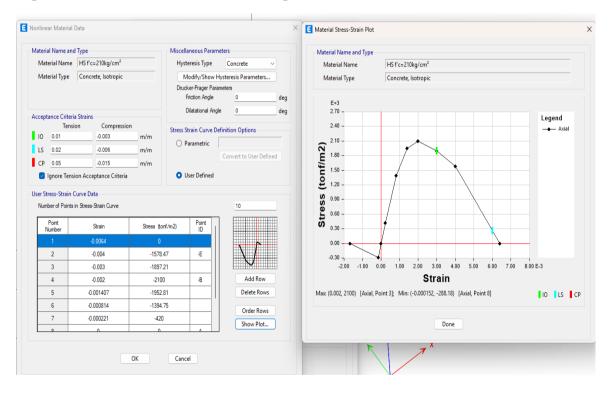



Figura 52 Modelo no lineal de Mander para concreto

Fuente: Elaboración propia, (2025).

Nota. La figura muestra el modelo de Mander para concreto, representando la curva de esfuerzo-deformación.

#### 11.12.2. Modelo constitutivo del Acero

El modelo constitutivo del acero Figura 53, describe su comportamiento bajo carga, abarcando tanto la fase elástica como plástica. En el análisis estructural, este modelo se representa mediante una curva esfuerzo-deformación que incluye puntos críticos como el límite de fluencia y el límite de rotura, modelo (Park).

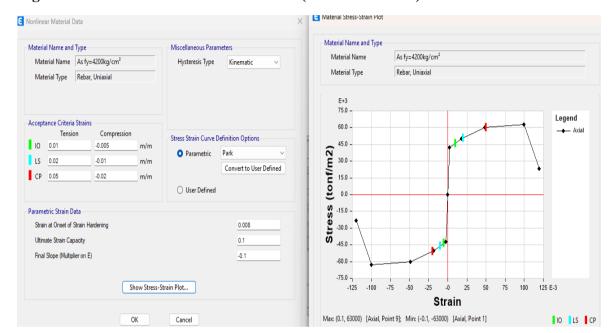



Figura 53 Modelo Constitutivo del Acero (Modelo de Park)

Fuente: Elaboración propia, (2025).

Nota. La figura muestra Curva esfuerzo-deformación del modelo de Park para acero, representando su comportamiento elástico y plástico, incluyendo los límites de fluencia u rotura.

### 11.13. Análisis de carga PUSHOVER

Las cargas se aplican según el modo vibracional correspondiente. A partir del análisis estático y espectral, se observa en la Tabla 9 que el primer modo de vibración provoca un desplazamiento predominante en la dirección global Y, Figura 54; por lo tanto, se debe asignar el caso de carga PUSHOVER Y al primer modo vibracional.

Similarmente, el caso de carga PUSHOVER X debe ser asignado al segundo modo de vibración de la estructura, ya que este favorece el desplazamiento en dicha dirección.

E Load Case Data Load Case Name Design... Load Case Type Notes... Nonlinear Static Mass Source Masa Estructura Analysis Model Default Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Gravitacional 1 Loads Applied Load Type Load Name Scale Factor Add -1 Delete Other Parameters Modal Load Case Modal Geometric Nonlinearity Option P-Delta Load Application Displacement Control Modify/Show... Multiple States Modify/Show... Floor Cracking Analysis No Cracked Analysis Modify/Show... Nonlinear Parameters User Defined - Iterative Event-to-Event Modify/Show... ок

Figura 54 Asignación de Cargas en el Análisis Pushover según Modos de Vibración

Fuente: Elaboración propia, (2025).

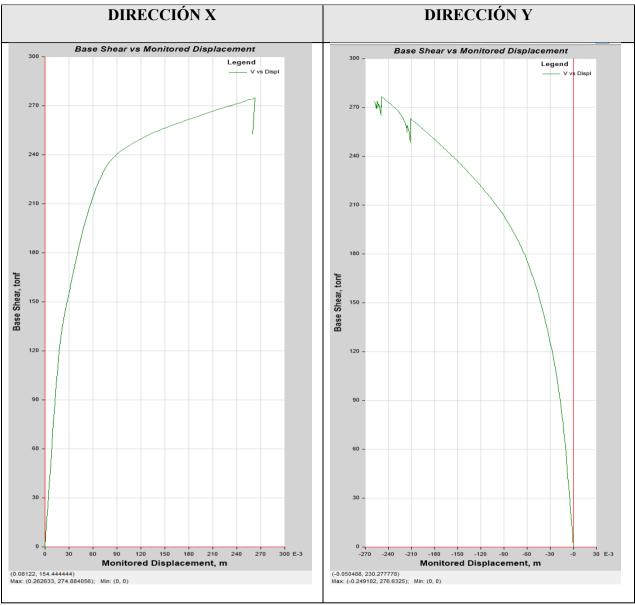
Nota. La figura muestra la asignación de las cargas Pushover Y en Etabs, correspondiente al primer modo.

### 11.13.1. Objetivo de desplazamiento

Según la ASCE 41-17, el nodo control se ubica en el centro de masa del techo, calculado independientemente y asignado al modelo como Label 9 (Figura 55). La magnitud del desplazamiento de cada piso se obtiene a partir de fórmulas o, de manera aproximada, como el 4% de la altura total del edificio. Dado que el cálculo es complejo, se utiliza la recomendación de la norma ajustada a las necesidades del proyecto, con un valor de desplazamiento de 0.348m.

E Load Cases Add Copy of Case E Design... O Zero Initial Conditions - Start from Unstressed State O Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) E Load Application Control for Nonlinear Static Analysis Load Type Scale Factor O Full Load Add Displacem O Quasi-Static (run as time history O Use Conjugate Displacemen Modal Load Case Use Monitored Displacemen Geometric Nonlinearity Option P-Delta Load Application Additional Controlled Displacements

Figura 55 Nodo Control Ubicación


Fuente: Elaboración propia, (2025).

Nota. La figura muestra el nodo control su ubicación en el último nivel.

### 11.13.2. Curva de Capacidad

Una vez realizados los ajustes mencionados evaluar el modelo. El primer paso será calcular la curva de capacidad de la estructura en la dirección Xe Y.

Figura 56 Curva de Capacidad



Nota. La figura muestra la curva de capacidad en las direcciones X y Y de la estructura.

La Figura 56 muestra la relación entre el corte basal y el desplazamiento monitoreado de la estructura. Se observa un comportamiento lineal hasta alcanzar aproximadamente los 4cm de desplazamiento, con corte basal que varía entre los 230T.El comportamiento no lineal se evidencia superando este desplazamiento ya que con se muestra llega hasta 20cm, con poco aumento cortante basal 340T.

Después de analizar la forma de la curva, se puede concluir que la estructura mantiene un comportamiento rígido en su fase inicial, pero a medida que aumenta el desplazamiento, la respuesta se vuelve más desfavorable.

#### 11.13.3. Punto de desempeño (Método FEMA 440)

Según el procedimiento establecido por el FEMA 440, se obtuvo el punto de desempeño para ambas direcciones de análisis. En la curva generada, se puede identificar los siguientes elementos, el espectro reducido, representado de color magenta; el espectro de capacidad es color verde, el punto de desempeño, el color rojo al final de la (Tabla 12), se especifican los valores de desplazamiento y aceleración espectral.

**PUSHOVER X PUSHOVER Y** P - W- III- III-FFMA 440 Fauivalent Linea Plot Type Load Case PUSHOVER YY+ PUSHOVER XX+ Integrated Sa\_225 9810 Default Value Capacity Spectrum Curve Family of Demand Spectra pectrum Curve
Demand Spectra 0.5; 1; 1.5; 2 Solid Yes 0.5; 1; 1.5; 2 1 Pixel (Regular Cyan Spectral Acceleration, g Spectral Displacement, mm Punto de desempeño Punto de desempeño V= 231.1123  $\delta = 104.162$ mm V = 163.75 $\delta = 150.08$ mm Radio de ductilidad=4.00 Radio de ductilidad=3.92 Radio de Amortiguamiento=0.9263 Radio de Amortiguamiento=0.1939

Tabla 12 Punto de desempeño (T=225años)

*Fuente*: Etabs, (2025)

Nota. La tabla muestra los puntos de desempeño obtenidos mediante análisis lineación equivalente (FEMA 440)

**PUSHOVER X PUSHOVER Y** P 🖶 🖫 · 📗 · FEMA 440 Equivalent Linearization FEMA 440 Equivalent Linearization Legend Capacity
Single Dema PUSHOVER XX+ Leaend Typ Integrated Legend Type Integral
Plot Settings
Plot Axis Type Sa - Sd
Show Associated Der Yes Single Dema Period Line 
 Demand Spectrum

 Spectrum Source
 Defined Function

 Function Name
 Sa\_975

 SF (mm/sec²)
 9810
 Damping Parameters
Damping Ratio 0.05
Effective Damping Default Value Parior Parameters

Damping Ratio 0.05

Effective Damping Default Value

Period Parameters Period Parameters Effective Period Defaul
Capacity Spectrum Curve
Family of Demand Spectra Effective Period Default Value
Capacity Spectrum Curve
Family of Demand Spectra
Single Demand Spectrum
Constant Period Lines 0.5; 1; 1.5; 2 Solid 1 Pixel (Regular) 0.5; 1; 1.5; 2 Line Type Line Width 1 Pixel (Regular) Spectral Acceleration, g Shear (tonf) T secant (sec)
T effective (sec)
Ductility Ratio
Damping Ratio, Beff Damping Ratio, Beff 0 0.60 0.20 Spectral Displacement, mm Spectral Displacement, mm The load case for which the response is displayer The defined response spectrum function name. Snapped to (102.840777, 0.585367) [Capacity, Point 150]
T secant = 0.841 sec; T effective = 0.715 sec; Ductility ratio = 5.51237; Damping ratio, Beff = 0.20444 c = 0.128 at [13550, 1700, 8700]; Min = -0.214 at [18250, 5357.5, 8700] Max = 0.128 at [13550, 1700, 8700]; Min = -0.214 at [18250, 5357.5, 8700] Punto de desempeño Punto de desempeño V=0 $\delta=0$ V=0Radio de ductilidad=0 Radio de ductilidad= 0 Radio de Amortiguamiento=0 Radio de Amortiguamiento=0

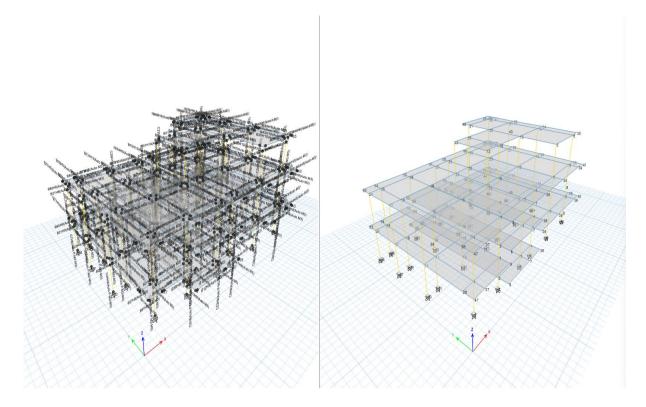
Tabla 13 Punto de desempeño (T=975 años)

*Nota*. La tabla muestra la relación entre el cortante basal y el desplazamiento en dirección X de la estructura, con los puntos de desempeño correspondientes a diferentes niveles de amenaza.

#### 11.13.4. Criterios de aceptación

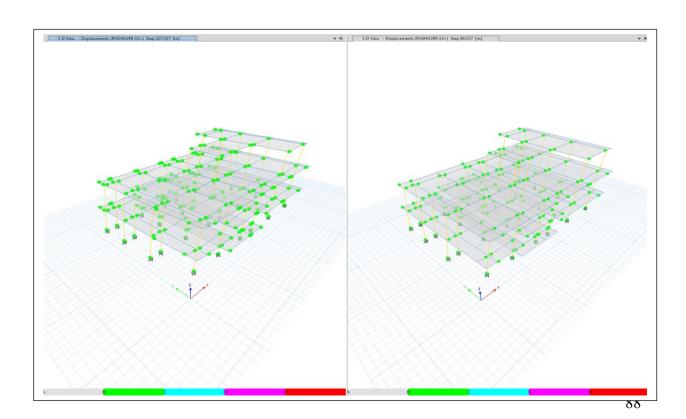
Se establece en ASCE 41-17(tabla C2-1) que los objetivos esenciales de seguridad, que comprenden **m** y **p**, son cruciales para determinar el nivel de desempeño relacionado con la seguridad de vida frente a amenazas de diferentes magnitudes; una amenaza moderada, asociada a un periodo de retorno 225años (Tr=225años), y una amenaza sísmica extrema menos probable pero destructiva vinculada a un periodo de 975años (Tr=975años).

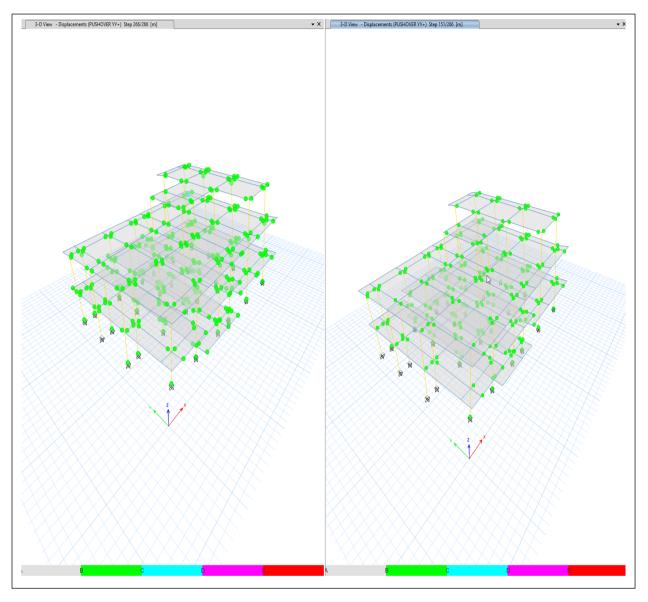
Para evaluar los criterios de aceptación de la estructura, se utiliza la Tabla 12 que relaciona en cortante basal con el desplazamiento, en las que se identifica las coordenadas correspondientes al punto de desempeño desead, representadas como  $(V, \delta)$ . De acuerdo con este análisis, si alguno de los elementos supera el nivel de desempeño estipulado, se considera que la estructura no cumple con los requisitos y, por lo tanto, se clasificara como inaceptable.


**Tabla 14 Cortante Basal Vs Desplazamiento** 

| CORTANTE BASAL VS DESPLAZAMIENTO (DIRECCIÓN X) |                 |     |                    |           |  |  |  |  |
|------------------------------------------------|-----------------|-----|--------------------|-----------|--|--|--|--|
| <b>A</b>                                       | Olsi            | _4: | Punto de desempeño |           |  |  |  |  |
| Amenaza                                        | menaza Objetivo |     | V (Ton)            | d(mm)     |  |  |  |  |
| 225                                            | M               |     | 231.11Ton          | 104.16 mm |  |  |  |  |
| 975                                            | P               |     | 0Ton               | 0 mm      |  |  |  |  |

Fuente: Elaboración propia, (2025)


Nota. La tabla muestra la relación entre el cortante basal y el desplazamiento en la dirección X del a estructura.


Figura 57 Vista 3D hinges vigas columnas no lineal de la vivienda existente (revB)



Nota. La figura muestra la vista 3D hinges de viga columna.

Figura 58 Vista 3D Pushover XY no lineal vivienda existente (revB)





*Fuente*: Etabs, (2025)

Nota. La figura muestra la vista 3D de Pushover no lineal en X (step 89/227m - 227/227m) – Y (step 141/266m - 266/266m).

En la Figura 59 y Figura 60 se aprecia los resultados no lineales de pushover versus deriva en eje X – Y de la vivienda actual con valor máximo de 0,021565 y 0,040608 respectivamente.

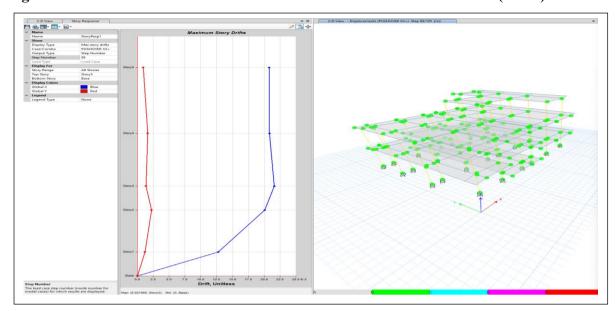
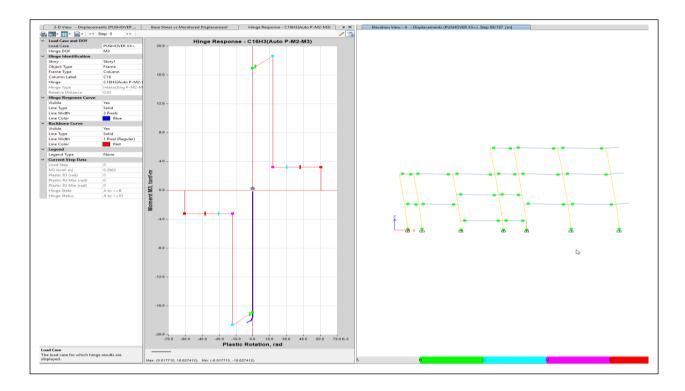



Figura 59 Vista en 3D Pushover vs deriva X no lineal vivienda existente (RevB)

Nota. La figura muestra la vista 3D Pushover vs deriva vivienda actual Step 89/227 m.

See The Control of th


Figura 60 Vista en 3D Pushover vs deriva Y no lineal vivienda existente (RevB)

*Fuente*: Etabs, (2025)

Nota. La figura muestra la vista 3D Pushover vs deriva vivienda actual Step 141/266 m.

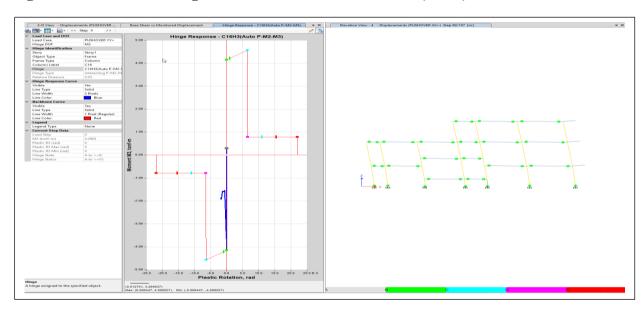

De igual modo, en la Figura 61 y Figura 62 se tiene hinges no lineal en eje X – Y de la vivienda existente. En eje se tiene un valor máximo (0,017715, 18.627412) y en eje Y se ubica entre 0,006447 y 4.568257.

Figura 61 Vista en 3D Hinges X no lineal vivienda existente (RevB)



Nota. La figura muestra la vista 3D hinges de la columna C16, no lineal de vivienda existente.

Figura 62 Vista en 3D Hinges Y no lineal vivienda existente (RevB)



**Fuente**: Etabs, (2025)

Nota. La figura muestra la vista 3D hinges no lineal de vivienda existente.

Por último, en la Tabla 15 y Tabla 16 se presenta la comparativa con Pushover en eje X – Y. En cuanto al eje X se aprecia un desplazamiento máximo -104.39 mm y base con 239.82 tonf. Mientras que en el eje Y se observa un desplazamiento máximo -245.448 mm y base con 179.149 tonf.

**Tabla 15.** Comparativa con Pushover en X

| TABLE: Base Shear vs Monitored Displacement |                 |            |      |     |     |     |    |      |       |       |     |       |
|---------------------------------------------|-----------------|------------|------|-----|-----|-----|----|------|-------|-------|-----|-------|
| Step                                        | Monitored Displ | Base Force | A-B  | B-C | C-D | D-E | >E | A-IO | IO-LS | LS-CP | >CP | Total |
| •                                           | mm              | tonf       |      |     |     |     |    |      |       |       |     |       |
| 0                                           | 0               | 0          | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 1                                           | 1               | 6.9767     | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 2                                           | 2               | 13.9535    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 3                                           | 3               | 20.9302    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 4                                           | 4               | 27.907     | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 5                                           | 5               | 34.8837    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 6                                           | 6               | 41.8605    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 7                                           | 7               | 48.8373    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 8                                           | 8               | 55.8141    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 9                                           | 9               | 62.7909    | 1268 | 0   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 10                                          | 9.92            | 69.2074    | 1266 | 2   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 11                                          | 11.355          | 78.9498    | 1260 | 8   | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 12                                          | 12.7            | 87.6479    | 1252 | 16  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 13                                          | 13.811          | 94.3556    | 1240 | 28  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 14                                          | 14.93           | 100.8127   | 1236 | 32  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 15                                          | 16.245          | 108.2205   | 1230 | 38  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 16                                          | 17.407          | 114.3315   | 1212 | 56  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 17                                          | 18.409          | 118.9944   | 1196 | 72  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 18                                          | 19.647          | 124.2934   | 1186 | 82  | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 19                                          | 20.919          | 129.3156   | 1168 | 100 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 20                                          | 22.19           | 133.9273   | 1152 | 116 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 21                                          | 23.795          | 139.1696   | 1136 | 132 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 22                                          | 25.1            | 143.0148   | 1128 | 140 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 23                                          | 26.276          | 146.3201   | 1118 | 150 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 24                                          | 27.532          | 149.63     | 1110 | 158 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 25                                          | 28.962          | 153.0998   | 1096 | 172 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 26                                          | 30.24           | 155.9783   | 1090 | 178 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 27                                          | 31.24           | 158.1702   | 1090 | 178 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 28                                          | 32.24           | 160.3633   | 1090 | 178 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 29                                          | 33.997          | 164.1963   | 1084 | 184 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 30                                          | 34.997          | 166.2817   | 1084 | 184 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 31                                          | 36.481          | 169.3488   | 1078 | 190 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 32                                          | 37.487          | 171.3002   | 1068 | 200 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 33                                          | 38.982          | 174.0177   | 1058 | 210 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 34                                          | 40.76           | 177.0335   | 1054 | 214 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 35                                          | 42.428          | 179.765    | 1050 | 218 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 36                                          | 44.083          | 182.3793   | 1044 | 224 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 37                                          | 45.377          | 184.3869   | 1040 | 228 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 38                                          | 46.844          | 186.5577   | 1034 | 234 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 39                                          | 47.844          | 188.0097   | 1032 | 236 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 40                                          | 48.844          | 189.4525   | 1032 | 236 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 41                                          | 49.844          | 190.8953   | 1030 | 238 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 42                                          | 51.438          | 193.126    | 1026 | 242 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 43<br>44                                    | 52.438          | 194.4646   | 1026 | 242 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 44                                          | 54.281          | 196.9075   | 1022 | 246 | 0   |     | 0  | 1268 | 0     | 0     | 0   | 1268  |
| 45                                          | 55.281          | 198.22     | 1020 | 248 | 0   | 0   | 0  | 1268 | 0     | 0     | 0   | 1268  |

| 46 | 56.281  | 199.5246 | 1016 | 252 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
|----|---------|----------|------|-----|---|---|---|------|---|---|---|------|
| 47 | 57.281  | 200.7819 | 1016 | 252 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 48 | 58.281  | 202.0391 | 1014 | 254 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 49 | 59.281  | 203.291  | 1010 | 258 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 50 | 60.281  | 204.5103 | 1006 | 262 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 51 | 61.811  | 206.2974 | 1000 | 268 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 52 | 62.811  | 207.4301 | 996  | 272 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 53 | 63.811  | 208.5463 | 996  | 272 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 54 | 64.811  | 209.6623 | 992  | 276 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 55 | 66.708  | 211.7002 | 986  | 282 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 56 | 67.708  | 212.7587 | 982  | 286 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 57 | 69.699  | 214.7959 | 976  | 292 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 58 | 71.359  | 216.4311 | 968  | 300 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 59 | 72.359  | 217.3802 | 962  | 306 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 60 | 73.359  | 218.2937 | 960  | 308 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 61 | 74.797  | 219.503  | 940  | 328 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 62 | 76.715  | 220.7665 | 930  | 338 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 63 | 77.715  | 221.3394 | 926  | 342 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 64 | 78.715  | 221.8631 | 926  | 342 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 65 | 79.715  | 222.3862 | 924  | 344 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 66 | 80.715  | 222.9058 | 924  | 344 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 67 | 81.715  | 223.4298 | 922  | 346 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 68 | 83.215  | 224.1287 | 918  | 350 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 69 | 84.215  | 224.5068 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 70 | 85.215  | 224.8807 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 71 | 86.215  | 225.2541 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 72 | 87.215  | 225.6249 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 73 | 88.215  | 225.9911 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 74 | 89.215  | 226.3559 | 916  | 352 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 75 | 90.215  | 226.7289 | 914  | 354 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 76 | 91.215  | 227.0797 | 914  | 354 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 77 | 92.215  | 227.4271 | 914  | 354 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 78 | 93.215  | 227.7746 | 912  | 356 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 79 | 94.215  | 228.12   | 912  | 356 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 80 | 95.215  | 228.4577 | 912  | 356 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 81 | 96.215  | 228.7975 | 908  | 360 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 82 | 97.215  | 229.1068 | 908  | 360 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 83 | 98.215  | 229.4127 | 906  | 362 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 84 | 99.215  | 229.7347 | 904  | 364 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 85 | 100.215 | 230.0389 | 898  | 370 | 0 | 0 | 0 | 1268 | 0 | 0 | 0 | 1268 |
| 86 | 101.215 | 230.3233 | 894  | 374 | 0 | 0 | 0 | 1267 | 1 | 0 | 0 | 1268 |
| 87 | 102.215 | 230.6065 | 890  | 378 | 0 | 0 | 0 | 1266 | 2 | 0 | 0 | 1268 |
| 88 | 103.215 | 230.8807 | 888  | 380 | 0 | 0 | 0 | 1266 | 2 | 0 | 0 | 1268 |
| 89 | 104.215 | 231.1251 | 886  | 382 | 0 | 0 | 0 | 1262 | 6 | 0 | 0 | 1268 |
| 90 | 105.215 | 231.3906 | 886  | 382 | 0 | 0 | 0 | 1261 | 7 | 0 | 0 | 1268 |
| 91 | 106.215 | 231.6377 | 884  | 384 | 0 | 0 | 0 | 1259 | 9 | 0 | 0 | 1268 |
| 92 | 107.215 | 231.9019 | 878  | 390 | 0 | 0 | 0 | 1259 | 9 | 0 | 0 | 1268 |
|    |         |          |      |     |   |   |   |      |   |   |   |      |

Nota. La tabla presenta la comparación con Pushover.

**Tabla 16.** Comparativa con Pushover en Y

| TARIE | : Base Shear vs Monit | orod Dienlacon | nont |     |     |     |            |      |       |       |     |       |
|-------|-----------------------|----------------|------|-----|-----|-----|------------|------|-------|-------|-----|-------|
| Step  | Monitored Displ       | Base Force     | A-B  | B-C | C-D | D-E | >E         | A-IO | IO-LS | LS-CP | >CP | Total |
| Step  |                       | tonf           | A-D  | B-C | C-D | D-E | <b>/</b> E | A-10 | 10-13 | L3-CF | -CF | TOTAL |
| 0     | mm<br>0               | 0              | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 1     | 1                     | 3.422          | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 2     | 2                     | 6.844          | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 3     | 3                     | 10.2661        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 4     | 4                     | 13.6881        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 5     | 5                     | 17.1101        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 6     | 6                     | 20.532         | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 7     | 7                     | 23.954         | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 8     | 8                     | 27.376         | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 9     | 9                     | 30.798         | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 10    | 10                    | 34.2199        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 11    | 11                    | 37.6418        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 12    | 12                    | 41.0638        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 13    | 13                    | 44.4857        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 14    | 14                    | 47.9076        | 1268 | 0   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 15    | 14.695                | 50.285         | 1266 | 2   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 16    | 16.177                | 55.1594        | 1264 | 4   | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 17    | 17.384                | 59.0047        | 1252 | 16  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 18    | 18.527                | 62.2775        | 1240 | 28  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 19    | 19.527                | 64.9477        | 1240 | 28  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 20    | 20.527                | 67.6179        | 1240 | 28  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 21    | 21.527                | 70.2881        | 1238 | 30  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 22    | 22.527                | 72.9375        | 1238 | 30  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 23    | 23.784                | 76.1614        | 1226 | 42  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 24    | 25.265                | 79.7641        | 1216 | 52  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 25    | 26.265                | 82.0955        | 1214 | 54  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 26    | 27.958                | 85.9653        | 1212 | 56  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 27    | 29.208                | 88.7474        | 1200 | 68  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 28    | 30.77                 | 91.9466        | 1182 | 86  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 29    | 31.871                | 94.0237        | 1178 | 90  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 30    | 32.972                | 96.0426        | 1170 | 98  | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 31    | 33.972                | 97.8046        | 1168 | 100 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 32    | 35.41                 | 100.2155       | 1160 | 108 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 33    | 36.864                | 102.5902       | 1154 | 114 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 34    | 38.351                | 104.96         | 1148 | 120 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 35    | 39.351                | 106.5146       | 1148 | 120 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 36    | 40.528                | 108.323        | 1142 | 126 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 37    | 41.528                | 109.8155       | 1138 | 130 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 38    | 42.528                | 111.2967       | 1138 | 130 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 39    | 43.528                | 112.778        | 1136 | 132 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 40    | 44.847                | 114.6592       | 1128 | 140 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 41    | 45.847                | 116.0474       | 1122 | 146 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 42    | 47.477                | 118.1323       | 1104 | 164 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 43    | 49.231                | 120.1406       | 1102 | 166 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 44    | 50.889                | 121.9555       | 1088 | 180 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 45    | 52.652                | 123.7778       | 1072 | 196 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 46    | 53.652                | 124.7687       | 1070 | 198 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 47    | 54.652                | 125.7431       | 1068 | 200 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 48    | 56.33                 | 127.3474       | 1066 | 202 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 49    | 57.33                 | 128.2915       | 1066 | 202 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 50    | 58.996                | 129.8155       | 1054 | 214 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 51    | 60.916                | 131.4646       | 1044 | 224 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 52    | 62.61                 | 132.878        | 1032 | 236 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 53    | 63.61                 | 133.6415       | 1026 | 242 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |
| 54    | 64.61                 | 134.3846       | 1020 | 248 | 0   | 0   | 0          | 1268 | 0     | 0     | 0   | 1268  |

|     |                  |          |      |     | , |   |   |      |    |   | , |      |
|-----|------------------|----------|------|-----|---|---|---|------|----|---|---|------|
| 55  | 66.298           | 135.5646 | 1004 | 264 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 56  | 67.298           | 136.2308 | 1002 | 266 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 57  | 68.298           | 136.8916 | 998  | 270 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 58  | 69.298           | 137.5312 | 984  | 284 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 59  | 70.298           | 138.1357 | 984  | 284 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 60  | 71.298           | 138.7385 | 984  | 284 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 61  | 72.298           | 139.3429 | 982  | 286 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 62  | 73.937           | 140.3026 | 976  | 292 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 63  | 74.937           | 140.8551 | 976  | 292 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 64  | 75.937           | 141.4153 | 970  | 298 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 65  | 76.937           | 141.958  | 968  | 300 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 66  | 77.937           | 142.4821 | 966  | 302 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 67  | 78.937           | 142.9972 | 964  | 304 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 68  | 79.937           | 143.5039 | 960  | 308 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 69  | 80.937           | 144.0109 | 958  | 310 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 70  | 81.937           | 144.5126 | 952  | 316 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 71  | 82.937           | 144.9967 | 948  | 320 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 72  | 83.937           | 145.4738 | 938  | 330 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 73  | 85.897           | 146.3532 | 930  | 338 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 74  | 86.897           | 146.3332 | 930  | 338 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 75  | 86.897<br>87.897 |          |      |     |   |   |   |      |    |   |   |      |
|     |                  | 147.2005 | 926  | 342 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 76  | 88.897           | 147.6085 | 922  | 346 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 77  | 89.897           | 148      | 918  | 350 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 78  | 90.897           | 148.3967 | 912  | 356 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 79  | 91.897           | 148.7707 | 910  | 358 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 80  | 92.897           | 149.1487 | 910  | 358 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 81  | 93.897           | 149.5174 | 908  | 360 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 82  | 94.897           | 149.8906 | 904  | 364 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 83  | 95.897           | 150.2563 | 900  | 368 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 84  | 96.897           | 150.6238 | 900  | 368 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 85  | 97.897           | 150.9771 | 894  | 374 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 86  | 98.897           | 151.3221 | 894  | 374 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 87  | 99.897           | 151.6637 | 888  | 380 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 88  | 100.897          | 151.9977 | 888  | 380 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 89  | 101.897          | 152.3264 | 888  | 380 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 90  | 102.897          | 152.6577 | 880  | 388 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 91  | 103.897          | 152.9656 | 878  | 390 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 92  | 104.897          | 153.2754 | 872  | 396 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 93  | 105.897          | 153.575  | 872  | 396 | 0 | 0 | 0 | 1268 | 0  | 0 | 0 | 1268 |
| 94  | 106.897          | 153.8804 | 866  | 402 | 0 | 0 | 0 | 1266 | 2  | 0 | 0 | 1268 |
| 95  | 107.897          | 154.1664 | 862  | 406 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 96  | 108.897          | 154.4519 | 862  | 406 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 97  | 109.897          | 154.7351 | 860  | 408 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 98  | 110.897          | 155.0238 | 856  | 412 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 99  | 111.897          | 155.2974 | 850  | 418 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 100 | 112.897          | 155.5688 | 850  | 418 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 101 | 113.897          | 155.8313 | 850  | 418 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 102 | 114.897          | 156.1024 | 848  | 420 | 0 | 0 | 0 | 1262 | 6  | 0 | 0 | 1268 |
| 103 | 115.897          | 156.366  | 848  | 420 | 0 | 0 | 0 | 1260 | 8  | 0 | 0 | 1268 |
| 104 | 116.897          | 156.6356 | 844  | 424 | 0 | 0 | 0 | 1260 | 8  | 0 | 0 | 1268 |
| 105 | 117.897          | 156.8886 | 844  | 424 | 0 | 0 | 0 | 1256 | 12 | 0 | 0 | 1268 |
| 106 | 118.897          | 157.1473 | 840  | 428 | 0 | 0 | 0 | 1256 | 12 | 0 | 0 | 1268 |
| 107 | 119.897          | 157.3982 | 836  | 432 | 0 | 0 | 0 | 1254 | 14 | 0 | 0 | 1268 |
| 108 | 120.897          | 157.6467 | 834  | 434 | 0 | 0 | 0 | 1254 | 14 | 0 | 0 | 1268 |
| 109 | 121.897          | 157.8856 | 832  | 434 | 0 | 0 | 0 | 1252 | 16 | 0 | 0 | 1268 |
|     |                  |          |      |     | 0 |   | 0 |      |    | 0 | 0 |      |
| 110 | 122.897          | 158.1306 | 830  | 438 |   | 0 |   | 1248 | 20 |   |   | 1268 |
| 111 | 123.897          | 158.3661 | 828  | 440 | 0 | 0 | 0 | 1246 | 22 | 0 | 0 | 1268 |
| 112 | 124.897          | 158.6048 | 826  | 442 | 0 | 0 | 0 | 1242 | 26 | 0 | 0 | 1268 |
| 113 | 125.897          | 158.8279 | 826  | 442 | 0 | 0 | 0 | 1242 | 26 | 0 | 0 | 1268 |
| 114 | 126.897          | 159.0632 | 816  | 452 | 0 | 0 | 0 | 1240 | 28 | 0 | 0 | 1268 |

| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |          |     |     |   |   |   |      |    |   |   |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|----------|-----|-----|---|---|---|------|----|---|---|------|
| 117         129.897         159.7021         808         460         0         0         0         1238         30         0         0         1268           118         130.897         159.9218         808         460         0         0         0         1238         30         0         0         1268           119         131.897         160.3382         804         464         0         0         0         1236         32         0         0         1268           120         132.897         160.3384         804         464         0         0         0         1236         32         0         0         1268           121         133.897         160.5348         804         464         0         0         0         1232         36         0         0         1268           122         134.897         160.9492         804         464         0         0         0         1232         36         0         0         1268           123         135.897         161.1603         804         464         0         0         0         1222         40         0         0         1268                                                                                                                                                        | 115 |         |          | 810 |     | 0 | 0 | 0 |      |    | 0 | 0 |      |
| 118         130.897         159.9218         808         460         0         0         1238         30         0         0         1268           119         131.897         160.1256         806         462         0         0         0         1236         32         0         0         1268           120         132.897         160.5384         804         464         0         0         0         1234         34         0         0         1268           121         133.897         160.5584         804         464         0         0         0         1232         36         0         0         1268           122         134.897         160.7519         804         464         0         0         0         1232         36         0         0         1268           122         133.897         161.5614         798         470         0         0         1228         40         0         0         1268           125         137.897         161.5644         796         472         0         0         0         1227         41         0         0         1268           126                                                                                                                                                              | 116 | 128.897 | 159.4957 | 808 | 460 | 0 | 0 | 0 | 1238 | 30 | 0 | 0 | 1268 |
| 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117 | 129.897 | 159.7021 | 808 | 460 | 0 | 0 | 0 | 1238 | 30 | 0 | 0 | 1268 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118 |         |          | 808 | 460 | 0 | 0 | 0 | 1238 | 30 | 0 | 0 | 1268 |
| 121       133.897       160.5384       804       464       0       0       0       1234       34       0       0       1268         122       134.897       160.7519       804       464       0       0       0       1232       36       0       0       1268         123       135.897       160.9492       804       464       0       0       0       1232       36       0       0       1268         124       136.897       161.1603       804       464       0       0       0       1228       40       0       0       1268         126       138.897       161.5664       796       472       0       0       0       1227       41       0       0       1268         126       138.897       161.7644       796       472       0       0       0       1227       41       0       0       1268         127       139.897       161.7644       796       472       0       0       0       1212       46       0       0       1268         129       141.897       162.1642       788       480       0       0       0 <t< td=""><td>119</td><td>131.897</td><td>160.1256</td><td>806</td><td>462</td><td>0</td><td>0</td><td>0</td><td>1236</td><td>32</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 119 | 131.897 | 160.1256 | 806 | 462 | 0 | 0 | 0 | 1236 | 32 | 0 | 0 | 1268 |
| 122         134.897         160.7519         804         464         0         0         1232         36         0         0         1268           123         135.897         160.9492         804         464         0         0         0         1232         36         0         0         1268           124         136.897         161.1603         804         464         0         0         0         1228         40         0         0         1268           125         137.897         161.3614         798         470         0         0         0         1222         40         0         0         1268           126         138.897         161.7644         796         472         0         0         0         1222         46         0         0         1268           128         140.897         162.7642         788         480         0         0         0         1218         50         0         0         1268           129         141.897         162.5662         788         480         0         0         0         1216         52         0         0         1268 <t< td=""><td></td><td>132.897</td><td>160.3382</td><td>804</td><td>464</td><td>0</td><td>0</td><td>0</td><td></td><td>32</td><td>0</td><td>0</td><td></td></t<> |     | 132.897 | 160.3382 | 804 | 464 | 0 | 0 | 0 |      | 32 | 0 | 0 |      |
| 123         135.897         160.9492         804         464         0         0         0         1232         36         0         0         1268           124         136.897         161.1603         804         464         0         0         0         1228         40         0         0         1268           125         137.897         161.3614         798         470         0         0         0         1228         40         0         0         1268           126         138.897         161.5664         796         472         0         0         0         1227         41         0         0         1268           128         140.897         161.97         792         476         0         0         0         1218         50         0         0         1268           129         141.897         162.3662         788         480         0         0         0         1216         52         0         0         1268           131         142.897         162.593         788         480         0         0         0         1216         52         0         0         1268                                                                                                                                                           | 121 | 133.897 | 160.5384 | 804 | 464 | 0 | 0 | 0 | 1234 | 34 | 0 | 0 | 1268 |
| 124         136.897         161.1603         804         464         0         0         0         1228         40         0         0         1268           125         137.897         161.3614         798         470         0         0         0         1228         40         0         0         1268           126         138.897         161.5664         796         472         0         0         0         1227         41         0         0         1268           128         140.897         161.7644         796         472         0         0         0         1222         46         0         0         1268           129         141.897         162.1642         788         480         0         0         0         1216         52         0         0         1268           130         142.897         162.5593         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.7586         786         482         0         0         0         1216         52         0         0         1268                                                                                                                                                        | 122 | 134.897 | 160.7519 | 804 | 464 | 0 | 0 | 0 | 1232 | 36 | 0 | 0 | 1268 |
| 125         137.897         161.3614         798         470         0         0         0         1228         40         0         0         1268           126         138.897         161.5664         796         472         0         0         0         1227         41         0         0         1268           127         139.897         161.7644         796         472         0         0         0         1222         46         0         0         1268           128         140.897         161.97         792         476         0         0         0         1216         52         0         0         1268           130         141.897         162.3662         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.5933         788         480         0         0         0         1216         52         0         0         1268           132         144.897         162.59493         784         484         0         0         0         1216         52         0         0         1268                                                                                                                                                         | 123 | 135.897 | 160.9492 | 804 | 464 | 0 | 0 | 0 | 1232 | 36 | 0 | 0 | 1268 |
| 126         138.897         161.5664         796         472         0         0         0         1227         41         0         0         1268           127         139.897         161.7644         796         472         0         0         0         1222         46         0         0         1268           128         140.897         161.97         792         476         0         0         0         1218         50         0         0         1268           129         141.897         162.1642         788         480         0         0         0         1216         52         0         0         1268           130         142.897         162.3662         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           132         144.897         162.9493         784         484         0         0         0         1216         52         0         0         1268                                                                                                                                                          | 124 | 136.897 | 161.1603 | 804 | 464 | 0 | 0 | 0 | 1228 | 40 | 0 | 0 | 1268 |
| 127         139.897         161.7644         796         472         0         0         0         1222         46         0         0         1268           128         140.897         161.97         792         476         0         0         0         1218         50         0         0         1268           129         141.897         162.1642         788         480         0         0         0         1216         52         0         0         1268           130         142.897         162.5593         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           132         144.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           133         145.897         162.9493         784         484         0         0         0         1211         57         0         0         1268                                                                                                                                                          | 125 | 137.897 | 161.3614 | 798 | 470 | 0 | 0 | 0 | 1228 | 40 | 0 | 0 | 1268 |
| 128         140.897         161.97         792         476         0         0         0         1218         50         0         0         1268           129         141.897         162.1642         788         480         0         0         0         1216         52         0         0         1268           130         142.897         162.3662         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.5593         788         480         0         0         0         1216         52         0         0         1268           132         144.897         162.59493         784         484         0         0         0         1216         52         0         0         1268           133         145.897         163.1448         784         484         0         0         0         1211         57         0         0         1268           134         146.897         163.5291         784         484         0         0         0         1210         58         0         0         1268                                                                                                                                                         | 126 | 138.897 | 161.5664 | 796 | 472 | 0 | 0 | 0 | 1227 | 41 | 0 | 0 | 1268 |
| 129       141.897       162.1642       788       480       0       0       0       1216       52       0       0       1268         130       142.897       162.3662       788       480       0       0       0       1216       52       0       0       1268         131       143.897       162.5593       788       480       0       0       0       1216       52       0       0       1268         132       144.897       162.7586       786       482       0       0       0       1216       52       0       0       1268         133       145.897       162.9493       784       484       0       0       0       1214       54       0       0       1268         133       145.897       163.1448       784       484       0       0       0       1211       57       0       0       1268         135       147.897       163.3334       784       484       0       0       0       1210       58       0       0       1268         136       148.897       163.5291       784       484       0       0       0 <t< td=""><td>127</td><td>139.897</td><td>161.7644</td><td>796</td><td>472</td><td>0</td><td>0</td><td>0</td><td>1222</td><td>46</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 127 | 139.897 | 161.7644 | 796 | 472 | 0 | 0 | 0 | 1222 | 46 | 0 | 0 | 1268 |
| 130         142.897         162.3662         788         480         0         0         0         1216         52         0         0         1268           131         143.897         162.5593         788         480         0         0         0         1216         52         0         0         1268           132         144.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           133         145.897         162.9493         784         484         0         0         0         1214         54         0         0         1268           134         146.897         163.1448         784         484         0         0         0         1211         57         0         0         1268           135         147.897         163.3334         784         484         0         0         0         1210         58         0         0         1268           136         148.897         163.7197         784         484         0         0         0         1204         64         0         0         1268                                                                                                                                                        | 128 | 140.897 | 161.97   | 792 | 476 | 0 | 0 | 0 | 1218 | 50 | 0 | 0 | 1268 |
| 131         143.897         162.5593         788         480         0         0         0         1216         52         0         0         1268           132         144.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           133         145.897         162.9493         784         484         0         0         0         1214         54         0         0         1268           134         146.897         163.1448         784         484         0         0         0         1211         57         0         0         1268           135         147.897         163.3334         784         484         0         0         0         1210         58         0         0         1268           136         148.897         163.5291         784         484         0         0         0         1208         60         0         0         1268           137         149.897         163.9163         784         484         0         0         0         1204         64         0         0         1268                                                                                                                                                        | 129 | 141.897 | 162.1642 | 788 | 480 | 0 | 0 | 0 | 1216 | 52 | 0 | 0 | 1268 |
| 132         144.897         162.7586         786         482         0         0         0         1216         52         0         0         1268           133         145.897         162.9493         784         484         0         0         0         1214         54         0         0         1268           134         146.897         163.1448         784         484         0         0         0         1211         57         0         0         1268           135         147.897         163.3334         784         484         0         0         0         1210         58         0         0         1268           136         148.897         163.7197         784         484         0         0         0         1204         64         0         0         1268           137         149.897         163.9163         784         484         0         0         0         1204         64         0         0         1268           138         150.897         164.1049         780         488         0         0         0         1204         64         0         0         1268                                                                                                                                                        | 130 | 142.897 | 162.3662 | 788 | 480 | 0 | 0 | 0 | 1216 | 52 | 0 | 0 | 1268 |
| 133         145.897         162.9493         784         484         0         0         0         1214         54         0         0         1268           134         146.897         163.1448         784         484         0         0         0         1211         57         0         0         1268           135         147.897         163.3334         784         484         0         0         0         1210         58         0         0         1268           136         148.897         163.5291         784         484         0         0         0         1208         60         0         0         1268           137         149.897         163.7197         784         484         0         0         0         1204         64         0         0         1268           138         150.897         163.9163         784         484         0         0         0         1204         64         0         0         1268           139         151.897         164.1049         780         488         0         0         0         1204         64         0         0         1268                                                                                                                                                        | 131 | 143.897 | 162.5593 | 788 | 480 | 0 | 0 | 0 | 1216 | 52 | 0 | 0 | 1268 |
| 134       146.897       163.1448       784       484       0       0       0       1211       57       0       0       1268         135       147.897       163.3334       784       484       0       0       0       1210       58       0       0       1268         136       148.897       163.5291       784       484       0       0       0       1208       60       0       0       1268         137       149.897       163.7197       784       484       0       0       0       1204       64       0       0       1268         138       150.897       163.9163       784       484       0       0       0       1204       64       0       0       1268         139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.6728       778       490       0       0       0 <t< td=""><td>132</td><td>144.897</td><td>162.7586</td><td>786</td><td>482</td><td>0</td><td>0</td><td>0</td><td>1216</td><td>52</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 132 | 144.897 | 162.7586 | 786 | 482 | 0 | 0 | 0 | 1216 | 52 | 0 | 0 | 1268 |
| 135       147.897       163.3334       784       484       0       0       0       1210       58       0       0       1268         136       148.897       163.5291       784       484       0       0       0       1208       60       0       0       1268         137       149.897       163.7197       784       484       0       0       0       1204       64       0       0       1268         138       150.897       163.9163       784       484       0       0       0       1204       64       0       0       1268         139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         143       155.897       164.8576       778       490       0       0       0 <t< td=""><td>133</td><td>145.897</td><td>162.9493</td><td>784</td><td>484</td><td>0</td><td>0</td><td>0</td><td>1214</td><td>54</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 133 | 145.897 | 162.9493 | 784 | 484 | 0 | 0 | 0 | 1214 | 54 | 0 | 0 | 1268 |
| 136       148.897       163.5291       784       484       0       0       0       1208       60       0       0       1268         137       149.897       163.7197       784       484       0       0       0       1204       64       0       0       1268         138       150.897       163.9163       784       484       0       0       0       1204       64       0       0       1268         139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       165.0534       776       492       0       0       0 <t< td=""><td>134</td><td>146.897</td><td>163.1448</td><td>784</td><td>484</td><td>0</td><td>0</td><td>0</td><td>1211</td><td>57</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 134 | 146.897 | 163.1448 | 784 | 484 | 0 | 0 | 0 | 1211 | 57 | 0 | 0 | 1268 |
| 137       149.897       163.7197       784       484       0       0       0       1204       64       0       0       1268         138       150.897       163.9163       784       484       0       0       0       1204       64       0       0       1268         139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0 <t< td=""><td>135</td><td>147.897</td><td>163.3334</td><td>784</td><td>484</td><td>0</td><td>0</td><td>0</td><td>1210</td><td>58</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 135 | 147.897 | 163.3334 | 784 | 484 | 0 | 0 | 0 | 1210 | 58 | 0 | 0 | 1268 |
| 138       150.897       163.9163       784       484       0       0       0       1204       64       0       0       1268         139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0 <t< td=""><td>136</td><td>148.897</td><td>163.5291</td><td>784</td><td>484</td><td>0</td><td>0</td><td>0</td><td>1208</td><td>60</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 136 | 148.897 | 163.5291 | 784 | 484 | 0 | 0 | 0 | 1208 | 60 | 0 | 0 | 1268 |
| 139       151.897       164.1049       780       488       0       0       0       1204       64       0       0       1268         140       152.897       164.2977       778       490       0       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.6029       772       496       0       0       0 <t< td=""><td>137</td><td>149.897</td><td>163.7197</td><td>784</td><td>484</td><td>0</td><td>0</td><td>0</td><td>1204</td><td>64</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 137 | 149.897 | 163.7197 | 784 | 484 | 0 | 0 | 0 | 1204 | 64 | 0 | 0 | 1268 |
| 140       152.897       164.2977       778       490       0       0       1202       66       0       0       1268         141       153.897       164.4828       778       490       0       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184                                                                                                                                                                                                                                                    | 138 | 150.897 | 163.9163 | 784 | 484 | 0 | 0 | 0 | 1204 | 64 | 0 | 0 | 1268 |
| 141       153.897       164.4828       778       490       0       0       1202       66       0       0       1268         142       154.897       164.6728       778       490       0       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       161.897       165.9598       770       498       0       0       0       1182                                                                                                                                                                                                                                                    | 139 | 151.897 | 164.1049 | 780 | 488 | 0 | 0 | 0 | 1204 | 64 | 0 | 0 | 1268 |
| 142       154.897       164.6728       778       490       0       0       1201       67       0       0       1268         143       155.897       164.8576       778       490       0       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       160.897       165.7855       772       496       0       0       0       1184       84       0       0       1268         149       161.897       165.9598       770       498       0       0       0       1182                                                                                                                                                                                                                                                    | 140 | 152.897 | 164.2977 | 778 | 490 | 0 | 0 | 0 | 1202 | 66 | 0 | 0 | 1268 |
| 143       155.897       164.8576       778       490       0       0       1196       72       0       0       1268         144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       160.897       165.7855       772       496       0       0       0       1184       84       0       0       1268         149       161.897       165.9598       770       498       0       0       0       1182       86       0       0       1268         150       162.897       166.1469       768       500       0       0       0       1182                                                                                                                                                                                                                                                    | 141 | 153.897 | 164.4828 | 778 | 490 | 0 | 0 | 0 | 1202 | 66 | 0 | 0 | 1268 |
| 144       156.897       165.0534       776       492       0       0       0       1194       74       0       0       1268         145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       160.897       165.7855       772       496       0       0       0       1184       84       0       0       1268         149       161.897       165.9598       770       498       0       0       0       1182       86       0       0       1268         150       162.897       166.1469       768       500       0       0       1182       86       0       0       1268         151       163.897       166.3169       766       502       0       0       0       1176                                                                                                                                                                                                                                                    | 142 | 154.897 | 164.6728 | 778 | 490 | 0 | 0 | 0 | 1201 | 67 | 0 | 0 | 1268 |
| 145       157.897       165.2329       776       492       0       0       0       1192       76       0       0       1268         146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       160.897       165.7855       772       496       0       0       0       1184       84       0       0       1268         149       161.897       165.9598       770       498       0       0       0       1182       86       0       0       1268         150       162.897       166.1469       768       500       0       0       0       1182       86       0       0       1268         151       163.897       166.3169       766       502       0       0       0       1176       92       0       0       1268         152       164.897       166.4962       766       502       0       0       0 <t< td=""><td>143</td><td>155.897</td><td>164.8576</td><td>778</td><td>490</td><td>0</td><td>0</td><td>0</td><td>1196</td><td>72</td><td>0</td><td>0</td><td>1268</td></t<>                                                                           | 143 | 155.897 | 164.8576 | 778 | 490 | 0 | 0 | 0 | 1196 | 72 | 0 | 0 | 1268 |
| 146       158.897       165.4183       774       494       0       0       0       1190       78       0       0       1268         147       159.897       165.6029       772       496       0       0       0       1184       84       0       0       1268         148       160.897       165.7855       772       496       0       0       0       1184       84       0       0       1268         149       161.897       165.9598       770       498       0       0       0       1182       86       0       0       1268         150       162.897       166.1469       768       500       0       0       0       1182       86       0       0       1268         151       163.897       166.3169       766       502       0       0       0       1176       92       0       0       1268         152       164.897       166.4962       766       502       0       0       0       1176       92       0       0       0       1268                                                                                                                                                                                                                                                                                                                                    | 144 | 156.897 | 165.0534 | 776 | 492 | 0 | 0 | 0 | 1194 | 74 | 0 | 0 | 1268 |
| 147     159.897     165.6029     772     496     0     0     0     1184     84     0     0     1268       148     160.897     165.7855     772     496     0     0     0     1184     84     0     0     1268       149     161.897     165.9598     770     498     0     0     0     1182     86     0     0     1268       150     162.897     166.1469     768     500     0     0     0     1182     86     0     0     1268       151     163.897     166.3169     766     502     0     0     0     1176     92     0     0     1268       152     164.897     166.4962     766     502     0     0     0     1176     92     0     0     1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 145 | 157.897 | 165.2329 | 776 | 492 | 0 | 0 | 0 | 1192 | 76 | 0 | 0 | 1268 |
| 148     160.897     165.7855     772     496     0     0     0     1184     84     0     0     1268       149     161.897     165.9598     770     498     0     0     0     1182     86     0     0     1268       150     162.897     166.1469     768     500     0     0     0     1182     86     0     0     1268       151     163.897     166.3169     766     502     0     0     0     1176     92     0     0     1268       152     164.897     166.4962     766     502     0     0     0     1176     92     0     0     1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 146 | 158.897 | 165.4183 | 774 | 494 | 0 | 0 | 0 | 1190 | 78 | 0 | 0 | 1268 |
| 149     161.897     165.9598     770     498     0     0     0     1182     86     0     0     1268       150     162.897     166.1469     768     500     0     0     0     1182     86     0     0     1268       151     163.897     166.3169     766     502     0     0     0     1182     86     0     0     1268       152     164.897     166.4962     766     502     0     0     0     1176     92     0     0     1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 147 | 159.897 | 165.6029 | 772 | 496 | 0 | 0 | 0 | 1184 | 84 | 0 | 0 | 1268 |
| 150     162.897     166.1469     768     500     0     0     0     1182     86     0     0     1268       151     163.897     166.3169     766     502     0     0     0     1182     86     0     0     1268       152     164.897     166.4962     766     502     0     0     0     1176     92     0     0     1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148 | 160.897 | 165.7855 | 772 | 496 | 0 | 0 | 0 | 1184 | 84 | 0 | 0 | 1268 |
| 151         163.897         166.3169         766         502         0         0         0         1182         86         0         0         1268           152         164.897         166.4962         766         502         0         0         0         1176         92         0         0         1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149 | 161.897 | 165.9598 | 770 | 498 | 0 | 0 | 0 | 1182 | 86 | 0 | 0 | 1268 |
| 152         164.897         166.4962         766         502         0         0         0         1176         92         0         0         1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 | 162.897 | 166.1469 | 768 | 500 | 0 | 0 | 0 | 1182 | 86 | 0 | 0 | 1268 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151 | 163.897 | 166.3169 | 766 | 502 | 0 | 0 | 0 | 1182 | 86 | 0 | 0 | 1268 |
| 153 165.897 166.6721 766 502 0 0 0 1176 92 0 0 1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152 | 164.897 | 166.4962 | 766 | 502 | 0 | 0 | 0 | 1176 | 92 | 0 | 0 | 1268 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153 | 165.897 | 166.6721 | 766 | 502 | 0 | 0 | 0 | 1176 | 92 | 0 | 0 | 1268 |

Nota. La tabla presenta la comparación con Pushover.

En el punto de desempeño, aun no se han alcanzado el límite de formación de rotulas plásticas, lo que se refleja en el radio de ductilidad obtenido. Este radio nos indica la capacidad de la estructura para experimentar deformaciones plásticas antes de llegar al fallo. En términos prácticos, la estructura se comporta de manera bastante rígida.

De acuerdo con el análisis previo, aunque las coordenadas del punto de desempeño no coinciden exactamente con las coordenadas de la curva de capacidad de la tabla, se han propuesto coordenadas con valores mayores, por lo tanto, el análisis sigue siendo válido, se sugiere incorporar más puntos en la curva capacidad.

Como se puede visualizar en las tablas si uno de los dos periodos no cumplía, la estructura necesariamente necesita un reforzamiento, para seguir vigilando el comportamiento de la estructura.

#### 11.14. Diseño de disipadores TADAS para la vivienda

Se realizó la simulación del reforzamiento con implementación de disipadores de energía TADAS en ETABS.

#### 11.14.1. Propuesta de reforzamiento

Para el diseño de reforzamiento, se tomará como referencia la recomendación planteada por el comité VISION 2000(1992), la cual evalúa las distorsiones máximas del piso en función del uso de la estructura y las condiciones sísmicas del análisis. A continuación (Tabla 15), se presenta una tabla que establece los límites de las distorsiones máximas permitidas para estructuras clasificadas como edificaciones básicas, considerando el desempeño esperado de la misma, en función de su uso durante un evento sísmico.

Tabla 17 Límite de distorsiones Máximas permitidas para Estructuras

| Operacional | Inmediatamente ocupacional | Seguridad de<br>vida | Prevención<br>del colapso | Colapso    |
|-------------|----------------------------|----------------------|---------------------------|------------|
| < 0.2% +/-  | < 0.5% +/-                 | < 1.5% +/-           | < 2.5% +/-                | > 2.5% +/- |

Fuente: comité VISION 2000 (1992).

Nota. En esta tabla se muestran los límites de distorsiones máximas permitidas según las recomendaciones del comité VISION 2000 (1992).

Adicionalmente, se propone como objetivo reforzar la estructura hasta alcanzar una derivación inelástica de aproximadamente 1.5% mediante la utilización de disipadores TADAS.

## 11.14.2. Esquema del Reforzamiento estructural

La incorporación de los disipadores TADAS en la estructura de la estructura en estudio proporciona un mayor efecto de amortiguamiento, lo que contribuye a reducir las vibraciones generadas por sismos. Este esquema de reforzamiento está diseñado para lograr un balance efectivo entre la reducción energía sísmica y el mantenimiento estructural.

En este caso, la distribución de los disipadores TADAS se planificará de manera estratégica en la dirección de eje Y (Figura 63). Según lo indicado en el plano, esta implementación abarcará los dos niveles de la estructura.

Story5

(III) 1 (III) 3 (III)

Figura 63 Esquema del Reforzamiento

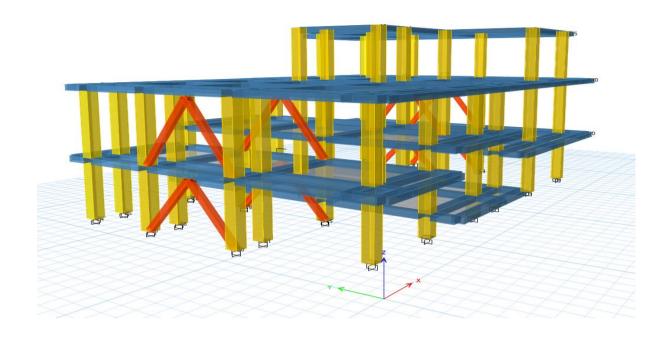
Fuente: Elaboración propia, (2025)

Nota. La figura muestra el diseño propuesto para el reforzamiento de la estructura con disipadores TADAS.

#### 11.14.3. Masa por piso

En la Tabla 18 y Figura 64 se obtuvo la masa por piso en el programa ETABS.

Units: As Noted Hidden Columns: No Sort: None Filtler: None UX UY  $\mathbf{UZ}$ Story kgf-s<sup>2</sup>/cm kgf-s<sup>2</sup>/cm kgf-s<sup>2</sup>/cm Story5 69.8593 69.8593 0 203.0375 203.0375 Story4 0 Story3 64.3051 64.3051 0 Story2 154.1456 154.1456 0 62.5724 62.5724 0 Story1 0 Base 10.3717 10.3717


Tabla 18. Masa por piso

*Fuente*: Etabs, (2025)

Nota. La tabla presenta la masa por piso.

Base

Figura 64 Vista en 3D de la masa por piso



Nota. La figura muestra la vista 3D de la masa por piso de la vivienda.

## 11.14.4. Desplazamientos

En la Tabla 19 se obtuvo los desplazamientos en el programa ETABS según story, elevación, localización y dirección en X – Y.

Tabla 19. Desplazamientos

|        | TABLE: Story Respon | ise      |        |        |
|--------|---------------------|----------|--------|--------|
| Story  | Elevation           | Location | X-Dir  | Y-Dir  |
|        | cm                  |          | cm     | cm     |
| Story5 | 870                 | Тор      | 0.7933 | 3.4763 |
| Story4 | 595                 | Тор      | 0.6837 | 2.4464 |
| Story3 | 375                 | Тор      | 0.3883 | 1.3273 |
| Story2 | 275                 | Тор      | 0.2515 | 0.906  |
| Story1 | 100                 | Тор      | 0.0454 | 0.1814 |
| Base   | 0                   | Тор      | 0      | 0      |

Fuente: Etabs, (2025)

Nota. La tabla presenta los desplazamientos.

# 11.14.5. Fuerzas por piso

La Tabla 20 muestra la obtención de fuerzas por piso en el programa ETABS.

Tabla 20. Fuerzas por piso

| TABLI | E: Story Forces |              |              |         |        |          |             |            |             |
|-------|-----------------|--------------|--------------|---------|--------|----------|-------------|------------|-------------|
| Story | Output Case     | Case<br>Type | Locatio<br>n | P       | VX     | VY       | Т           | MX         | MY          |
|       |                 |              |              | kgf     | kgf    | kgf      | kgf-cm      | kgf-cm     | kgf-cm      |
| Story |                 |              |              |         |        | -        | -           |            |             |
| 5     | Sy              | LinStatic    | Bottom       | 0.00    | 0.00   | 35955.49 | 54061537.07 | 9887758.50 | -0.02       |
| Story |                 |              |              |         | -      | -        | -           | 24501690.3 | -           |
| 4     | Sy              | LinStatic    | Bottom       | 9899.83 | 840.81 | 52734.07 | 56608721.27 | 7          | 17181090.02 |
| Story | _               |              |              | 11294.9 | -      | -        | -           | 16527742.5 | -           |
| 3     | Sy              | LinStatic    | Bottom       | 6       | 264.98 | 33602.67 | 44507253.50 | 9          | 18422366.18 |
| Story | _               |              |              | 17675.0 |        | -        | -           | 37643575.2 | -           |
| 2     | Sy              | LinStatic    | Bottom       | 0       | 360.82 | 61042.25 | 60619951.80 | 2          | 28960483.24 |
| Story |                 |              |              | 16463.7 | -      | -        | -           | 57987806.8 | -           |
| 1     | Sv              | LinStatic    | Bottom       | 6       | 189.08 | 65333.05 | 70288952.50 | 7          | 28010891.01 |

*Fuente*: Etabs, (2025)

Nota. La tabla presenta las fuerzas por piso

#### 11.14.6. Tabla de diseño

En la Tabla 21 de detalla los valores de cálculo para TADAS.

Tabla 21. Valores de cálculo para TADAS

| Rigidez   | Vano a ubicar disipador | Cortante a recibir | Disipadores por piso | Cortante por TADA | altura |        |         |  |  |
|-----------|-------------------------|--------------------|----------------------|-------------------|--------|--------|---------|--|--|
| Stiff Y   | L                       | V                  | #                    | V/TADA            | base   | altura | espesor |  |  |
| kgf/cm    | cm                      | kgf                | π                    | kgf               | cm     | cm     | cm      |  |  |
| 42345.99  | 370                     | -<br>35955.49      | 2                    | 4494              | 15     | 25     | 2.5     |  |  |
| 69707.72  | 370                     | -<br>52734.07      | 2                    | 6592              | 15     | 25     | 2.5     |  |  |
| 102360.70 | 370                     | -<br>33602.67      | 2                    | 4200              | 15     | 25     | 2.5     |  |  |
| 117805.63 | 370                     | -<br>61042.25      | 2                    | 7630              | 15     | 25     | 2.5     |  |  |
| 499715.13 | 370                     | -<br>65333.05      | 2                    | 8167              | 15     | 25     | 2.5     |  |  |

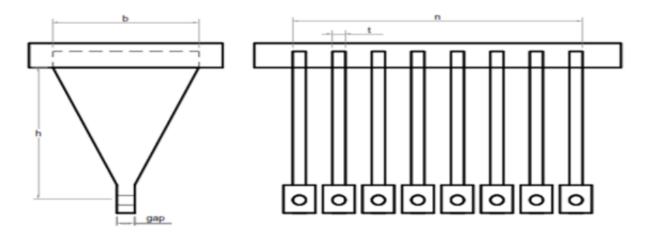
|     |        |            | Placas por<br>disipador<br>necesarias | Placas por<br>disipador<br>asumidas |
|-----|--------|------------|---------------------------------------|-------------------------------------|
| As  | fy     | Fy         | #                                     | #                                   |
| ksi | kg/cm2 | kg         | #                                     | #                                   |
|     |        | 449.443625 | 10                                    | 10                                  |
|     |        | 659.175875 | 10                                    | 10                                  |
| 36  | 2530   | 420.033375 | 10                                    | 10                                  |
|     |        | 763.028125 | 10                                    | 10                                  |
|     |        | 816.663125 | 10                                    | 10                                  |

Fuente: Elaboración propia, (2025)

Nota. La tabla presenta los valores de cálculo para diseño disipadores.

# 11.14.7. Propiedades del disipador

• Módulo de elasticidad:  $E_{DIS=2*10^7} \frac{tonnef}{m^2}$ 


• Fluencia del Acero:  $f_{y=25320} \frac{tonnef}{m^2}$ 

• Espesor de las placas: t = 2.5 cm

• Numero de Placas: n = 10

• Pendiente post-elástica:  $\beta = 0.03$ 

Figura 65 Propuesta de Dispositivos TADAS



Fuente: Elaboración propia, (2025)

Nota. La figura muestra la geometría del dispositivo TADAS,

• Altura del elemento: 
$$h' = 25cm$$

• Ancho del elemento 
$$b' = 15cm$$

• Rigidez elástica: 
$$k_y = \frac{1}{6} * \frac{n*E_{DIS}*b'*t^3}{h'^3} = 5000 \frac{tonnef}{m}$$

• Desplazamientos de fluencia: 
$$\Delta_y = f_y * \frac{{h'}^2}{E_{DIS}*t} = 3.165mm$$
• Cortante de fluencia: 
$$V_y = \frac{n*f_{y*}b'*t^2}{6*h'} = 15.825 \ tonnef$$

• Cortante de fluencia: 
$$V_y = \frac{n*f_{y*}b'*t^2}{6*h'} = 15.825 \ tonnef$$

• Cortante ultima: 
$$V_u = \frac{n * f_{y*} b' * t^2}{4 * h'} = 23.738 \ tonnef$$

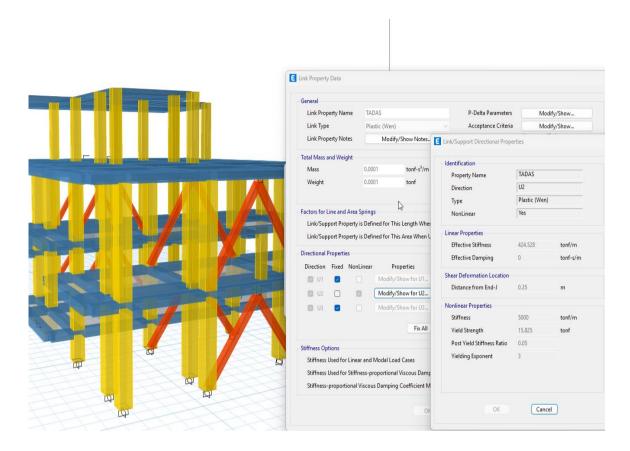
• Rigidez post-cedencia: 
$$k' = \beta * k_y = 150 \frac{tonnef}{m}$$

• Desplazamiento ultimo: 
$$\Delta_u = \Delta_y + \frac{v_u - v_y}{k'} = 5.592cm$$

• Ductilidad: 
$$\mu = \frac{\Delta_u}{\Delta_v} = 17.667$$

• Rigidez efectiva: 
$$K_{effe} = \frac{V_u}{\Delta_u} = 424.528 \frac{tonnef}{m}$$

• Fuerza Característica: 
$$Q_d = \Delta_y * k' * \left(\frac{1}{\beta} - 1\right) = 15.35 \ tonnef$$


• Energía disipada en un ciclo: 
$$E_d = 4 * Q_d * (\Delta_u - \Delta_y) = 3.239 \ m * tonnef$$

• energía del sistema elástica equivalente: 
$$E_s = \frac{1}{2} * K_{effe} * \Delta_u^2 = 0.664 \ m * tonnef$$

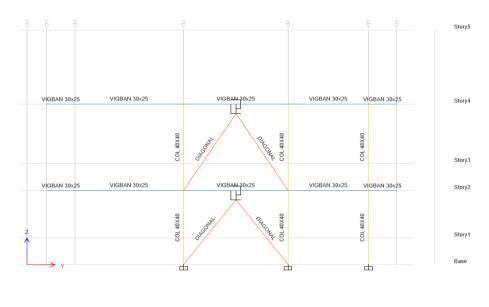
• Amortiguamiento equivalente: 
$$\xi = \frac{E_d}{4*\pi*E_s} = 0.388$$

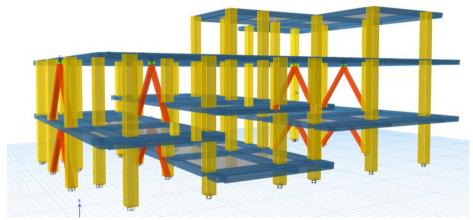
Además, se tiene la propiedad lineal, la rigidez efectiva es de 424.528 ton/m mientras que, no lineales tiene rigidez elástica de 5000 ton/m2, límite de deformación 15.825 ton, razón de rigidez después de la fluencia con 0,05 y exponente de rendimiento de 3. Lo cual se aprecia en la Figura 66.

Figura 66 Propiedad direccional de soporte (diseño TADAS)



Fuente: Elaboración propia, (2025)


Nota. La figura muestra la propiedad direccional de soporte.


#### 11.14.8. Estructuración del sistema de refuerzo

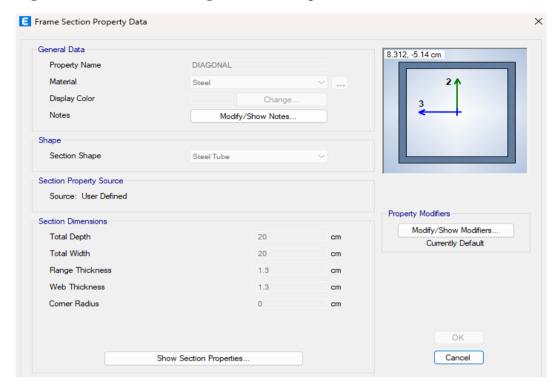
El sistema este compuesto principalmente por dos componentes: las diagonales rigidizadores o brazos, modelado como elemento tipo "frame-pinned", y dispositivos TADAS que serán modelo como tipo "Link". Además, para definir completamente el sistema, se requieren elementos adicionales como las placas Gusset, pernos y soldaduras, los cuales no están cubiertos en el alcance de este informe. La figura siguiente ilustra la disposición del refuerzo en un marco reforzado.

Asimismo, en la Figura 67 se presenta la vista del diseño TADAS para la vivienda:

Figura 67 Vista en 3D de disipadores TADAS





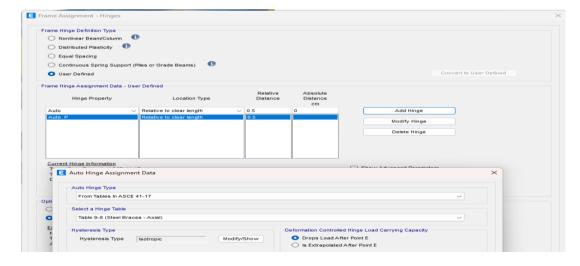

Fuente: Elaboración propia, (2025)

Nota. La figura muestra la vista 3D del diseño TADAS

## 11.14.9. Representación de las diagonales rigidizadoras

Para las diagonales que integran el contraviento tipo Chevron, es necesario presentarlas como elementos tipo "Pinned", ya que esta propiedad limita directamente la capacidad para transmitir momentos, permitiendo trabar exclusivamente bajo carga axial. Se sugirió la siguiente sección: D (20cmx20cmx1.3cm).

Figura 68 Sección de las diagonales del disipador TADAS




Fuente: Elaboración propia, (2025).

Nota. La figura muestra las propiedades geométricas de las diagonales del disipador TADAS.

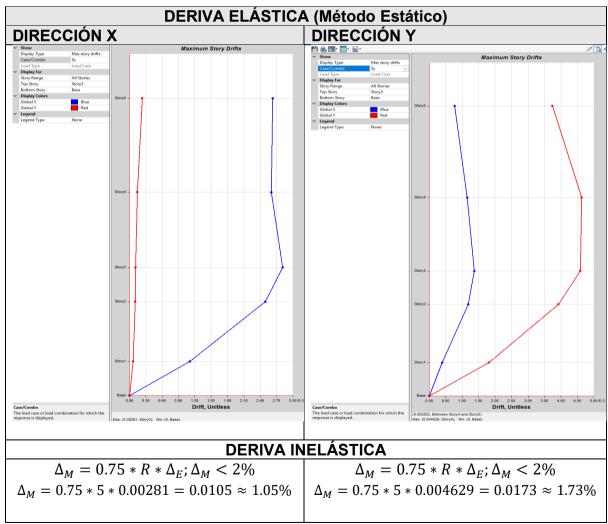
Además, es necesario colocar rotulas plásticas en el centro de las diagonales, las cuales deberán ser evaluadas conforme a los criterios establecidos en el ASCE 41-17, aplicable a los elementos de estas características.

Figura 69 Asignación de Rótulas plásticas en diagonales



Fuente: Etabs, (2025)

Nota. La figura muestra asignación de rotulas plásticas ubicadas en el centro de las diagonales.


#### 11.15. Análisis estructural (Estructura reforzada)

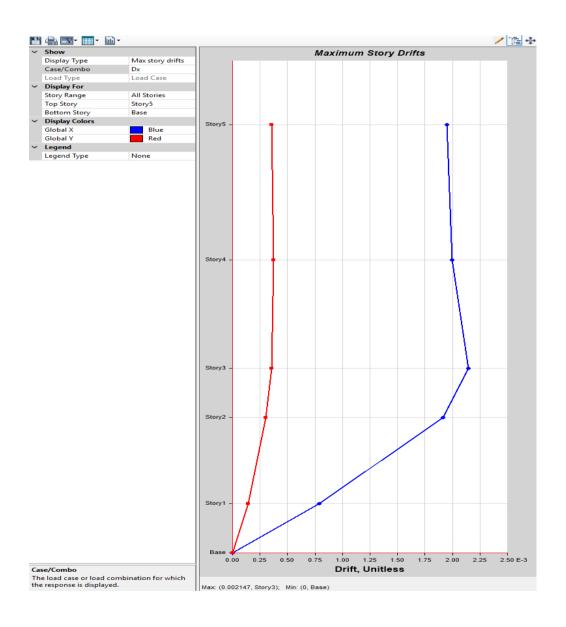
En esta sección se representan los resultados obtenidos de los análisis lineales como no lineales aplicados a la estructura de estudio reforzada. Posteriormente, realizamos la evaluación del desempeño de la estructura conforme el objetivo planteado.

#### 11.15.1. Análisis estático de la estructura reforzada

La siguiente tabla muestra la deriva elástica máxima obtenida para la estructura reforzada, este valor que se especifica en el análisis estático de la estructura original, debe ajustarse a la deriva inelástica para compararlo con el límite establecido por los códigos, el proceso se detalla en la parte inferior de la tabla.

Tabla 22 Control de deriva Inelástica

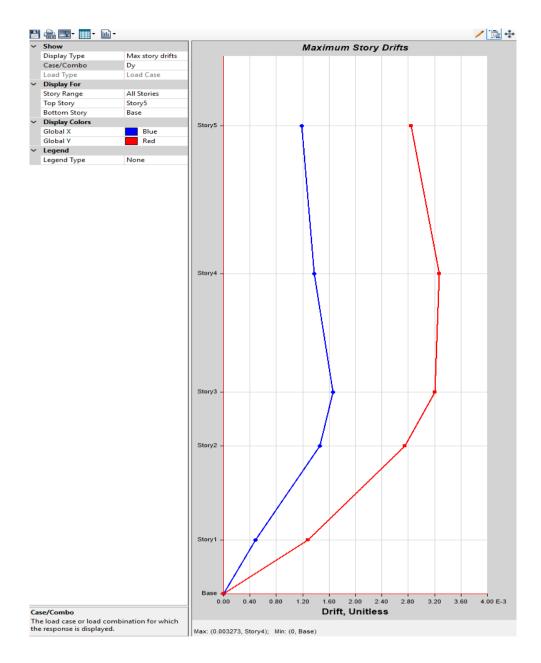



Fuente: Elaboración propia, (2025)

Nota. La Tabla muestra deriva máxima de la estructura reforzada, comparando con los límites establecidos.

Según la tabla anterior, la deriva inelástica máxima para ambos sentidos se encuentra dentro de los límites establecidos para el refuerzo, y esta considerablemente por debajo de los valores propuestos en los códigos ( $\Delta$ M<0.02), para el diseño de nuevas estructuras, bajo estos parámetros, la estructura se considera estable.

De igual manera, en la Figura 70 y Figura 71 se presenta las derivas máximas del piso para Dx – Dy para el diseño de disipadores TADAS.


Figura 70 Deriva máxima del piso Dx (diseños disipadores)



Fuente: Etabs, (2025)

Nota. La figura muestra la deriva máxima del piso para diseño de disipadores.

Figura 71 Deriva máxima del piso Dy (diseño disipadores)



Nota. La figura muestra la deriva máxima del piso para diseño de disipadores.

$$Sx \to 0.75 * 5 * 0.00281 = 0.01053 \approx 1.05\%$$
  
 $Sy \to 0.75 * 5 * 0.004629 = 0.01735 \approx 1.73\%$   
 $Dx \to 0.75 * 5 * 0.002147 = 0.0080 \approx 0.8\%$   
 $Dy \to 0.75 * 5 * 0.003273 = 0.012 \approx 1.2\%$ 

Posteriormente, se obtuvo la relación de participación de masa modal para el diseño de los disipadores, considerando el periodo de 0,472 sec y UX con 0,7333 de modo 2. Para UY en 0,4557 de modal 1. La sum UX – UY con 0,9239 y 0,9217 en modo 9 respectivamente. Mientras que sum RZ en 0,771 para modo 3. Tal como se aprecia en la Tabla 23 y la información completa se encuentra en el Anexo 2.

**Tabla 23.** Relación de participación de masa modal (diseños disipadores)

| TABLE: Modal Participating Mass<br>Ratios |          |            |            |            |            |           |           |           |
|-------------------------------------------|----------|------------|------------|------------|------------|-----------|-----------|-----------|
| Case                                      | Mod<br>e | Perio<br>d | UX         | UY         | RZ         | SumU<br>X | SumU<br>Y | SumR<br>Z |
|                                           |          | sec        |            |            |            |           |           |           |
| Modal                                     | 1        | 0.472      | 0.0053     | 0.4557     | 0.3143     | 0.0053    | 0.4557    | 0.3143    |
|                                           |          |            |            |            | 0.00000225 |           |           |           |
| Modal                                     | 2        | 0.383      | 0.7333     | 0.0085     | 4          | 0.7386    | 0.4642    | 0.3143    |
| Modal                                     | 3        | 0.316      | 0.0029     | 0.2818     | 0.4567     | 0.7416    | 0.746     | 0.771     |
| Modal                                     | 4        | 0.159      | 0.0064     | 0.0502     | 0.0675     | 0.748     | 0.7962    | 0.8385    |
| Modal                                     | 5        | 0.153      | 0.0965     | 0.0008     | 0.0097     | 0.8445    | 0.797     | 0.8482    |
| Modal                                     | 6        | 0.15       | 0.0013     | 0.0451     | 0.0114     | 0.8458    | 0.8421    | 0.8596    |
| Modal                                     | 7        | 0.088      | 0.0071     | 0.0233     | 0.0307     | 0.8529    | 0.8655    | 0.8903    |
| Modal                                     | 8        | 0.085      | 0.0099     | 0.0548     | 0.042      | 0.8628    | 0.9202    | 0.9323    |
| Modal                                     | 9        | 0.081      | 0.0611     | 0.0015     | 0.0188     | 0.9239    | 0.9217    | 0.9511    |
| Modal                                     | 10       | 0.061      | 0.0001     | 0.0005     | 0.0004     | 0.9241    | 0.9222    | 0.9515    |
| Modal                                     | 11       | 0.058      | 0.0012     | 0.00001903 | 6.236E-07  | 0.9252    | 0.9223    | 0.9515    |
|                                           |          |            | 0.00000683 |            |            |           |           |           |
| Modal                                     | 12       | 0.056      | 9          | 0.0007     | 0.0007     | 0.9252    | 0.923     | 0.9523    |
| Modal                                     | 13       | 0.055      | 0.00002019 | 7.365E-07  | 0.0002     | 0.9253    | 0.923     | 0.9525    |
| Modal                                     | 14       | 0.055      | 0.0004     | 0.0001     | 0.0005     | 0.9257    | 0.923     | 0.953     |
|                                           |          |            |            | 0.00000283 |            |           |           |           |
| Modal                                     | 15       | 0.054      | 0.0001     | 8          | 0.00002312 | 0.9258    | 0.9231    | 0.953     |

*Fuente*: Etabs, (2025)

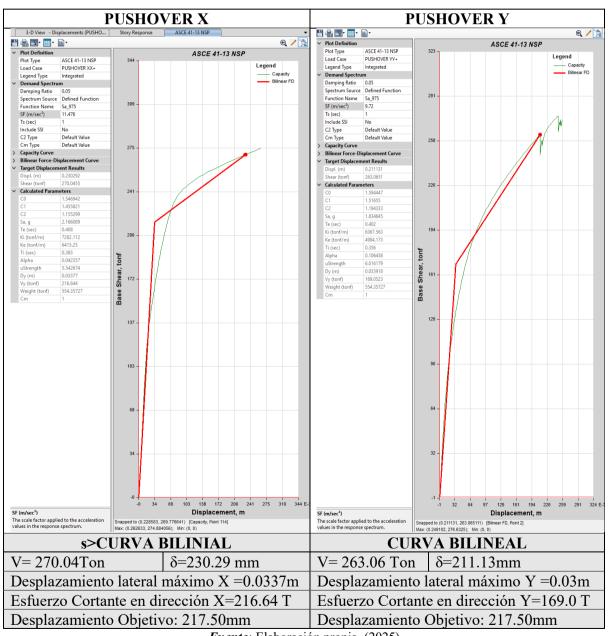
Nota. La tabla presenta la participación de masa modal para diseño de disipadores.

Además, en la Tabla 24 se tiene la relación entre desplazamiento máximo y promedio para el diseño de los disipadores, en el que el valor máximo se encuentra en Story5 con 3.3391 cm, el promedio en Story5 con 2.7282 y ratio para Story4 con 1,536

Tabla 24. Relación entre desplazamiento máximo y promedio de pisos (diseños disipadores)

| TABLE: Story Max Over Avg Displacements |             |           |           |             |           |         |         |       |
|-----------------------------------------|-------------|-----------|-----------|-------------|-----------|---------|---------|-------|
| Story                                   | Output Case | Case Type | Step Type | Step Number | Direction | Maximum | Average | Ratio |
|                                         |             |           |           |             |           | cm      | cm      |       |
| Story5                                  | Sy          | LinStatic |           |             | Υ         | 3.3391  | 2.7282  | 1.224 |
| Story4                                  | Sy          | LinStatic |           |             | Υ         | 2.3457  | 1.5272  | 1.536 |
| Story3                                  | Sy          | LinStatic |           |             | Υ         | 0.9159  | 0.7715  | 1.187 |
| Story2                                  | Sy          | LinStatic |           |             | Υ         | 0.869   | 0.573   | 1.517 |
| Story1                                  | Sy          | LinStatic |           |             | Υ         | 0.1139  | 0.097   | 1.174 |

*Fuente*: Etabs, (2025)


Nota. La tabla presenta el desplazamiento máximo – promedio.

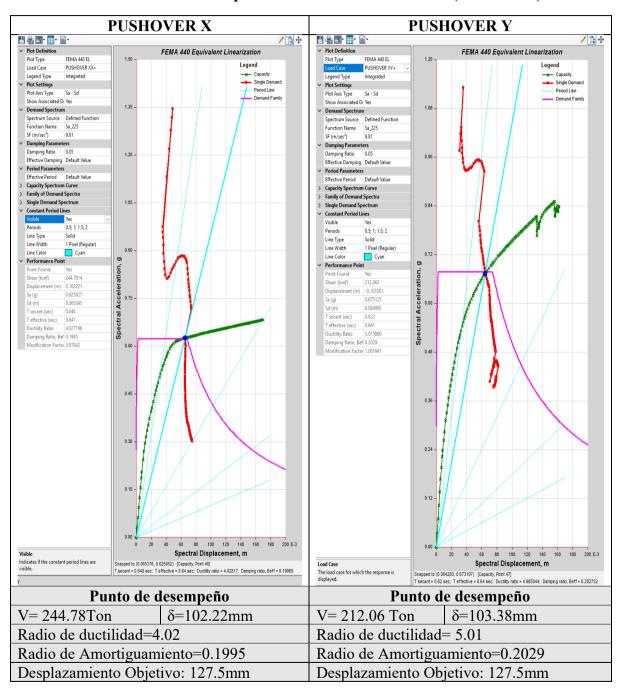
#### 11.16. Análisis no lineal Tadas

Para concluir con los procesos de análisis estructurales, se realizó un análisis no lineal de la estructura reforzada. Cabe resaltar que se presentaran la amenaza moderada (T= 225 años). y extrema (T= 975 años). Para el análisis de la estructura, pero solo se evaluará con la amenaza extrema dado que es el nivel de amenaza que se requiere (T= 975 años).

# 11.16.1. Curva de capacidad estructura reforzada (método ASCE 41-13 NSP)

Tabla 25 Curva Bilineal de la Estructura Reforzada (T=975 años)




Fuente: Elaboración propia, (2025)

Nota. La tabla presenta la comparación de los desplazamientos y fuerza de corte con el desplazamiento objetivo.

#### 11.16.2. Curva de capacidad y punto de desempeño de estructura reforzada

#### 11.16.2.1. Estructura reforzada método FEMA 440

Tabla 26 Curva desempeño de la estructura reforzada (T=225 años)



Fuente: Elaboración propia, (2025)

*Nota*. La tabla presenta el punto de desempeño y la comparación de desplazamientos.

**PUSHOVER X PUSHOVER Y** FEMA 440 Equivalent Linearization 💾 🔒 🕎 · 🟢 · 🛍 · **/** ∰ ❖ Plot Definition -x- Capacity Plot Type Single Dema Legend PUSHOVER YY+ Capacity
 Single Dema
 Period Line FEMA 440 EL Load Case PUSHOVER XX-Plot Settings Plot Axis Type Sa - Sd 1.80 Demand Spectrum Plot Axis Type iated Der Yes Sa\_475 11.772 SE (m/sec²) Sa\_475 11,772 Damping Parameters Damping Ratio 0.05
Effective Damping Default Value Effective Damping Default Value Default Value Period Parameters Default Val m Curve Line Type Line Colo Green Family of De Family of D > Single Dem and Spectrum 0.5; 1; 1.5; 2 0.5; 1; 1.5; 2 Line Width 1 Pixel (Regular) Performance Point -0.191199 0.781 Ductility Ratio Ductility Ratio Damping Ratio, Beff 0.2059 Modification Factor, 0.938443 0.20 0.20 100 120 Spectral Displacement, m Spectral Displacement, m The load case for which the response is displayed. Snapped to (0.104193, 0.648844) [Capacity, Point 77] T secant = 0.804 sec; T effective = 0.714 sec; Ductility ratio = 5.519558; Damping ratio, Beff = 0.204463 175) [Capacity, Point 93] ttive = 0.755 sec: Ductility ratio = 7.515829; Damoino ratio, Beff = 0.205881 Punto de desempeño Punto de desempeño V= 258.52Ton  $\delta = 161.58 \text{mm}$  $\delta = 191.19$ mm V = 255.07 TonRadio de ductilidad=5.51 Radio de ductilidad= 7.54 Radio de Amortiguamiento=0.2044 Radio de Amortiguamiento=0.2059 Desplazamiento Objetivo: 217.50mm Desplazamiento Objetivo: 217.50mm

Tabla 27 Curva de desempeño de la estructura reforzada (T=975 años)

Fuente: Elaboración propia, (2025)

Nota. La tabla presenta el punto de desempeño y la comparación de desplazamientos.

Una vez obtenido el punto de desempeño, procedemos con la evaluación. Es relevante señalar que este caso corresponde al objetivo P, lo que implica que en este punto la amenaza se corresponde con una amenaza sísmica extrema (Tr=975años).

Tabla 28 Evaluación de desempeño (Estructura Reforzada)

| CORTANTE BASAL VS DESPLAZAMIENTO (DIRECCIÓN X) |                   |     |                      |            |     |     |     |    |              |       |       |        |              |  |
|------------------------------------------------|-------------------|-----|----------------------|------------|-----|-----|-----|----|--------------|-------|-------|--------|--------------|--|
| AM                                             | AMENAZA OBJETIVO  |     |                      |            |     |     |     |    | V(Ton) d(mm) |       |       |        |              |  |
| 975                                            | 75                |     | P                    |            |     |     |     |    | 258.52       |       |       | 161.58 |              |  |
| TABLE:                                         | : Base Shear vs I | Mor | nitored Displac      | ement      |     |     |     |    |              |       |       |        |              |  |
| Step                                           | Monitored Dis     |     | Base Force           | A-B        | В-С | C-D | D-E | >E | A-IO         | IO-LS | LS-CP | >CP    | Total        |  |
| -                                              | m                 |     | tonf                 |            |     |     |     |    |              |       |       |        |              |  |
| 0                                              |                   | 0   | 0                    | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 1                                              | 0.001             | 74  | 12.6709              | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 2                                              | 0.0034            | 48  | 25.3417              | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 3                                              | 0.0052            | 22  | 38.0125              | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 4                                              | 0.0069            | 96  | 50.6833              | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 5                                              | 0.008             |     | 63.354               | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 6                                              | 0.0104            |     | 76.0247              | 1284       | 0   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 7                                              | 0.01139           |     | 82.999               | 1282       | 2   | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 8                                              | 0.0139            |     | 99.3629              | 1260       | 24  | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 9                                              | 0.0157            |     | 109.9524             | 1234       | 50  | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 10                                             | 0.0177            |     | 119.7238             | 1212       | 72  | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 11                                             | 0.01983           |     | 128.346              | 1178       | 106 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 12                                             | 0.0220            |     | 135.638              | 1152       | 132 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 13                                             | 0.02419           |     | 141.5812             | 1146       | 138 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 14                                             | 0.02714           |     | 148.8678             | 1136       | 148 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 15                                             | 0.0304            |     | 156.6997             | 1128       | 156 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 16                                             | 0.03219           |     | 160.7933             | 1128       | 156 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 17                                             | 0.0351            |     | 167.7648             | 1122       | 162 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 18                                             | 0.0386            |     | 175.6885             | 1116       | 168 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 19                                             | 0.04083           |     | 180.6282             | 1104       | 180 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 20                                             | 0.04304           |     | 185.3445             | 1100       | 184 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 21                                             | 0.04509           |     | 189.6545             | 1092       | 192 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 22                                             | 0.0482            |     | 195.5791             | 1080       | 204 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 23                                             | 0.0503            |     | 199.4763             | 1072       | 212 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 24                                             | 0.05308           |     | 204.1004             | 1058       | 226 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 25                                             | 0.0557            |     | 204.1004             | 1038       | 236 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 26                                             | 0.0575            |     | 210.8985             | 1048       | 242 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 27                                             | 0.0600            |     | 214.4693             | 1030       | 254 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 28                                             | 0.0622            |     | 217.349              | 1026       | 258 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 29                                             | 0.0639            |     | 217.549              | 1020       | 262 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 30                                             | 0.06578           |     | 219.5957             | 1022       | 276 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 31                                             | 0.06376           |     | 223.7992             | 1008       | 276 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 32                                             | 0.07069           |     |                      |            | 294 | 0   | 0   |    | 1284         |       | 0     | 0      |              |  |
| 33                                             | 0.0706            |     | 227.2634<br>229.0395 | 990<br>986 | 294 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284<br>1284 |  |
| 34                                             | 0.0724            |     | 231.1953             | 970        | 314 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
|                                                | 0.0746            |     |                      |            |     | 0   | 0   | 0  | 1284         |       | 0     | 0      | 1284         |  |
| 35<br>36                                       | 0.0779.           |     | 233.6522<br>235.4171 | 956<br>950 | 328 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
|                                                |                   |     |                      |            |     |     |     |    |              |       |       | _      |              |  |
| 37                                             | 0.0834            |     | 237.1214             | 942        | 342 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 38                                             | 0.08514           |     | 238.0366             | 942        | 342 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 39                                             | 0.0868            |     | 238.9494             | 940        | 344 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 40                                             | 0.0889            |     | 239.9795             | 926        | 358 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 41                                             | 0.0915            |     | 241.0067             | 920        | 364 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 42                                             | 0.09320           |     | 241.7574             | 914        | 370 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 43                                             | 0.09578           |     | 242.6741             | 906        | 378 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 44                                             | 0.09878           |     | 243.71               | 898        | 386 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 45                                             | 0.1005            |     | 244.2307             | 896        | 388 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 46                                             | 0.1022            |     | 244.7968             | 896        | 388 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |
| 47                                             | 0.1044            | 32  | 245.4765             | 892        | 392 | 0   | 0   | 0  | 1284         | 0     | 0     | 0      | 1284         |  |

| 40       | 0.400470         | 0.45.000.1 | 000 | 000 | _ | _      | _ | 4004      | _   |   | • | 4004      |
|----------|------------------|------------|-----|-----|---|--------|---|-----------|-----|---|---|-----------|
| 48       | 0.106172         | 245.9364   | 892 | 392 | 0 | 0      | 0 | 1284      | 0   | 0 | 0 | 1284      |
| 49       | 0.107912         | 246.4739   | 890 | 394 | 0 | 0      | 0 | 1283      | 1   | 0 | 0 | 1284      |
| 50       | 0.109652         | 246.9579   | 890 | 394 | 0 | 0      | 0 | 1282      | 2   | 0 | 0 | 1284      |
| 51       | 0.111392         | 247.4275   | 890 | 394 | 0 | 0      | 0 | 1280      | 4   | 0 | 0 | 1284      |
| 52       | 0.113132         | 247.925    | 888 | 396 | 0 | 0      | 0 | 1280      | 4   | 0 | 0 | 1284      |
| 53       | 0.114872         | 248.4011   | 888 | 396 | 0 | 0      | 0 | 1278      | 6   | 0 | 0 | 1284      |
| 54       | 0.116612         | 248.8766   | 888 | 396 | 0 | 0      | 0 | 1273      | 11  | 0 | 0 | 1284      |
| 55       | 0.118352         | 249.3496   | 888 | 396 | 0 | 0      | 0 | 1270      | 14  | 0 | 0 | 1284      |
| 56       | 0.120092         | 249.8349   | 888 | 396 | 0 | 0      | 0 | 1268      | 16  | 0 | 0 | 1284      |
| 57       | 0.121832         | 250.3072   | 884 | 400 | 0 | 0      | 0 | 1266      | 18  | 0 | 0 | 1284      |
| 58       | 0.123572         | 250.7654   | 880 | 404 | 0 | 0      | 0 | 1264      | 20  | 0 | 0 | 1284      |
| 59       | 0.125312         | 251.2062   | 878 | 406 | 0 | 0      | 0 | 1262      | 22  | 0 | 0 | 1284      |
| 60       | 0.128317         | 251.9531   | 874 | 410 | 0 | 0      | 0 | 1254      | 30  | 0 | 0 | 1284      |
| 61       | 0.130965         | 252.5919   | 868 | 416 | 0 | 0      | 0 | 1248      | 36  | 0 | 0 | 1284      |
| 62       | 0.132705         | 252.9574   | 866 | 418 | 0 | 0      | 0 | 1246      | 38  | 0 | 0 | 1284      |
| 63       | 0.134445         | 253.361    | 864 | 420 | 0 | 0      | 0 | 1240      | 44  | 0 | 0 | 1284      |
| 64       | 0.136185         | 253.7138   | 862 | 422 | 0 | 0      | 0 | 1232      | 52  | 0 | 0 | 1284      |
| 65       | 0.137925         | 254.0746   | 862 | 422 | 0 | 0      | 0 | 1232      | 52  | 0 | 0 | 1284      |
| 66       | 0.139665         | 254.4043   | 858 | 426 | 0 | 0      | 0 | 1222      | 62  | 0 | 0 | 1284      |
| 67       | 0.141405         | 254.7726   | 856 | 428 | 0 | 0      | 0 | 1222      | 62  | 0 | 0 | 1284      |
| 68       | 0.143145         | 255.1091   | 854 | 430 | 0 | 0      | 0 | 1214      | 70  | 0 | 0 | 1284      |
| 69       | 0.146559         | 255.7713   | 848 | 436 | 0 | 0      | 0 | 1204      | 80  | 0 | 0 | 1284      |
| 70       | 0.148299         | 256.1004   | 848 | 436 | 0 | 0      | 0 | 1200      | 84  | 0 | 0 | 1284      |
| 71       | 0.150039         | 256.44     | 848 | 436 | 0 | 0      | 0 | 1188      | 96  | 0 | 0 | 1284      |
| 72       | 0.151779         | 256.759    | 848 | 436 | 0 | 0      | 0 | 1182      | 102 | 0 | 0 | 1284      |
| 73       | 0.154821         | 257.3242   | 844 | 440 | 0 | 0      | 0 | 1176      | 108 | 0 | 0 | 1284      |
| 74       | 0.156561         | 257.6487   | 844 | 440 | 0 | 0      | 0 | 1174      | 110 | 0 | 0 | 1284      |
| 75       | 0.158301         | 257.9406   | 844 | 440 | 0 | 0      | 0 | 1168      | 116 | 0 | 0 | 1284      |
| 76       | 0.160041         | 258.2467   | 842 | 442 | 0 | 0      | 0 | 1164      | 120 | 0 | 0 | 1284      |
| 77       | 0.161781         | 258.5636   | 842 | 442 | 0 | 0      | 0 | 1160      | 124 | 0 | 0 | 1284      |
| 78       | 0.163521         | 258.8926   | 842 | 442 | 0 | 0      | 0 | 1157      | 127 | 0 | 0 | 1284      |
| 79       | 0.165261         | 259.1729   | 842 | 442 | 0 | 0      | 0 | 1155      | 129 | 0 | 0 | 1284      |
| 80       | 0.167001         | 259.5002   | 842 | 442 | 0 | 0      | 0 | 1150      | 134 | 0 | 0 | 1284      |
| 37 , T , | abla mussanta al | 4 1 1      | ~   | 1   |   | a alam |   | a satón i | ••  |   |   | 1 1 1/ 1/ |

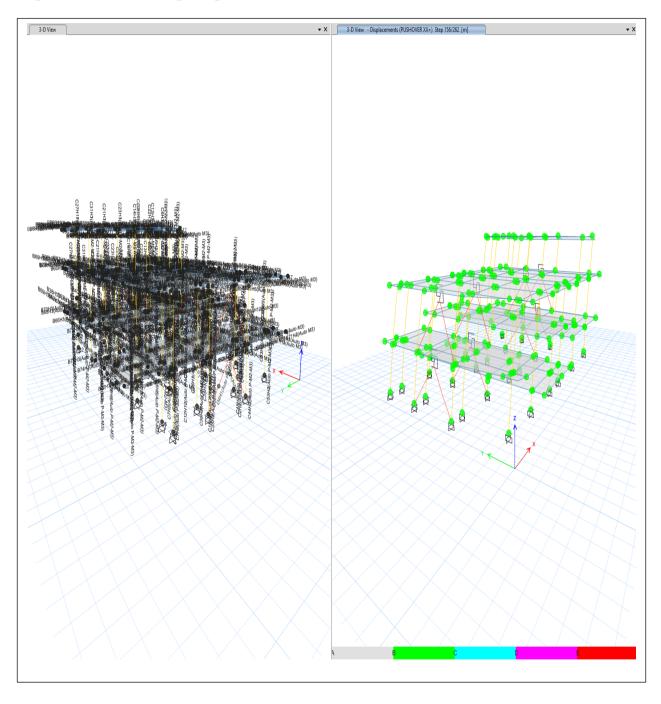
Nota. La tabla presenta *el* punto de desempeño, algunos los elementos están por arriba y por abajo del límite de seguridad de vida.

**Fuente**: Etabs, (2025)

Nota. La tabla presenta el punto de desempeño y la comparación de desplazamientos.

114

Tabla 29 Evaluación de desempeño (Estructura Reforzada)


| CORTANTE BASAL VS DESPLAZAMIENTO (DIRECCIÓN Y) |                       |                      |              |            |        |     |                  |              |       |       |     |              |
|------------------------------------------------|-----------------------|----------------------|--------------|------------|--------|-----|------------------|--------------|-------|-------|-----|--------------|
| AM                                             | IENAZA                | 0                    | BJET         | IVO        |        |     |                  | V(To         | n)    | d(m   | m)  |              |
| 975                                            |                       | P                    |              |            | 255.07 |     |                  | 189.64       |       |       |     |              |
| TARIF                                          | : Base Shear vs M     | onitored Displac     | ement        |            |        |     |                  |              |       |       |     |              |
| Step                                           | Monitored Disp        |                      | A-B          | B-C        | C-D    | D-E | >E               | A-IO         | IO-LS | LS-CP | >CP | Total        |
| Отор                                           | m                     | tonf                 | ,,,,         |            |        |     | _ · <del>_</del> | 7.10         | .0 20 | 20 0. |     | Totat        |
| 0                                              | 0                     | 0                    | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 1                                              | -0.00174              | 11.0796              | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 2                                              | -0.00348              | 22.146               | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 3                                              | -0.00522              | 32.9605              | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 4                                              | -0.00696              | 43.4366              | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 5                                              | -0.0087               | 53.298               | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 6                                              | -0.01044              | 62.3658              | 1284         | 0          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 7                                              | -0.01044              | 70.6483              | 1282         | 2          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 8                                              | -0.01218              | 75.7865              | 1280         | 4          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 9                                              | -0.015351             | 83.153               | 1276         | 8          | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 10                                             | -0.015155             | 89.9711              | 1270         | 14         | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 11                                             | -0.010908             | 98.4102              | 1258         | 26         | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 12                                             | -0.019494             | 104.2635             | 1246         | 38         | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 13                                             | -0.021433             | 104.2633             | 1240         | 44         | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 14                                             | -0.025525             | 115.3347             | 1228         | 56         | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 15                                             |                       | -                    |              | 64         |        | 0   | 0                |              |       | 0     | 0   | 1284         |
|                                                | -0.027436             | 119.9339             | 1220         |            | 0      |     | 0                | 1284         | 0     |       |     |              |
| 16<br>17                                       | -0.029188             | 123.9978<br>128.3808 | 1212<br>1200 | 72<br>84   | 0      | 0   | 0                | 1284<br>1284 | 0     | 0     | 0   | 1284<br>1284 |
|                                                | -0.031163             |                      |              |            |        | 0   | 0                |              | _     | 0     |     |              |
| 18                                             | -0.032983             | 132.1337             | 1194         | 90         | 0      |     |                  | 1284         | 0     |       | 0   | 1284         |
| 19                                             | -0.035174             | 136.5257             | 1186         | 98<br>104  | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 20                                             | -0.037382             | 140.8551             | 1180         |            | 0      | 0   |                  | 1284         | _     | 0     | 0   | 1284         |
| 21                                             | -0.04024<br>-0.043146 | 146.1219<br>151.1654 | 1164<br>1160 | 120<br>124 | 0      |     | 0                | 1284<br>1284 | 0     | 0     | 0   | 1284<br>1284 |
| 23                                             | -0.045146             | 151.1654             | 1152         | 132        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 23                                             |                       |                      |              |            |        |     |                  |              | _     |       |     |              |
|                                                | -0.047617             | 158.5677             | 1138         | 146        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 25                                             | -0.049357             | 161.1869             | 1138         | 146        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 26                                             | -0.051541             | 164.4685             | 1134         | 150        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 27                                             | -0.053827             | 167.86               | 1128         | 156        | 0      | 0   | 0                | 1284         | 0     | 0     |     | 1284         |
| 28                                             | -0.056125             | 171.0807             | 1110         | 174        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 29                                             | -0.058411             | 174.0162             | 1096         | 188        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 30                                             | -0.06046              | 176.4745             | 1082         | 202        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 31                                             | -0.062419             | 178.7552             | 1072         | 212        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 32                                             | -0.065007             | 181.5192             | 1056         | 228        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 33                                             | -0.068211             | 184.8126             | 1050         | 234        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 34                                             | -0.070253             | 186.8678             | 1034         | 250        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 35                                             | -0.073134             | 189.5025             | 1024         | 260        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 36                                             | -0.076205             | 192.222              | 1014         | 270        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 37                                             | -0.078193             | 193.9536             | 998          | 286        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 38                                             | -0.080815             | 196.0633             | 990          | 294        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 39                                             | -0.082555             | 197.4666             | 990          | 294        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 40                                             | -0.084295             | 198.8612             | 984          | 300        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 41                                             | -0.087478             | 201.3687             | 970          | 314        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 42                                             | -0.090343             | 203.5296             | 952          | 332        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 43                                             | -0.093042             | 205.4227             | 950          | 334        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 44                                             | -0.095431             | 207.0443             | 936          | 348        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 45                                             | -0.098757             | 209.2055             | 924          | 360        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 46                                             | -0.100497             | 210.2914             | 920          | 364        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |
| 47                                             | -0.102237             | 211.3605             | 920          | 364        | 0      | 0   | 0                | 1284         | 0     | 0     | 0   | 1284         |

| 40  | 0.405.400 | 040 0000 | 040 | 074 | _ | _      | 0 | 1001 | _  |   | _ | 1001 |
|-----|-----------|----------|-----|-----|---|--------|---|------|----|---|---|------|
| 48  | -0.105429 | 213.3208 | 910 | 374 | 0 | 0      | 0 | 1284 | 0  | 0 | 0 | 1284 |
| 49  | -0.107169 | 214.3542 | 904 | 380 | 0 | 0      | 0 | 1284 | 0  | 0 | 0 | 1284 |
| 50  | -0.110498 | 216.3269 | 898 | 386 | 0 | 0      | 0 | 1282 | 2  | 0 | 0 | 1284 |
| 51  | -0.113848 | 218.2493 | 888 | 396 | 0 | 0      | 0 | 1281 | 3  | 0 | 0 | 1284 |
| 52  | -0.115588 | 219.2314 | 886 | 398 | 0 | 0      | 0 | 1280 | 4  | 0 | 0 | 1284 |
| 53  | -0.117328 | 220.2017 | 884 | 400 | 0 | 0      | 0 | 1274 | 10 | 0 | 0 | 1284 |
| 54  | -0.119068 | 221.173  | 882 | 402 | 0 | 0      | 0 | 1274 | 10 | 0 | 0 | 1284 |
| 55  | -0.120808 | 222.137  | 882 | 402 | 0 | 0      | 0 | 1272 | 12 | 0 | 0 | 1284 |
| 56  | -0.122548 | 223.0962 | 876 | 408 | 0 | 0      | 0 | 1266 | 18 | 0 | 0 | 1284 |
| 57  | -0.125971 | 224.9413 | 866 | 418 | 0 | 0      | 0 | 1264 | 20 | 0 | 0 | 1284 |
| 58  | -0.129157 | 226.6172 | 858 | 426 | 0 | 0      | 0 | 1264 | 20 | 0 | 0 | 1284 |
| 59  | -0.130897 | 227.4993 | 856 | 428 | 0 | 0      | 0 | 1262 | 22 | 0 | 0 | 1284 |
| 60  | -0.132637 | 228.3861 | 852 | 432 | 0 | 0      | 0 | 1260 | 24 | 0 | 0 | 1284 |
| 61  | -0.134377 | 229.2619 | 850 | 434 | 0 | 0      | 0 | 1258 | 26 | 0 | 0 | 1284 |
| 62  | -0.136117 | 230.1317 | 844 | 440 | 0 | 0      | 0 | 1258 | 26 | 0 | 0 | 1284 |
| 63  | -0.137857 | 230.9791 | 842 | 442 | 0 | 0      | 0 | 1258 | 26 | 0 | 0 | 1284 |
| 64  | -0.139597 | 231.8314 | 842 | 442 | 0 | 0      | 0 | 1256 | 28 | 0 | 0 | 1284 |
| 65  | -0.141337 | 232.686  | 840 | 444 | 0 | 0      | 0 | 1250 | 34 | 0 | 0 | 1284 |
| 66  | -0.143077 | 233.5332 | 840 | 444 | 0 | 0      | 0 | 1250 | 34 | 0 | 0 | 1284 |
| 67  | -0.144817 | 234.3771 | 838 | 446 | 0 | 0      | 0 | 1250 | 34 | 0 | 0 | 1284 |
| 68  | -0.146557 | 235.225  | 836 | 448 | 0 | 0      | 0 | 1250 | 34 | 0 | 0 | 1284 |
| 69  | -0.148297 | 236.0389 | 834 | 450 | 0 | 0      | 0 | 1245 | 39 | 0 | 0 | 1284 |
| 70  | -0.150037 | 236.867  | 830 | 454 | 0 | 0      | 0 | 1242 | 42 | 0 | 0 | 1284 |
| 71  | -0.151777 | 237.6781 | 830 | 454 | 0 | 0      | 0 | 1238 | 46 | 0 | 0 | 1284 |
| 72  | -0.153517 | 238.5004 | 824 | 460 | 0 | 0      | 0 | 1233 | 51 | 0 | 0 | 1284 |
| 73  | -0.155257 | 239.3094 | 822 | 462 | 0 | 0      | 0 | 1229 | 55 | 0 | 0 | 1284 |
| 74  | -0.156997 | 240.1154 | 820 | 464 | 0 | 0      | 0 | 1228 | 56 | 0 | 0 | 1284 |
| 75  | -0.158737 | 240.9201 | 816 | 468 | 0 | 0      | 0 | 1226 | 58 | 0 | 0 | 1284 |
| 76  | -0.160477 | 241.723  | 814 | 470 | 0 | 0      | 0 | 1226 | 58 | 0 | 0 | 1284 |
| 77  | -0.162217 | 242.5102 | 812 | 472 | 0 | 0      | 0 | 1222 | 62 | 0 | 0 | 1284 |
| 78  | -0.163957 | 243.2927 | 808 | 476 | 0 | 0      | 0 | 1222 | 62 | 0 | 0 | 1284 |
| 79  | -0.165697 | 244.077  | 806 | 478 | 0 | 0      | 0 | 1222 | 62 | 0 | 0 | 1284 |
| 80  | -0.167437 | 244.8541 | 804 | 480 | 0 | 0      | 0 | 1220 | 64 | 0 | 0 | 1284 |
| 81  | -0.169177 | 245.6344 | 800 | 484 | 0 | 0      | 0 | 1218 | 66 | 0 | 0 | 1284 |
| 82  | -0.170917 | 246.4016 | 796 | 488 | 0 | 0      | 0 | 1216 | 68 | 0 | 0 | 1284 |
| 83  | -0.172657 | 247.1679 | 792 | 492 | 0 | 0      | 0 | 1216 | 68 | 0 | 0 | 1284 |
| 84  | -0.174397 | 247.9275 | 792 | 492 | 0 | 0      | 0 | 1216 | 68 | 0 | 0 | 1284 |
| 85  | -0.176137 | 248.681  | 788 | 496 | 0 | 0      | 0 | 1216 | 68 | 0 | 0 | 1284 |
| 86  | -0.177877 | 249.437  | 786 | 498 | 0 | 0      | 0 | 1210 | 74 | 0 | 0 | 1284 |
| 87  | -0.179617 | 250.1688 | 782 | 502 | 0 | 0      | 0 | 1210 | 74 | 0 | 0 | 1284 |
| 88  | -0.181436 | 250.9604 | 782 | 502 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 89  | -0.183176 | 251.6934 | 780 | 504 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 90  | -0.184916 | 252.4362 | 778 | 506 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 91  | -0.186656 | 253.1692 | 776 | 508 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 92  | -0.188396 | 253.9057 | 774 | 510 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 93  | -0.190136 | 254.6281 | 772 | 512 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 94  | -0.191876 | 255.3517 | 770 | 514 | 0 | 0      | 0 | 1204 | 80 | 0 | 0 | 1284 |
| 95  | -0.193616 | 256.0913 | 766 | 518 | 0 | 0      | 0 | 1196 | 88 | 0 | 0 | 1284 |
| 96  | -0.195356 | 256.7869 | 762 | 522 | 0 | 0      | 0 | 1192 | 92 | 0 | 0 | 1284 |
| 97  | -0.197096 | 257.4992 | 762 | 522 | 0 | 0      | 0 | 1190 | 94 | 0 | 0 | 1284 |
| 98  | -0.198836 | 258.1949 | 760 | 524 | 0 | 0      | 0 | 1190 | 94 | 0 | 0 | 1284 |
| 99  | -0.200576 | 258.9018 | 756 | 528 | 0 | 0      | 0 | 1186 | 98 | 0 | 0 | 1284 |
| 100 | -0.202316 | 259.6084 | 752 | 532 | 0 | (2025) | 0 | 1186 | 98 | 0 | 0 | 1284 |

Nota. La tabla presenta *el* punto de desempeño, algunos los elementos están por arriba y por abajo del límite de seguridad de vida.

Se utilizó el programa ETABS para cálculos no lineales TADAS. En la Figura 72 se presenta los hinges de vigas columnas TADAS.

Figura 72 Vista 3D hinges vigas columnas TADAS no lineal (revD)



**Fuente**: Etabs, (2025)

Nota. La figura muestra la vista 3D hinges de viga columna TADAS.

Seguidamente, en la Figura 74 se presenta el Pushover XY no lineal TADAS para la vivienda.

3-D View - Displacements (PUSHOVER XX+) Step 138/138 [m] ASCE 41-13 NSP

Figura 73 Vista 3D Pushover X-Y no lineal TADAS (revD)

Nota. La Figura 74 muestra la vista 3D de Pushover no lineal TADAS en X (step 77/138m - 138/138m) – Y (step 94/155m - 155/155m).

▼ X 3-D View - Displacements (PUSHOVER XX+) Step 77/210 [m] 3-D View - Displacements (Dead) [m] Story Response Maximum Story Drifts Max story drifts PUSHOVER XX+ Display Type Case/Combo Output Type Step Number Step Number Load Case Display For All Stories Story Range Top Story Story5 Bottom Story Base Display Colors Global X Global Y Red Legend Legend Type Story2 Story1 -4.8 6.0 7.2 8.4 9.6 10.8 12.0 E-3 Drift, Unitless The load case or load combination for which the response is displayed. Max: (0.011988, Story5); Min: (0, Base)

Figura 74 Vista en 3D Pushover vs deriva X no lineal TADAS (RevD)

Nota. La figura muestra la vista 3D Pushover X vs deriva TADAS Step 77/210 m.

**Fuente**: Etabs, (2025)

## Figura 75 Vista en 3D Pushover vs deriva Y no lineal TADAS (RevD)

Además, en la Figura 76 se presenta la comparación de derivas de la estructura existente con la utilización de TADAS, la deriva en x Pushover es 0.011986 y deriva Pushover Y es 0.019203.

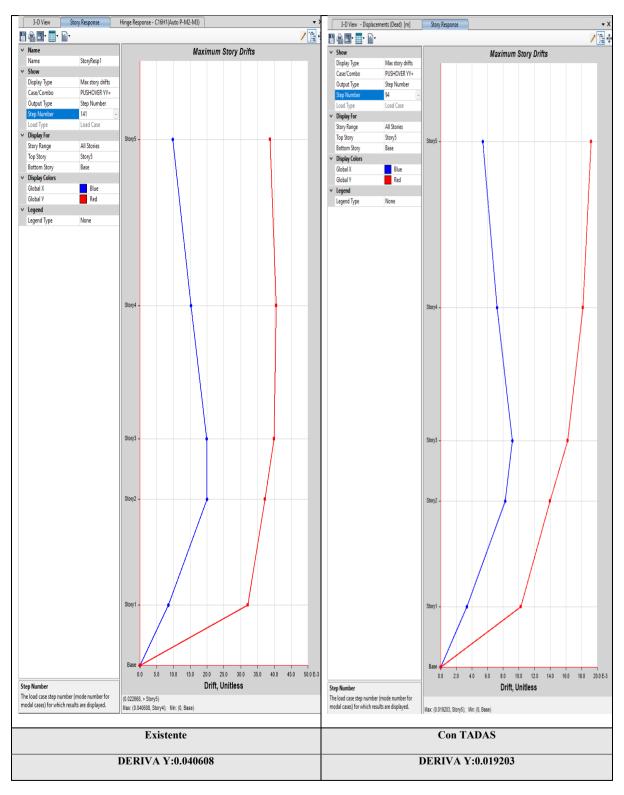
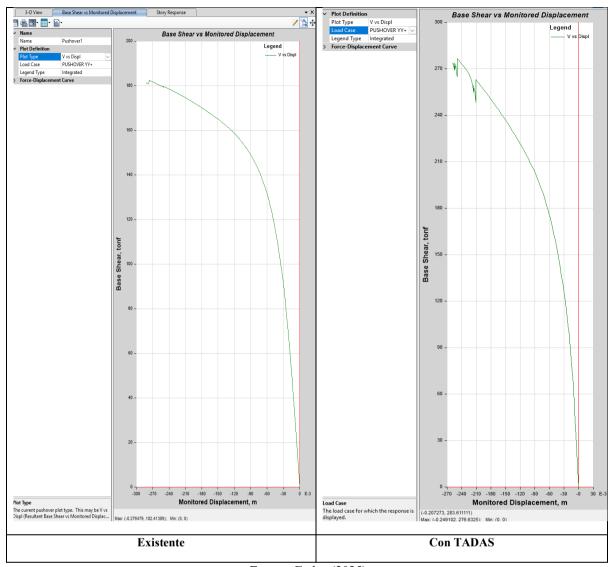





Figura 76 Comparativa derivas y curva capacidad entre estructura existente con uso de TADAS





Fuente: Etabs, (2025)

*Nota*. La figura muestra la comparativa de derivas entre estructura existente y uso de TADAS con su respectiva curva de capacidad.

En la figura anterior, se aprecia que las derivas máximas de la vivienda actual se ubican en 0,040608 mientras que con el uso de disipadores TADAS en 0,019203. En cuanto a la comparación de curva de capacidad con demanda de la vivienda existente se tiene valor máximo entre -0.276479 y 182.41389, evidenciando ambos no llegan a intersecarse, ocasionando la inexistencia de punto de control, es decir, en sentido Y la estructura sufre colapso previo al cruce de las curvas. En cambio, con uso de TADAS se tiene entre -0.249102 y 276.6325. Con estos resultados indican que, que si se implementa TADAS se tiene reducción de los valores y se tiene mejor control en la curva de capacidad.

#### 11.17. Análisis de los resultados

Para el análisis de la estructura se realizó modelado en ETABS según el levantamiento de información efectuado en el sitio o ubicación de la vivienda (Manta). Es así como, se identificó que, la relación de los valores de viga columna es aceptable en toda la estructura.

Además, los valores de derivas producidas para el modelo según el análisis estático se mantienen por debajo de los límites recomendados, al igual que en el análisis dinámico en sentido X y obstante, en el sentido Y se encuentran en el límite, de lo permitido por la norma. En cuanto a la participación de masas se aprecia un desplazamiento en sentido Y para el primer modo de vibración mientras que, en sentido X se presenta el desplazamiento en el segundo modo. Al comparar los valores se identificó que, el sentido Y tiene una participación. Por lo tanto, según el análisis realizado se observó que muchas de las secciones están sobre esforzadas, es decir, que hay una mayor cantidad de acero de refuerzo de lo necesario para el soporte de cargas aplicadas, por ende, el hormigón falla antes que el acero.

Mientras que, al usar disipadores TADAS se tiene reducción de los valores, es decir, hay mayor capacidad de resistencia de la estructura ante sismos, pues, ayudará como soporte para brindar mejoras en cuanto a la estabilidad de la vivienda.

#### 11.17.1. Análisis comparativo

A continuación, se llevará a cabo una comparación entre los principales parámetros obtenidos para ambas estructuras, considerando la deriva inelástica, radio de ductilidad y periodos de vibración. Finalmente, se presentará una gráfica en los que se ubican los puntos de desempeño obtenidos mediante los métodos empleados en este documento, correspondiente a la estructura con disipadores TADAS para un periodo de 975 años.

#### 11.17.1.1. Derivada Inelástica

Para la comparación, se utilizarán las derivadas máximas inelásticas obtenidas para ambas estructuras, calculadas a partir de los patrones de carga estáticos: SX y SY, que mostraron las mayores derivas inelásticas durante los procesos de análisis estructural Figura 77.

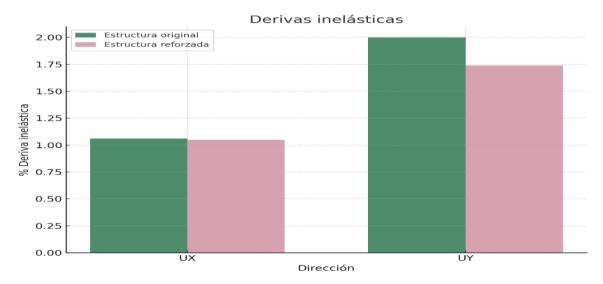
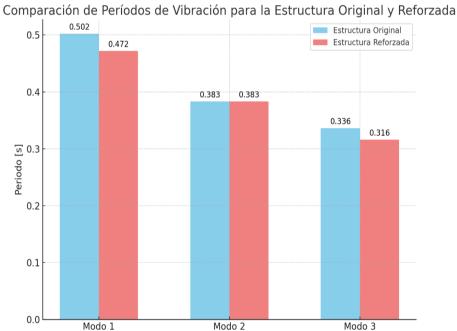



Figura 77 Comparación de derivas inelásticas máximas en direcciones UX y Uy

|           | ESTRUCTUR/ | A ORIGINAL | ESTRCUTURA REFORZADA |            |  |  |  |
|-----------|------------|------------|----------------------|------------|--|--|--|
| DIRECCIÓN | DER        | IVA        | DERIVA               |            |  |  |  |
|           | ELÁSTICA   | INELÁSTICA | ELÁSTICA             | INELÁSTICA |  |  |  |
| UX        | 0.002837   | 1.06%      | 0.00281              | 1.05%      |  |  |  |
| UY        | 0.005370   | 2.00%      | 0.004629             | 1.74%      |  |  |  |

Fuente: Elaboración propia, (2025)


Nota. La figura muestra la comparación de la estructura original y la estructura reforzada en términos de porcentajes de deriva inelástica máxima.

Según la Figura 77, se observa una notable disminución en las derivadas inelásticas de la estructura reforzada en comparación con las de la estructura original.

#### 11.17.1.2. Periodos de la estructura

En esta comparación se analizaron los tres primeros modos de vibración. Para ambas estructuras evaluadas, el primer modo presento un efecto de traslación en el eje Y, el segundo modo mostro eje X, y el tercer modo se manifestó a través de torsión.

Figura 78 Comparación de los Modos de Vibración modal en ambas estructuras



|           | ESTRCUTU | JRA ORIGINAL | ESTRUCTURA REFORZADA |         |  |  |  |
|-----------|----------|--------------|----------------------|---------|--|--|--|
| DIRECCIÓN | MODO     | PERIODO      | MODO                 | PERIODO |  |  |  |
| UY        | 1        | 0.502        | 1                    | 0.472   |  |  |  |
| UX        | 2        | 0.383        | 2                    | 0.383   |  |  |  |
| RZ        | 3        | 0.336        | 3                    | 0.316   |  |  |  |

Fuente: Elaboración propia, (2025)

Nota. La figura muestra la comparación de los periodos de vibración, el primer modo refleja translación en eje Y (UY), la segunda translación en el eje X (UX), y la tercera torsión (RZ).

Según la Figura 78, se nota una reducción considerable en los periodos estudiados en la estructura, llegando a una disminución cerca al 10% en los tres casos evaluados.

#### 11.17.1.3. Radio de ductilidad de la estructura

Se emplearon los niveles de amenaza sísmica moderada y extrema para comparar el radio de ductilidad, con periodos de retorno de 225 y 975 años, respectivamente. Se establecieron los valores de radio de ductilidad a través de los resultados logrados a través del método del espectro de capacidad, aplicados a las direcciones X y Y de ambas estructuras.

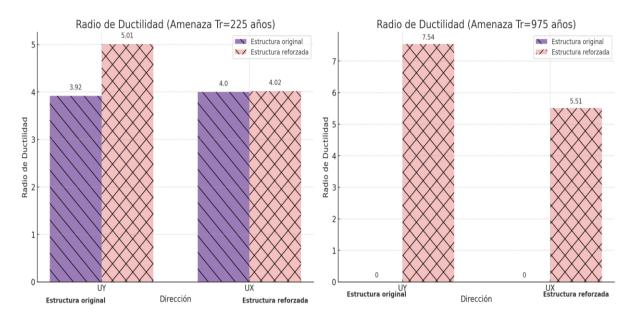
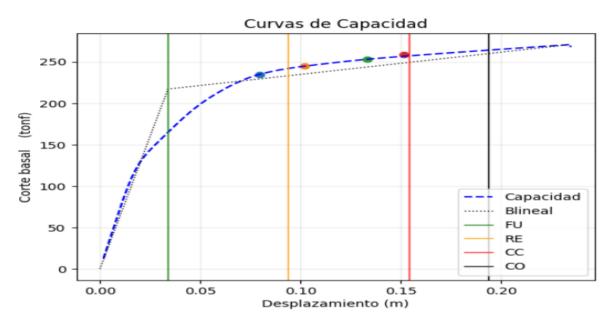



Figura 79 Radio de ductilidad ante amenazas sísmicas en ambas estructuras.

|           | ESTRUCTUR              | A ORIGINAL             | ESTRUCTURA REFORZADA   |                        |  |  |  |
|-----------|------------------------|------------------------|------------------------|------------------------|--|--|--|
| SISMO     | (Tr=225 años)          | (Tr=975años)           | (Tr=225 años)          | (Tr=975años)           |  |  |  |
| DIRECCIÓN | RADIO DE<br>DUCTILIDAD | RADIO DE<br>DUCTILIDAD | RADIO DE<br>DUCTILIDAD | RADIO DE<br>DUCTILIDAD |  |  |  |
| UY        | 3.92                   | 0                      | 5.01                   | 7.54                   |  |  |  |
| UX        | 4.00                   | 0                      | 4.02                   | 5.51                   |  |  |  |

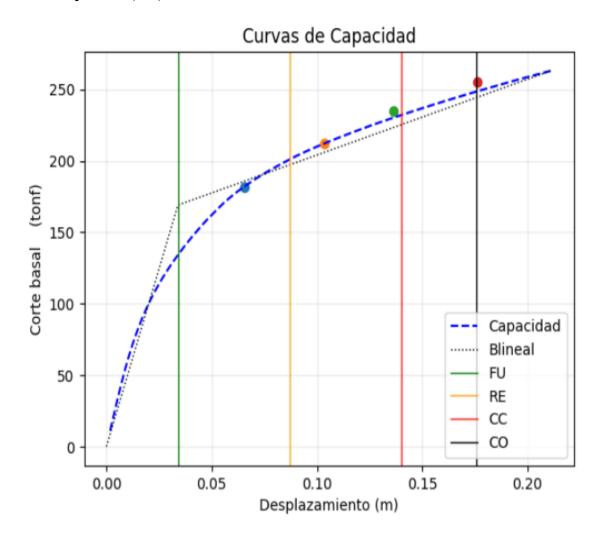

Fuente: Elaboración propia, (2025)

Nota. La figura muestra la comparación de los radios de ductilidad en la dirección UX y Uy para los niveles sísmicos de amenaza moderada (Tr=225 años) y extrema (Tr=975 años. La estructura reforzada mostró mayor capacidad de deformación antes colapsos.

# 11.17.1.4. Punto de desempeño obtenido mediante los métodos propuestos

En la siguiente Figura 80 y Figura 81 se presenta la localización de los puntos de desempeño determinados mediante los métodos ASCE 41-13 y FEMA 440, considerando a la relación entre el cortante basal y el desplazamiento (curva de capacidad), bajo el escenario de una amenaza sísmica extrema.

Figura 80 Comparación de punto de desempeño, para los diferentes métodos empleados (UX).




| ESTRUCTURA REFORZADA |                     |                |                |                |  |  |  |
|----------------------|---------------------|----------------|----------------|----------------|--|--|--|
|                      | ASCE 4              | 1-13 NSP       | FEMA 440 EL    |                |  |  |  |
|                      | Cortante Basal      | Desplazamiento | Cortante Basal | Desplazamiento |  |  |  |
| DIRECCIÓN X          | ton                 | mm             | ton            | mm             |  |  |  |
| UY                   | 263.06              | 211.13         | 255.07         | 191.19         |  |  |  |
| UX                   | 270.04              | 230.39         | 258.52         | 161.58         |  |  |  |
| T= años              | PUNTOS DE DESEMPEÑO |                |                |                |  |  |  |
|                      | V (*                | Ton)           | δ(mm)          |                |  |  |  |
| 72                   | 234.74              |                | 79.55          |                |  |  |  |
| 225                  | 244.78              |                | 102.22         |                |  |  |  |
| 425                  | 253.09              |                | 133.28         |                |  |  |  |
| 975                  | 258.53              |                | 161.6          |                |  |  |  |

Fuente: Elaboración propia, (2025)

*Nota*. La figura muestra la comparación de los puntos de desempeño obtenidos por los diferentes métodos, en la dirección X, considerante el cortante basal y el desplazamiento bajo distintas amenazas símicas.

Figura 81Comparación de punto de desempeño, para los diferentes métodos empleados (UY).



| ESTRUCTURA REFORZADA |                     |                |                |                |  |  |  |  |
|----------------------|---------------------|----------------|----------------|----------------|--|--|--|--|
|                      | ASCE 4              | 1-13 NSP       | FEMA 440 EL    |                |  |  |  |  |
|                      | Cortante Basal      | Desplazamiento | Cortante Basal | Desplazamiento |  |  |  |  |
| DIRECCIÓN Y          | ton                 | mm             | ton            | mm             |  |  |  |  |
| UY                   | 263.06              | 211.13         | 255.07         | 191.19         |  |  |  |  |
| UX                   | 270.04              | 230.39         | 258.52         | 161.58         |  |  |  |  |
| T- años              | PUNTOS DE DESEMPEÑO |                |                |                |  |  |  |  |
| T= años              | V (*                | Ton)           | δ(r            | nm)            |  |  |  |  |
| 72                   | 181.85              |                | 65.32          |                |  |  |  |  |
| 225                  | 212.06              |                | 103.3          |                |  |  |  |  |
| 425                  | 235.08              |                | 136.2          |                |  |  |  |  |
| 975                  | 255.07              |                | 191.2          |                |  |  |  |  |

Fuente: Elaboración propia, (2025)

Nota. La figura muestra la comparación de los puntos de desempeño obtenidos por los diferentes métodos, en la dirección Y, considerante el cortante basal y el desplazamiento bajo distintas amenazas símicas.

### Capítulo 5: Conclusiones y Recomendaciones

#### 12.1. Conclusiones

- Se diseñó y modeló la estructura de la vivienda en ETABS, en el análisis estático se observó derivas por debajo del límite, pero además en análisis dinámico los límites se encontraron bajo lo establecido por la norma. Es así que se observó secciones sobre esforzadas, pues, el hormigón falla antes que el acero. En el análisis no lineal de pushover versus deriva en sentido X Y de vivienda actual presentó un valor máximo de 0,021565 y 0,040608 respectivamente.
- Se evaluó el comportamiento estructural de la edificación, en el que se aplicó formulario FEMA P-154 para la evaluación de vulnerabilidad sísmica obteniendo un nivel bajo. No obstante, al realizar la inspección para el levantamiento de información se observó fallas en la vivienda derivado del sismo ocurrido en abril del 2016; incluyendo la relación de los valores de viga columna es aceptable en toda la estructura.
- Se identificó que, la simulación para la implementación de disipadores de energía TADAS permitió disminuir la vulnerabilidad sísmica en 0.019203, esto ayuda a cumplir con los requisitos de la normativa NEC-15.

#### 12.2. Recomendaciones

- Se sugiere calibrar el modelo con la información real relacionados con registros sísmicos locales o comparación estructural similar afectada por sismos utilizando modelos 3D, incorporando diafragmas rígidos y distribución de cargas inerciales adecuadas.
- Se recomienda efectuar la evaluación de vulnerabilidad sísmica mediante herramientas como Beneditti-Petrini, incluyendo reforzamiento de las conexiones críticas para asegurar la transmisión eficiente de fuerzas durante el sismo, evitando concentraciones de esfuerzos a través de continuidad vertical de elementos. Además, de la revisión de irregularidades que afectan la vulnerabilidad.
- Se sugiere la incorporación de dispositivos TADAS en puntos estratégicos como ejes de muro o en marcos de mayor deformación, especialmente en planta baja y entrepisos donde se concentran desplazamientos laterales; considerando la implementación de inspecciones post reforzamiento para la validación de la efectividad del sistema.

## Bibliografía

- Ministerio de Desarrollo Urbano y Vivienda. (2015). *Estructuras de hormigón armado*. MIDUVI.
- Aguiar, R. (2018). Análisis de disipadores TADAS utilizados en reforzamiento de Hospital Rodríguez Zambrano de Manta. *Revista Internacional de Ingeniería de Estructuras*, 23(1), 1-23.
- Aguiar, R., Rodríguez, M., & Mora, D. (2016). *Análisis sísmico de estructuras con disipadores de energía ADAS o TADAS*. CIMNE. https://core.ac.uk/download/pdf/296534744.pdf
- Aguilar, G., Aguirre, J., Ávila, J., Botero, E., & Muria, D. (2012). El sismo de la costa del Pacífico en Tohoku, Japón, marzo 11, 2011. UNAM.

  http://sharepoint.iingen.unam.mx/proyectos/Tohoku2011/Documentos/SID%20678%

  20Publicacion%20Arbitrada%20(Informe%20Final).pdf
- American Society of Civil Engineers. (2017). ASCE 41-17: Seismic Evaluation and Retrofit of Existing Buildings. Reston, VA: American Society of Civil Engineers.
- Andrade, M. (2023). Comparación entre el análisis estático y dinámico no lineal de un edificio de hormigón armado . UESM.
- Ayala, L., Franco, A., & Padilla, E. (2020). Evaluación de la eficiencia en disipación de energía en estructuras hidráulicas construidas con gaviones y material reciclado (neumático usado) mediante modelamiento físico a escala reducida. *Revista UIS Ingenierías*, 19(1), 143-154. https://doi.org/https://doi.org/10.18273/revuin.v19n1-2020014
- Caballero, L., Cano, H., Molina, M., & Villalba, J. (2023). Propuesta de modelación numérica de disipadores histeréticos metálicos tipo TADAS, en edificaciones de pórticos de concreto y acero. *Revista EIA*, 20(40), 1-20.

- Cano, H. (2020). Evaluación del coeficiente de disipación de energía R, en edificaciones de concreto reforzado con disipadores histeréticos metálicos triangulares tipo TADAS, ubicados en zona de amenaza sísmica alta. [Tesis Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/78657
- Carabalí, D. (2020). Análisis modal espectral mediante el uso de vectores ritz aplicados a una estructura . EPN.
- Cedeño, M., & Palma, J. (2020). Disipadores de energía como respuesta sísmica en edificaciones. *Researchgate*, 1-4.

  https://www.researchgate.net/publication/343322913\_DISIPADORES\_DE\_ENERGI A\_COMO\_RESPUESTA\_SISMICA\_EN\_EDIFICACIONES
- Chopra, A. (2012). Dynamic of structures Theory and Applications to Earthquake

  Engineering. Prentice Hall.
- Colegio de Ingenieros Civiles de Manabí. (22 de mayo de 2025). *Dos edificios con disipadores de energía: "Mawa" en Manta y "Luz" en Quito*. Retrieved 25 de mayo de 2025, from https://www.youtube.com/watch?v=ksJU0lzrqv8
- Constructura Rosero. (17 de mayo de 2025). *Edificio Mawa*. Retrieved 25 de mayo de 2025, from https://www.constructorarosero.com/rayden\_portfolio/mawa/
- Cunalata, F., & Caiza, P. (2022). Estado del arte de estudios de vulnerabilidad sísmica en Ecuador. *Revista Politécnica*, 50(1), 55-64. https://doi.org/https://doi.org/10.33333/rp.vol50n1.06
- Disipa . (2021). *Disipador de energía TADAS*. Grupo Prisma:

  https://www.disipaing.com/wp-content/uploads/2021/06/ficha-tecnica-dispositivos-histereticos.pdf

- Dominguez, O., & Ramos, M. (2023). Evaluación del costo incremental de una estructura con pórticos resistentes a momentos de 4 pisos en Salinas diseñada conforme NEC-15. UPSE.
- Federal Emergency Management Agency. (2000). FEMA 356: Seismic Rehabilitation of Buildings. FEMA.
- Federal Emergency Management Agency. (2015). FEMA P-154: Revisión Visual Rápida de Edificios para Posibles Peligros Sísmicos. FEMA.
- Fundación GEM. (12 de junio de 2020). *Proyecto SARA: Evaluación de Riesgos de América del Sur (SARA)*. Retrieved 10 de marzo de 2025, from https://www.globalquakemodel.org/proj/sara
- Genatios, C., & Lafuente, M. (2016). *Introducción al uso de aisladores y disipadores en estructuras*. Serie GeóPOLIS. https://scioteca.caf.com/handle/123456789/1213
- González, M. (14 de abril de 2022). El 'Viejo Tarqui' dejó de ser el corazón comercial de Manta. *Seguridad*, págs. 2-3. https://www.primicias.ec/noticias/en-exclusiva/cronica-comercio-tarqui-terremoto-manta/
- Google Maps. (7 de enero de 2025). *Ubicación parroquia Tarqui*. Retrieved 12 de mayo de 2025, from https://www.google.com/maps/place/Tarqui,+Manta/@-0.969925,-80.708289,1425m/data=!3m1!1e3!4m6!3m5!1s0x902be401ce38d1b7:0xbb9882ffaef b36a5!8m2!3d-0.9644878!4d-80.7158977!16s%2Fg%2F1tkkvym\_?entry=ttu&g\_ep=EgoyMDI1MDUwNy4wIKX MDSoJLDEwMjExNDU1SAFQAw%3D%3D
- Guerrero, H. (1 de Diciembre de 2018). *Beneficios de los disipadores de energía sísmica*.

  Instituto de Ingeniería UNAM: https://www.iingen.unam.mx/es-mx/Investigacion/Proyecto/Paginas/Disipadores-de-energia-sismica.aspx

- Guerrero, H., Cueto, F., Viramontes, C., & Torres, R. (2020). *Uso de disipadores de energía*en edificaciones de acero. Gerdau Corsa.

  https://www.gerdaucorsa.com.mx/sites/mx\_gerdau/files/PDF/gerdau\_corsa\_DISIPAD

  ORES\_v07\_BAJA\_DIG\_0.pdf
- Guerrero, R. (2022). Evaluación del desempeño de una edificación con dos tipos de disipadores sísmicos controlados por deformación (TADAS y arriostramiento restringido al pandeo) frente a diversos eventos sísmicos. [Tesis Maestría].
   Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/82111
- Instituto Ecuatoriano de Normalización. (2015). Norma Ecuatoriana de la Construcción NEC-15. Quito: INEN.
- Instituto Geofisico. (2016). Peligro Sísmico. https://www.igepn.edu.ec/peligro-sismico
- Kangle, S., & Yerudkar, D. (2020). Response Spectrum Analysis for Regular Multistory

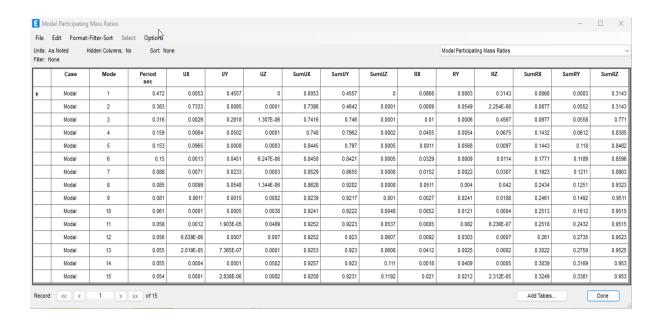
  Structure in Seismic Zone III . *International Journal of Engineering Research & Technology*, 9(9), 478-483.
- Lino, J. (2022). Comparación del punto de desempeño de un edificio convencional versus un edificio con sistema de disipación de energía tipo TADAS, mediante un análisis estático no lineal. [Tesis Ingeniería]. Universidad Estatal del Sur de Manabí. https://repositorio.unesum.edu.ec/bitstream/53000/3610/1/LINO%20TUMBACO%20 JORGE%20LUIS.pdf
- Loor, E., Palma, W., & García, L. (2021). Vulnerabilidad sísmica en viviendas de zona rural:

  el caso Santa Marianita Manta Ecuador. *Revista Científica INGENIAR: Ingeniería, Tecnología E Investigación, 4*(7), 2-16.

  https://journalingeniar.org/index.php/ingeniar/article/view/22
- López, R. (2019). Evaluación Sísmica y Propuesta de Reforzamiento de Edificaciones en Manta, Ecuador. Universidad Laica Eloy Alfaro de Manabí.

- Mei, L., & Wang, Q. (2021). Structural Optimization in Civil Engineering: A Literature Review. *Buildings*, 11(2), 66.
- Mena, A. (2019). Diseño estructural de un edificio de cinco plantas con estructura metálica utilizando disipadores sísmicos SLB. UPS.
- Ministerio de Desarollo Urbano y Vivienda. (2023). Riesgo sísmico, evaluación, rehabilitación de estructuras NEC-SE-RE. MIDUVI.
- Ministro de Desarrollo Urbano y Vivienda. (2015). Norma Ecuatoriana de la Construcción NEC-15. Quito: INEN.
- Ministro de Desarrollo Urbano y Vivienda. (2023). *Peligro Sísmico Diseño Sismo resistente NEC-SE-DS.* MIDUVI.
- Puente, F., & Romero, H. (2023). Evaluación de desmepeño estructural en un edificio residencial de seis niveles de la ciudad de Cuenca utilizando conexiones a momento y conexiones combinadas a momento y corte. UPS.
- Rodriguez, M. (3 de Marzo de 2025). *Sistemas de Protección Sísmica*. Sismica Institute: https://sismica-institute.com/sistemas-de-proteccion-sismica/#t-1707734003269
- Rupay, M., Vasquez, L., Felix, J., Francisco, J., Cuba, D., & Soto, F. (2023). La Cortante
  Basal en el Analisis Sismico Estático: Vivienda Multifamiliar de Cuatro Niveles
  Mediante el Software Etabs. Ciencia Latina Revista Científica Multidisciplinar, 7(3),
  4645-4670.
- Salas, A., & Hernández, A. (2021). Análisis comparativo entre el método estático equivalente y el método de análisis modal en estructuras regulares de muros portantes de hormigón armado. *Revista de Arquitectura e Ingeniería*, 15(1), 1-8.
- Sellés, J. (2021). Construcciones antisísmicas y sismorresistentes. Principios de funcionamiento y análisis de los aciertos y falencias de los modelos analógicos usados

- en la enseñanza. *Artigos, 17*, 1-15. https://doi.org/https://doi.org/10.20396/td.v17i00.8665273
- Sioingeniería. (27 de Marzo de 2025). *Disipadores de energía técnicas de diseño sismo*resistente. JH Ingenería Estructural:


  https://www.sioingenieria.com/portal/novedades/disipadores-de-energia-tecnicas-de-diseno-sismo-resistente
- South America Risk Assessment. (2018). Proyecto SARA: Evaluación y Gestión del Riesgo Sísmico en América del Sur. Buenos Aires: Instituto de Prevención Sísmica.
- Zhi, Y., Mo, L., & Bing, C. (2024). A comprehensive review on microchannel heat sinks for electronics cooling. *International Journal of Extreme Manufacturing*, 6(2), 1-31.

# Anexos

Anexo 1. Ficha de devaluación rápida de vulnerabilidad sísmica adaptado de FEMA P-154

| FOTOGRAFIA Y ESQUEMA ESTRUCTURAL DEL INMUEBLI                      | E                                                                        |            |                                                                     | EDIFIC                                  |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------|------------|---------------------------------------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|------------------------|-----------------------------------------|-----------------------------------------|---------|--|--|--|--|--|--|
|                                                                    |                                                                          |            |                                                                     | *************************************** | dificació     | า:                                      |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| TIPO DATO  ESQUEMA ESTRUCTURAL EN PLANTA Y ELEVACION Nome          |                                                                          |            | Direccio                                                            |                                         |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
|                                                                    |                                                                          |            | DATOS                                                               | DEL PF                                  | OFESIO        | NAL                                     | _1                                      |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
|                                                                    |                                                                          |            | Nombre                                                              | Nombre del evaluador:                   |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
|                                                                    |                                                                          |            |                                                                     | dei evali<br>SENES                      |               |                                         |                                         |                                         |                       | Fecha                  | <u></u>                                 |                                         |         |  |  |  |  |  |  |
|                                                                    |                                                                          |            | DATOS                                                               | CONST                                   | RUCCIO        | ON Y OC                                 | UPACIO                                  | N                                       |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
|                                                                    |                                                                          |            |                                                                     | de Piso<br>constru                      |               |                                         |                                         |                                         |                       | Remode<br>le Consti    |                                         |                                         |         |  |  |  |  |  |  |
| TIPOI OG                                                           | IA DEL SIS                                                               | TFM        | A FSTI                                                              | RUCTU                                   | IRAI          |                                         |                                         |                                         | Aleau                 | ie Consti              | uccion                                  |                                         |         |  |  |  |  |  |  |
| Madera                                                             | W1                                                                       | 1          |                                                                     |                                         | efabrica      | ıdo                                     |                                         |                                         |                       |                        |                                         | PC                                      |         |  |  |  |  |  |  |
| Mampostería sin refuerzo                                           | URN                                                                      |            |                                                                     |                                         | lamina        |                                         |                                         |                                         |                       |                        |                                         | S1                                      |         |  |  |  |  |  |  |
| Mampostería reforzada                                              | RM                                                                       |            | ***************************************                             | *************************************** | ************* | *************************************** | diagon                                  | ales                                    |                       |                        | *************************************** | S2                                      |         |  |  |  |  |  |  |
| Mixta Acero Hormigón o Madera Hormigón                             | MX                                                                       | ~          | Pórtico acero laminado con diagonales Pórtico acero doblado en frío |                                         |               | *************************************** | *************************************** | S3                                      |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| Pórtico Hormigón Armado                                            | C1                                                                       |            | Pórtico acero laminado con muros estructurales de                   |                                         |               | de H. Ar                                | mado                                    | S4                                      |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| Pórtico H. Armado con muros estructurales                          | C2                                                                       | -          | Portico acero con paredes mampostería                               |                                         |               |                                         |                                         | S5                                      |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| Pórtico H. Armado con mampostería confinada sin refuerzo           | C3                                                                       |            |                                                                     |                                         |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| PUNTAJES BÁSIC                                                     | OS, MODIFI                                                               | CADO       | RES Y                                                               | PUNTA.                                  | JE FINA       | L, S                                    |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| PARÁMETROS CALIFICATIVOS DE LA ESTRUCTURA                          | - None                                                                   |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | TIPOL         | OGÍA DE                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <del>/~~~~~~~~~</del> | Announce of the second |                                         |                                         |         |  |  |  |  |  |  |
| PUNTAJE BÁSICO                                                     |                                                                          | URM<br>1,8 | RM<br>2,8                                                           | MX<br>1,8                               | C1<br>2,50    | C2<br>2,8                               | C3<br>1,6                               | PC<br>2,4                               | S1<br>2,6             | S2<br>3                | S3<br>2                                 | S4<br>2,8                               | S5<br>2 |  |  |  |  |  |  |
| ALTURA DE LA EDIFICACIÓN                                           | 4,4                                                                      | 1,0        | 2,0                                                                 | 1,0                                     | 2,30          | 2,0                                     | 1,0                                     | 2,4                                     | 2,0                   |                        |                                         | 2,0                                     |         |  |  |  |  |  |  |
|                                                                    | 0                                                                        | 0          | 0                                                                   | 0                                       | 0             | 0                                       | 0                                       | 0                                       | 0                     | 0                      | 0                                       | 0                                       | 0       |  |  |  |  |  |  |
| Baja altura (< 4 pisos)                                            |                                                                          | N/A        | ļ                                                                   | ļ                                       |               |                                         | ļ                                       |                                         | ļ                     | <del> </del>           | N/A                                     |                                         |         |  |  |  |  |  |  |
| Media altura (4 a 7 pisos)                                         | N/A                                                                      | -          | 0,4                                                                 | 0,2                                     | 0,4           | 0,4                                     | 0,2                                     | 0,2                                     | 0,2                   | 0,4                    | ļ                                       | 0,4                                     | 0,4     |  |  |  |  |  |  |
| Gran altura (>7 pisos)                                             | N/A                                                                      | N/A        | N/A                                                                 | 0,3                                     | 0,6           | 0,8                                     | 0,4                                     | 0,4                                     | 0,6                   | 0,8                    | N/A                                     | 0,5                                     | 0,5     |  |  |  |  |  |  |
| IRREGULARIDADES                                                    | -2,5                                                                     | T .        |                                                                     | 4.5                                     | 4.5           | 4                                       |                                         |                                         |                       | 1 45                   | 4.5                                     |                                         |         |  |  |  |  |  |  |
| Irregularidad vertical                                             |                                                                          | -1         | -1                                                                  | -1,5                                    | -1,5          | -1                                      | -1                                      | -1                                      | -1                    | -1,5                   | -1,5                                    | -1                                      | -1      |  |  |  |  |  |  |
| Irregularidad en planta                                            | -0,5                                                                     | -0,5       | -0,5                                                                | -0,5                                    | -0,5          | -0,5                                    | -0,5                                    | -0,5                                    | -0,5                  | -0,5                   | -0,5                                    | -0,5                                    | -0,5    |  |  |  |  |  |  |
| CODIGO DE LA CONSTRUCCIÓN                                          | 0                                                                        |            | ·                                                                   |                                         |               |                                         |                                         |                                         | · .                   | T                      |                                         |                                         |         |  |  |  |  |  |  |
| Pre-código moderno ( construido antes de 1977) o auto construcción |                                                                          | -0,2       | -1                                                                  | -1,2                                    | -1,2          | -1                                      | -0,2                                    | -0,8                                    | -1                    | -0,8                   | -0,8                                    | -0,8                                    | -0,2    |  |  |  |  |  |  |
| Construido en etapa de transición (entre 1977 - 2001)              | 0                                                                        | 0          | 0                                                                   | 0                                       | 0             | 0                                       | 0                                       | 0                                       | 0                     | 0                      | 0                                       | 0                                       | 0       |  |  |  |  |  |  |
| Post código moderno (construido a partir de 2001)                  | 1                                                                        | WA         | 2,8                                                                 | 1                                       | 1,4           | 2,4                                     | 1,4                                     | 1                                       | 1,4                   | 1,4                    | 1                                       | 1,6                                     | 1       |  |  |  |  |  |  |
| SUELO                                                              |                                                                          | Ţ          | r                                                                   | r                                       | r             |                                         |                                         |                                         | 3                     | T                      |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,       |  |  |  |  |  |  |
| Suelo Tipo C                                                       | 0                                                                        | -0,4       |                                                                     | -0,4                                    | -0,4          | -0,4                                    | -1,4                                    | -0,4                                    | -0,4                  | -0,4                   | -0,4                                    | -0,4                                    | -0,4    |  |  |  |  |  |  |
| Suelo Tipo D                                                       | 0                                                                        | -0,6       | -0,6                                                                | -0,6                                    | -0,6          | -0,6                                    | -0,4                                    | -0,6                                    | -0,6                  | -0,6                   | -0,6                                    | -0,6                                    | -0,4    |  |  |  |  |  |  |
| Suelo Tipo E                                                       | 0                                                                        | -0,8       | -0,4                                                                | -1,2                                    | -0,8          | -0,8                                    | -0,8                                    | -1,2                                    | -1,2                  | -1,2                   | -1,2                                    | -1,2                                    | -0,6    |  |  |  |  |  |  |
| PUNTAJE FINAL, S                                                   |                                                                          |            | L,                                                                  |                                         |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| S<2.4                                                              | O DE VULNE                                                               |            |                                                                     |                                         | cita oval     | uación o                                | cnaciall                                |                                         |                       | 1                      |                                         |                                         |         |  |  |  |  |  |  |
| 2.0 > \$ > 2.5                                                     | Alta vulnerabilidad (Necesita evaluación especial)  Media Vulnerabilidad |            |                                                                     |                                         |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |
| S > 2.5 Baja Vulnerabilidad                                        |                                                                          |            |                                                                     |                                         |               |                                         |                                         |                                         |                       |                        |                                         |                                         |         |  |  |  |  |  |  |

# Anexo 2. Relación de participación de masa modal (diseños disipadores).

