

FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL

Trabajo de fin de Carrera titulado:

Integración de la metodología BIM en el desarrollo del proyecto Edificio de uso mixto NOVAHABITAT, **ROL BIM MEP.**

Realizado por:

ERAZO TORRES EDWIN STALYN

Coautor:

Arq. Mgtr. Elmer Muñoz

Director del proyecto:

Ing. Mgtr. Pablo Tiberio Vásquez Quiroz

Como requisito para la obtención del título de:

MAGISTER EN GERENCIA DE PROYECTOS BIM

QUITO, 15 septiembre del 2025

DECLARACIÓN JURAMENTADA

Yo, Edwin Stalyn Erazo Torres, con cédula de identidad No. 0603957812, declaro bajo juramento que el trabajo aquí desarrollado es de mi autoría, que no ha sido previamente presentado para ningún grado a calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, cedo mis derechos de propiedad intelectual que correspondan relacionados a este trabajo, a la UNIVERSIDAD INTERNACIONAL SEK, según lo establecido por la Ley de Propiedad Intelectual, por su reglamento y por la normativa institucional vigente.

EDWIN STALYN ERAZO TORRES

C.I.: 0603957812

LIDER MEP.

edwin.erazo@uisek.edu.ec

DECLARACIÓN DEL DIRECTOR DE TESIS

Declaro haber dirigido este trabajo a través de reuniones periódicas con el estudiante, orientando sus conocimientos y competencias para un eficiente desarrollo del tema escogido y dando cumplimiento a todas las disposiciones vigentes que regulan los Trabajos de Titulación.

Ing. Pablo Tiberio Vásquez Quiroz MBA, MAP, PMP

C.I.: 0401025531

LOS PROFESORES INFORMANTES:

Arq. Manuel Alberto del Villar Alburquerque

Arq. Gustavo Francisco Vásquez Andrade

Después de revisar el trabajo presentado lo han calificado como apto para su defensa oral						
ante el tribunal examinador.	ante el tribunal examinador.					
Arq. Gustavo Francisco	Arq. Manuel Alberto					
Vásquez Andrade	del Villar Alburquerque					

Integración de la metodología BIM en el desarrollo del proyecto Edificio de uso mixto

NOVAHABITAT, rol Líder MEP.

Por

Geofre Isaac Pinos Zapata

Agosto 2025

Pablo T. Vásquez, Q. Tutor
Violeta C. Rangel R., Presidenta del Tribunal
Manuel A. del Villar A., Inicial, Miembro del Tribunal
Gustavo F. Vásquez A., Inicial, Miembro del Tribunal

Aceptado y Firmado:		15, 09, 2025
	Violeta C. Rangel R.	
Aceptado y Firmado:		15, 09, 2025
	Manuel A. del Villar A.	
Aceptado y Firmado:		15, 09, 2025
	Gustavo F. Vásquez A.	
	15, 09, 2025	
Violeta C. Rangel R.		
Presidenta del Tribunal		

Universidad Internacional SEK

DECLARACIÓN DE AUTORÍA DEL ESTUDIANTE

Declaro que este trabajo es original, de mi autoría, que se han citado las fuentes correspondientes y que en su ejecución se respetaron las disposiciones legales que protegen los derechos de autor vigentes.

EDWIN STALYN ERAZO TORRES

C.I.: 0603957812

LIDER MEP.

edwin.erazo@uisek.edu.ec

DEDICATORIA

Dedico este trabajo, en primer lugar, a Dios, por ser mi guía y sustento constante en cada etapa de mi vida, tanto académica como personal.

A mi madre, Geovanna, le agradezco su amor incondicional y sus enseñanzas, que me han moldeado como persona. Su ejemplo me ha mostrado que ser un buen ser humano es el logro más valioso, y de ella he aprendido a dar y recibir amor.

A mi padre, Edwin, le dedico mi gratitud por su apoyo incondicional y desinteresado. Él me ha impulsado a superarme y a destacar en cada desafío. Su admirable capacidad de adaptación y versatilidad en el trabajo ha sido una gran inspiración.

A mi hermano, Harold, le reconozco su gran sentido de la responsabilidad y su preocupación por la familia, a pesar de ser menor. De él he aprendido a ser más fuerte y a mantener la empatía, incluso en las situaciones más difíciles.

A mi hermano menor, Jaret, espero que este trabajo sea un ejemplo de dedicación, esfuerzo y alegría. Que el amor te guíe siempre en el camino que tienes por delante; vívelo plenamente.

A mis abuelitas, Natividad y Rosa, les rindo homenaje por su incansable lucha y su impecable ejemplo como madres. Ellas fueron un modelo de superación y amor para toda nuestra familia.

Con todo el corazón.

Edwin Stalyn Erazo Torres.

AGRADECIMIENTO

Este logro es el resultado de la sabiduría y la perseverancia. Agradezco a mis padres por inculcarme el valor del esfuerzo y la disciplina, y a mi familia por su apoyo incondicional que me dio la fuerza para superar los obstáculos.

Cada palabra, cada gesto y cada muestra de cariño de las personas que me rodean han sido un pilar fundamental en este camino. Este logro es fruto de un trabajo en equipo y del apoyo de aquellos a quienes me aman y amo.

Edwin Stalyn Erazo Torres.

Glosario

- **BIM** (**Building Information Modeling**): Metodología de trabajo colaborativa basada en modelos digitales con información integrada, utilizada para la planificación, diseño, construcción y operación de proyectos de construcción.
- BEP (BIM Execution Plan): Plan de Ejecución BIM que establece las estrategias, responsabilidades, entregables, herramientas y flujos de trabajo necesarios para implementar la metodología BIM en el proyecto.
- EIR (Exchange Information Requirements): Requisitos de Intercambio de Información definidos por el cliente, que especifican qué información se debe entregar, en qué formato, con qué nivel de detalle y en qué momento.
- CDE (Common Data Environment): Entorno Común de Datos utilizado para almacenar, gestionar y compartir la información del proyecto en un único repositorio digital. En el proyecto se empleó Autodesk Construction Cloud.
- LOD (Level of Development): Nivel de Desarrollo que define el grado de precisión geométrica y de información de un elemento del modelo BIM. Va desde LOD 100 (conceptual) hasta LOD 500 (as-built).
- LOI (Level of Information): Nivel de Información que representa el grado de detalle no gráfico (atributos, parámetros, propiedades) asignado a los elementos del modelo.
- LOIN (Level of Information Need): Combinación del nivel de desarrollo geométrico y del nivel de información necesario según los requerimientos del proyecto.
- IFC (Industry Foundation Classes): Formato abierto y neutral para el intercambio de modelos BIM entre diferentes plataformas de software.

- MIDP (Master Information Delivery Plan): Plan Maestro de Entregas de Información que consolida los entregables de todas las disciplinas a lo largo de las distintas fases del proyecto.
- **IDP** (**Information Delivery Plan**): Plan Detallado de Entregas de Información que desglosa el MIDP en actividades específicas con fechas, responsables y productos esperados.
- ACC (Autodesk Construction Cloud): Plataforma digital utilizada como Entorno Común de Datos (CDE) para colaboración, coordinación y control documental en la nube.
- RVT: Extensión nativa de los archivos del software Autodesk Revit donde se realiza el modelado BIM.
- NWD / NWC: Formatos de archivo utilizados por Autodesk Navisworks. NWD es
 el archivo federado listo para revisión, y NWC es el archivo generado
 automáticamente desde Revit para coordinación.
- WIP (Work In Progress): Estado de trabajo en progreso. Representa una fase preliminar del modelo no apta aún para ser compartida con otras disciplinas.
- ISO (International Organization for Standardization): Organización encargada de establecer normas técnicas internacionales. En el contexto BIM, se aplica la serie ISO 19650.
- EPD (Environmental Product Declaration): Declaración Ambiental de Producto que especifica el impacto ambiental de un producto de construcción a lo largo de su ciclo de vida.
- MEP (Mechanical, Electrical and Plumbing): Disciplinas correspondientes a instalaciones mecánicas, eléctricas y sanitarias.

- **ARQ:** Abreviatura para la disciplina de Arquitectura.
- **EST:** Abreviatura para la disciplina de Estructura.
- COO: Coordinación. Proceso de integración y revisión cruzada entre modelos de diferentes disciplinas.
- MNG: Gestión. Se refiere a los documentos y procesos de planificación y control del proyecto.
- Modelo federado: Modelo integrado que contiene la unión de los modelos disciplinares (ARQ, EST, MEP), utilizado para coordinación y revisión de interferencias.
- Clash Detection: Proceso de detección de interferencias entre elementos de diferentes disciplinas mediante software especializado como Navisworks.
- **Plantilla .RTE:** Archivo base en Revit que contiene configuraciones iniciales como estilos de vista, familias, parámetros y estructura de navegador.
- Parámetros compartidos: Atributos definidos externamente y aplicados a múltiples familias en Revit para garantizar consistencia informativa.
- Flujo de trabajo BIM: Conjunto de procesos secuenciales que guían la producción,
 validación y entrega de información bajo metodología BIM.
- Protocolos de coordinación: Procedimientos formales establecidos para la revisión y aprobación de modelos entre disciplinas.
- Revisión técnica: Proceso de validación técnica del modelo en cuanto a geometría,
 nomenclatura, interferencias y cumplimiento del BEP.
- **Simulación 4D:** Asociación del modelo BIM con el cronograma del proyecto para simular el proceso constructivo en el tiempo.

- **Presupuesto 5D:** Estimación de costos integrada al modelo BIM, permitiendo un control financiero más preciso y visual.
- Gestión documental: Organización y control sistemático de la información del proyecto, incluyendo versiones, nombres de archivos y trazabilidad.
- Acta de traspaso: Documento formal que registra el cambio de funciones y responsabilidades entre miembros del equipo.
- Auditoría de modelos: Evaluación sistemática del cumplimiento del modelo con los estándares definidos en el BEP, EIR y protocolos técnicos.
- Matriz de interferencias: Documento que clasifica, prioriza y asigna responsables a los conflictos detectados en el modelo federado.
- Model Checker: Herramienta digital que permite revisar y validar automáticamente el modelo según criterios predefinidos.

Resumen

El presente trabajo de titulación expone el proceso de implementación de la metodología BIM en la planificación del proyecto Edificio de uso mixto NOVAHABITAT, ubicado en la ciudad de Puyo, Ecuador. Considerando la complejidad técnica, las condiciones ambientales del entorno y la necesidad de una coordinación efectiva entre disciplinas, el equipo de trabajo adoptó BIM como herramienta estratégica para estructurar, gestionar y optimizar la información técnica desde las fases iniciales.

La planificación se realizó bajo los lineamientos de la norma ISO 19650 y documentos clave como el EIR (Requisitos de Información del Cliente) y el BEP (Plan de Ejecución BIM), permitiendo alinear expectativas, establecer flujos de trabajo colaborativos y garantizar la trazabilidad de la información. Según Eastman et al. (2011), BIM no solo mejora la coordinación técnica, sino que permite visualizar el proyecto de forma integral y anticipar posibles problemas antes de su construcción.

Asimismo, la incorporación de BIM en la planificación del proyecto permitió optimizar la toma de decisiones y fortalecer la sostenibilidad, coherente con lo planteado por Smith (2014), quien destaca que BIM facilita la integración de criterios ambientales y de eficiencia desde etapas tempranas del diseño.

Este trabajo refleja la experiencia del equipo en la integración de BIM como eje fundamental de la planificación de NOVAHABITAT, demostrando que su aplicación estructurada permite reducir riesgos, optimizar resultados y consolidar procesos de diseño y construcción más eficientes y sostenibles.

Palabras clave: BIM, planificación de proyectos, coordinación interdisciplinaria, ISO 19650, sostenibilidad.

Abstract

This thesis presents the implementation process of the Building Information Modeling (BIM) methodology in the planning of the mixed-use building project NOVAHABITAT, located in Puyo, Ecuador. Considering the technical complexity, the environmental conditions of the site, and the need for effective multidisciplinary coordination, the project team adopted BIM as a strategic tool to structure, manage, and optimize technical information from the early stages.

The planning process followed the guidelines of ISO 19650 and incorporated key documents such as the Employer's Information Requirements (EIR) and the BIM Execution Plan (BEP), which allowed the alignment of expectations, the definition of collaborative workflows, and ensured information traceability. As highlighted by Eastman et al. (2011), BIM improves technical coordination and enables project teams to visualize and solve potential problems before construction begins.

Additionally, the integration of BIM contributed to more informed decision-making and reinforced sustainability, aligning with Smith (2014), who emphasizes that BIM facilitates the incorporation of environmental and efficiency criteria early in the design process.

This work reflects the team's experience in integrating BIM as a fundamental element in the planning of NOVAHABITAT, demonstrating that its structured application reduces risks, optimizes results, and consolidates more efficient and sustainable design and construction processes.

Keywords: BIM, project planning, interdisciplinary coordination, ISO 19650, sustainabilit

TABLA DE CONTENIDOS

Índice	e de Tablas	25
Índice	e de Ilustraciones	28
CAPÍ	TULO 1	30
1.	Introducción	30
1.1.	Descripción del proyecto	30
1.2.	Contexto del proyecto	31
1.3.	Argumentación y alcance	33
1.4.	Justificación	34
1.5.	Problemática	35
CAPÍ	TULO 2	36
2.	Marco teórico	36
	2.1. BIM como herramienta de gestión integral en proyectos de edi	ficación. 36
	2.2. Planificación de proyectos de construcción en entornos BIM	37
	2.3. La importancia de la coordinación interdisciplinaria en entorno	os BIM38
	2.4. BIM y sostenibilidad: hacia una construcción más eficiente y n	responsable.
	38	
2.5.	Metodología	39
2.5.1.	Objetivo general	39
2.5.2.	Objetivos específicos	39
2.5.3.	Resultados esperados	40
CAPÍ	TULO 3	40
3.	BEP: BIM Execution Plan.	40
3.1.	Alcance y enfoque BIM del equipo de trabajo	40

	3.1.1. Implementación de la metodología BIM	.40
	3.1.2. Protocolos y documentación	.41
	3.1.3. Control de cumplimiento y plazos de entrega	42
	3.1.4. Seguridad de datos y transparencia	43
	3.2. Alcance de las actividades	.44
	3.2.1. Seguridad de datos y transparencia	.44
	3.2.2. Usos BIM aplicados según el EIR	45
	3.3. Información del proyecto	47
	3.4. Hitos relevantes	.48
	3.5. Organigrama del equipo de trabajo.	.49
	3.6. Roles y responsabilidades	.49
	3.7. Niveles de detalle por elemento (LOD)	51
3.8.	Introducción al Plan de Ejecución BIM (BEP)	52
	3.8.1. Referencias	52
	3.8.2. Definiciones	54
	3.8.3. Acrónimos	55
3.9.	Plan de Ejecución BIM	57
	3.9.1. Objetivo General	57
	3.9.2. Objetivos Específicos	57
	3.9.3. Información General del Proyecto	59
	3.9.4. Descripción del proyecto	60
	3.9.5. Justificación del Enfoque BIM	.60
	3.9.6. Herramientas para el desarrollo	.61
3.10.	Niveles de Desarrollo	.61
	3.10.1. Partes interesadas	62

	3.10.2.	Contactos y Requisitos de Responsabilidad	63
	3.10.3.	Matriz de Comunicación y Flujo de Información	65
3.11.	Flujo gen	eral de trabajo	66
	3.11.1.	Etapas del Flujo General de Trabajo en NOVA HABITAT	66
3.12.	Flujo de i	usos BIM	68
3.13.	Recursos	del Equipo	69
	3.13.1.	Recursos del Equipo según Usos BIM	69
3.14.	Flujos de	trabajo para diseño de especialidades	71
	3.14.1.	Flujo de trabajo modelado arquitectónico	71
	3.14.2.	Flujo de trabajo modelado estructural	72
	3.14.3.	Flujo de trabajo modelado MEP	73
3.15.	Coordinación de Modelos y Detección de Interferencias e Incompatibilidades 74		
	3.15.1.	Flujo de Coordinación y Clash Detection – NOVA HABITAT	75
	3.15.2.	Clasificación de Interferencias	75
3.16.	Planifica	ción de fases y cronograma	75
	3.16.1.	Fases del Proyecto y Actividades BIM	76
	3.16.2.	Herramientas de Planificación Utilizadas	76
3.17.	Estimació	ón de Cantidades y Costos (BIM 5D)	77
	3.17.1.	Procedimiento de Estimación de Cantidades y Costos en NOVA	
HABI	TAT	77	
	3.17.2.	Criterios de Costeo y Estructura de Datos	78
	3.17.3.	Ejemplo de Estructura de Presupuesto 5D – Proyecto NOVA	
HABI	TAT	79	
	3.17.4.	Parámetros BIM Vinculados (Revit/Presto)	80
	3.17.5.	Flujo de simulación de programación – 4D	80

3.17.6	. Flujo d	e revisión presupuesto – 5D	81
3.18.	Estructura	a de Desglose del Proyecto	82
	3.18.1.	Desglose por Disciplinas y Submodelos	82
	3.18.2.	Desglose por Niveles y Zonas	83
	3.18.3.	Organización para Coordinación	83
3.19.	Estructura	a de trabajo por disciplina	83
	3.19.1.	Arquitectura (ARQ)	84
	3.19.2.	Estructuras (EST)	84
	3.19.3.	MEP – Instalaciones (MEP-E, MEP-S, MEP-HS)	84
	3.19.4.	Coordinación (COO)	85
3.20.	Requerim	tientos de Intercambio de Información	85
	3.20.1.	Normas de información	86
	3.20.2.	Convenciones de nomenclatura	86
	Formato:.		87
	Ejemplo:.		87
	3.20.3.	Códigos designados	88
3.21.	Estrategia	as de Mejora de Modelos	88
3.22.	Estrategia	de federación	89
	3.22.1.	Georreferenciación	89
	3.22.2.	Organización de archivos	90
	3.22.3.	Gestión del tamaño de los archivos	90
	3.22.4.	Otras medidas:	90
3.23.	Procedim	ientos de Colaboración	91
	3.23.1.	Sistema de gestión documental (EDMS)	91
	3.23.2.	Entorno Común de Datos (CDE)	91

	3.23.3.	Plataformas y formatos aceptados	92
3.24.	Procedim	nientos de Producción e Intercambio	93
	3.24.1.	Requisitos de formatos	93
	3.24.2.	Documentos y entregables por hitos	94
3.25.	Coordina	ción	94
	3.25.1.	Tipos de pruebas	95
	3.25.2.	Clasificación de interferencias	96
	3.25.3.	Protocolo de coordinación y calidad	96
	3.25.4.	Tolerancias y estándares de revisión	96
3.26.	Auditoría	y Control de Calidad	97
	3.26.1.	Model Checker (Revit)	97
	3.26.2.	Model Checker Arquitectura	97
	3.26.3.	Model Checker Estructura	98
	3.26.4.	Model Checker MEP	98
	3.26.5.	Revisión de interferencias (Navisworks)	99
	3.26.6.	Revisión de vínculos	99
	3.26.7.	Informes de auditoría	99
	3.26.8.	Federación interdisciplinar	100
3.27.	Entregab	les Finales y Gestión de Información	100
	3.27.1.	Protocolo de coordinación	100
	3.27.2.	Etapas del Protocolo	102
	3.27.3.	Flujo de Revisión y Aprobación	102
	3.27.4.	Estados de Revisión y Comentarios	102
3.28.	Ubicació	n de Archivos Revisados dentro del CDE	103
	3.28.1.	Prioridades de Modelos	103

3.29.	Diseño de Pruebas de Coordinación		
	3.29.1.	Matriz de Colisiones Detallada	104
	3.29.2.	Tolerancias de Coordinación por Tipo de Elemento	105
	3.29.3.	Diseño de pruebas:	105
	3.29.4.	Matriz de interferencias detallada	106
	3.29.5.	Hitos de coordinación	106
	3.29.6.	Georreferenciación de modelos	107
3.30.	Normas l	básicas de manejo de intercambio de información	108
3.31.	Matriz de	e intercambio de información	110
	3.31.1.	Estrategia de organización de archivos	111
	3.31.2.	Estrategia de gestión del tamaño de los archivos	112
3.32.	Cronogra	ama 4D, Presupuesto 5D	112
	3.32.1.	Cronograma 4D	112
	3.32.2.	Presupuesto 5D	113
	3.32.3.	Matriz de colisiones	113
3.33.	Informe	de cumplimiento y control	114
	3.33.1.	Firma y Archivo	116
3.34.	Entregab	les y Gestión de Información Final	116
	3.34.1.	Entregables Generales del Proyecto	116
	3.34.2.	Entregables Específicos según Roles	117
	3.34.3.	Entregables según Objetivos del proyecto	117
3.35.	Conclusi	ón	117
3.36.	Recomer	ndaciones	118
CAPÍ	TULO 4		119
4.	Rol del l	íder MEP en el provecto NOVA HABITAT	119

4.1.	Introducción al Rol119		
4.2.	Desarr	ollo del Rol	120
	4.2.1.	Flujo de Trabajo	120
	4.2.2.	Criterios Generales de Modelado	120
	4.2.3.	Recepción del Anteproyecto y Condicionantes del EIR	121
	4.2.4.	Creación y Configuración de la Plantilla MEP	121
	4.2.5.	Coordinación Multidisciplinar	121
	4.2.6.	Auditorías BIM y Control de Calidad	122
	4.2.7.	Integración 4D–5D–6D y Entregable Final	122
	4.2.8.	Diagramación del Flujo de Trabajo	123
	4.2.9.	Diagramación del Flujo de Proceso de Modelado	124
	4.2.10.	Diagramación del Flujo de Comunicación Interdisciplinar	125
	4.2.11.	Diagramación del Flujo de Proceso de Simulación construct	iva126
4.3.	Nivel o	de Desarrollo (LOD) por Elemento	127
4.4.	Modela	ado constructivo y jerárquico	128
	4.4.1.	Modelado por capas y materiales reales	128
4.5.	LOD y	LOI coherentes	129
4.6.	Codific	cación y clasificación	129
4.7.	Coordi	nación con normativa nacional	129
4.8.	Aplica	ción en entorno CDE	130
4.9.	Criterio	os Específicos de Modelado MEP.	130
	4.9.1.	Ductos y Tuberías (HVAC y Fontanería)	130
	4.9.2.	Equipos MEP (Bombas, Unidades HVAC, Tableros Eléctricos	3)131
	4.9.3.	Bandejas de Cables y Cableado Eléctrico	131

4.9.4. Dispositivos (Rejillas, Difusores, Luminarias, Tomas de Corriente,

Griferías) 132

4.10.	Nomencl	atura de Objetos y Elementos	132
	4.10.1.	Estructura de la Nomenclatura MEP	133
	4.10.2.	Ventajas de la Nomenclatura Estandarizada	133
	4.10.3.	Parámetros aplicados	134
4.11.	Plantilla	de Modelado MEP	135
4.12.	Parámetr	os establecidos por el BIM Manager	135
4.13.	Visualiza	ación y estilos preconfigurados	136
	4.13.1.	Vistas preconfiguradas	136
	4.13.2.	Navegador de Proyecto MEP.	137
	4.13.3.	Convenciones de Nomenclatura y Codificación	138
4.14.	Funciona	ılidad en Coordinación y Auditoría	139
4.15.	Normativa ejecutada en el proyecto		
4.16.	Modelad	o de sistemas MEP del proyecto	140
	4.16.1.	Modelado de sistemas de Aguas negras del proyecto	140
	4.16.2.	Modelado de sistemas de Aguas Lluvias del proyecto	141
	4.16.3.	Modelado de sistemas de Aguas Lluvias del proyecto	143
	4.16.4.	Modelado del sistema eléctrico del proyecto	144
4.17.	Definició	ón del LOIN según el BEP	146
4.18.	Herramientas de coordinación BIM para MEP.		
	4.18.1.	Detección de Interferencias y Colisiones	146
	4.18.2.	Verificación de la Calidad del Modelo	147
4.19.	Proceso o	de coordinación de sistemas MEP	147
	4.19.1.	Detección y Asignación de Interferencias	147

	4.19.2.	Resolución y Validación	148
4.20.	Entrega d	le planos y documentación técnica	149
4.21.	Planificad	ción 4D y 5D en sistemas MEP	150
	4.21.1.	Vinculación 4D: Cronograma y Simulación de la Instalación M	EP
		151	
	4.21.2.	Vinculación 5D: Extracción de Cantidades y Presupuesto	152
	4.21.3.	Extracción de Datos y Cuantificación	152
4.22.	Integracio	ón BIM 4D–5D en entregables MEP.	154
	4.22.1.	Evidencia de la Sinergia BIM en MEP	154
4.23.	Leccione	s personales y profesionales	155
	4.23.1.	Lecciones personales:	155
	4.23.2.	Lecciones profesionales:	156
	4.23.3.	Habilidad es adquiridas	156
	4.23.4.	Habilidades técnicas:	157
	4.23.5.	Habilidades organizacionales:	157
	4.23.6.	Habilidades blandas:	157
4.24.	Proyecció	ón futura del rol y del proyecto	158
	4.24.1.	Proyecciones a futuro:	158
4.25.	Conclusio	ones del capítulo	159
	4.25.1.	Síntesis de hallazgos	160
4.26.	Evaluació	ón del valor agregado del rol	161
4.27.	Recomen	daciones para futuros proyectos BIM en Ecuador	161
CAPÍ	TULO 5		164
5.	Conclusi	ones generales	164
CAPÍ	TULO 6		166

6.	BIBLIOGRAFÍA1	166
----	---------------	-----

Índice de Tablas

Tabla 1: Informaciòn del proyecto NOVA HABITAT	47
Tabla 2: Hitos, formatos y responsables	48
Tabla 3: Niveles de detalle por elementos (LOD)	51
Tabla 4: Referencias y descripción.	53
Tabla 5: Términos claves y definiciones.	54
Tabla 6: Acrónimos utilizados.	56
Tabla 7: Tabla de objetivos específicos.	58
Tabla 8: Detalles del proyecto.	59
Tabla 9: Niveles de LOD	62
Tabla 10: Categorías y responsabilidades.	63
Tabla 11: BEP y EIR del proyecto.	64
Tabla 12: Actividades asignadas.	65
Tabla 13: Etapas de flujo general.	66
Tabla 14: Recursos del equipo según usos BIM.	69
Tabla 15: Flujo de Coordinación y Clash Detection – NOVA HABITAT	75
Tabla 16: Clasificación de Interferencias.	75
Tabla 17: Fases del Proyecto y Actividades BIM.	76
Tabla 18: Procedimiento de Estimación de Cantidades y Costos en NOVA HAI	BITAT.
	77
Tabla 19: Códigos de elementos para COST-IT.	79
Tabla 20: Desglose por Disciplinas y Submodelos.	82
Tabla 21: Desglose por Niveles y Zonas.	83
Tabla 22: Modelos y submodelos de arquitectura.	84
Tabla 23: Modelos v submodelos de estructura.	84

Tabla 24: Modelos y submodelos MEP	84
Tabla 25: Modelos y submodelos de coordinación.	85
Tabla 26: Normas de información.	86
Tabla 27: Abreviaturas de disciplinas.	87
Tabla 28: Nomenclatura de vistas en Revit.	87
Tabla 29: Códigos designados	88
Tabla 30: Estrategia de federación.	89
Tabla 31: Sistemas de georreferenciación.	89
Tabla 32: Organización de archivos.	90
Tabla 33: Gestión del tamaño de los archivos.	90
Tabla 34: Sistema de gestión documental (EDMS).	91
Tabla 35: Entorno Común de Datos (CDE).	92
Tabla 36: Plataformas y formatos aceptados	92
Tabla 37: Requisitos de formatos.	93
Tabla 38: Documentos y entregables por hitos.	94
Tabla 39: Tipos de pruebas	95
Tabla 40: Clasificación de interferencias.	96
Tabla 41: Tolerancias y estándares de revisión.	96
Tabla 42: Objetivos del model chequer	98
Tabla 43: Revisión de interferencias (Navisworks)	99
Tabla 44: Informes de auditoría.	99
Tabla 45: Federación interdisciplinar.	100
Tabla 46: Estados de revisión y comentarios.	102
Tabla 47: Prioridades de Modelos.	103
Tabla 48: Diseño de Pruebas de Coordinación	104

Tabla 49: Matriz de Colisiones Detallada.	104
Tabla 50: Tolerancias de Coordinación por Tipo de Elemento	105
Tabla 51: Diseño de pruebas.	105
Tabla 52: Hitos de coordinación	107
Tabla 53: Matriz de intercambio de información.	111
Tabla 54: Estrategia de organización de archivos.	111
Tabla 55: Cronograma 4D.	112
Tabla 56: Presupuestos 5D.	113
Tabla 57: Informe de cumplimiento y control	115
Tabla 58: Entregables Generales del Proyecto.	116
Tabla 59: Entregables Específicos según Roles.	117
Tabla 60: Entregables según Objetivos del proyecto.	117
Tabla 61: Estructura de la Nomenclatura MEP.	133
Tabla 62: Normativa ejecutada en el proyecto.	140
Tabla 63: Definición del LOIN.	146
Tabla 64: Evaluación del valor agregado del rol.	161

Índice de Ilustraciones

Ilustración 1 Render referencial del proyecto	31
Ilustración 2 Ubicación del proyecto	32
Ilustración 3 Importancia de la metodología BIM	33
Ilustración 4: Anexos de los documentos	47
Ilustración 5: Organigrama de INNOBIM	49
Ilustración 6: Programas utilizados.	61
Ilustración 7: Flujo de usos BIM.	69
Ilustración 8: Flujo de trabajo modelado arquitectónico	71
Ilustración 9: Flujo de trabajo modelado estructural	72
Ilustración 10: Flujo de trabajo modelado MEP	73
Ilustración 11: Informe de conflictos.	74
Ilustración 12: Programación 4D y 5D vinculadas al modelo federado	78
Ilustración 13: Flujo de simulación de programación – 4D	80
Ilustración 14: Flujo de revisión presupuesto – 5D	81
Ilustración 15 Matriz de intercambio de información	86
Ilustración 16 Documentos base de protocolos.	88
Ilustración 17: Informes de coordinación generados interdisciplinares	95
Ilustración 18: Model checker arquitectura	97
Ilustración 19 Model checker estructura	98
Ilustración 20 Model checker MEP	98
Ilustración 21: Organización del CDE	103
Ilustración 22: Matriz de intercambio de información.	110
Ilustración 23: Presupuesto 5D.	113
Ilustración 24: Matriz de colisiones	114

Ilustración 25: Diagramación del Flujo de Trabajo	123
Ilustración 26: Diagramación del Flujo de Proceso de Modelado	124
Ilustración 27: Diagramación del Flujo de Comunicación Interdisciplinar	125
Ilustración 28: Diagramación del Flujo de Proceso de Simulación constructiva	126
Ilustración 29: Isometría modelo coordinado	127
Ilustración 30: Navegador de Proyecto MEP.	138
Ilustración 31: Isometría sistema de desagües de aguas negras.	141
Ilustración 32: Isometría sistema de desagües de aguas lluvia	142
Ilustración 33: Isometría sistema de desagües de aguas lluvia	143
Ilustración 34: Vista en planta de Conexiones eléctricas.	144
Ilustración 35: Isometría sistema eléctrico del proyecto.	145
Ilustración 36: Lista de planos entregados.	149
Ilustración 37: Simulación constructiva arquitectónica.	150
Ilustración 38: Vinculación con Presto	153
Ilustración 39: Entrega de planos al cliente.	155

CAPÍTULO 1

1. Introducción

La metodología BIM (Building Information Modeling) se ha consolidado como una herramienta clave para la optimización del diseño, planificación y toma de decisiones en proyectos constructivos, permitiendo una gestión precisa de la información desde las fases iniciales. En este contexto, el presente trabajo de titulación aplica dicha metodología para analizar y seleccionar la mejor alternativa de sistema de fachada en el proyecto Edificio Multifuncional NOVA HABITAT, ubicado en la ciudad de Puyo, Ecuador. Este proyecto de uso mixto integra espacios residenciales, comerciales y áreas comunes, por lo que la elección del sistema de envolvente resulta estratégica tanto en términos técnicos como económicos.

1.1. Descripción del proyecto

El proyecto NOVA HABITAT es un desarrollo de uso mixto que combina espacios residenciales, comerciales y de servicios comunitarios en una estructura multifuncional de mediana altura. Se localiza en la ciudad de Puyo, provincia de Pastaza, Ecuador, en un entorno urbano consolidado que demanda soluciones arquitectónicas sostenibles y funcionales. Con una superficie total de construcción de 1.485 m², el edificio ha sido concebido bajo un enfoque de eficiencia operativa y aprovechamiento óptimo del suelo urbano, incorporando unidades habitacionales tipo estudio y suite, locales comerciales, áreas de uso común, parqueaderos y espacios técnicos.

La propuesta arquitectónica considera criterios de orientación solar, ventilación cruzada y accesibilidad universal, integrando soluciones pasivas y activas para el confort térmico y acústico. Desde su fase de anteproyecto, la edificación fue modelada utilizando plataformas BIM, lo que permitió una coordinación precisa entre las disciplinas de

arquitectura, estructura e instalaciones MEP. Uno de los objetivos principales del proyecto es la evaluación comparativa de sistemas de fachada con base en parámetros constructivos, económicos, energéticos y de mantenimiento, siendo este el eje central del presente trabajo. La metodología empleada permitió simular el comportamiento técnico de cada solución y cuantificar su impacto en los costos globales del proyecto, lo que garantiza una toma de decisiones informada y alineada con los requerimientos del cliente y las normativas vigentes.

Ilustración 1 Render referencial del proyecto

1.2. Contexto del proyecto

El proyecto NOVA HABITAT se emplaza en la ciudad de Puyo, cantón Pastaza, en la región amazónica del Ecuador. La propuesta se desarrolla en un predio urbano localizado en una intersección estratégica entre **las calles**, una zona de expansión residencial y comercial con infraestructura vial consolidada y disponibilidad de servicios básicos. La topografía del terreno es predominantemente plana, con una leve pendiente que facilita el drenaje pluvial y permite un diseño eficiente de cimentaciones superficiales. La clasificación del suelo, de acuerdo con el Plan de Ordenamiento Territorial (PDOT) y las ordenanzas municipales vigentes, es de uso múltiple

(residencial-comercial), con coeficientes de ocupación que permiten una edificación de hasta cinco niveles sobre planta baja.

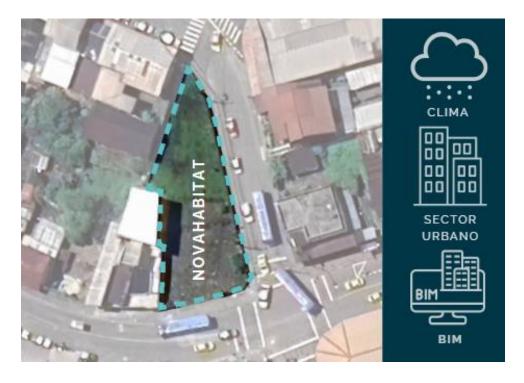


Ilustración 2 Ubicación del proyecto

Desde el punto de vista ambiental, el proyecto se ubica en una zona con alto índice de pluviosidad y humedad relativa, lo que exige considerar sistemas constructivos de envolvente que respondan adecuadamente a estas condiciones climáticas, favoreciendo la durabilidad de materiales, el confort higrotérmico interior y la eficiencia energética. Esta ubicación geográfica condiciona directamente la elección del sistema de fachada, ya que se requiere una solución técnica que minimice patologías por humedad, garantice aislamiento acústico, y reduzca el mantenimiento a largo plazo. Por tanto, el análisis contextual se convierte en un insumo determinante para la toma de decisiones dentro del modelo BIM aplicado al diseño y selección de la envolvente del edificio.

1.3. Argumentación y alcance

La implementación de la metodología BIM en el proyecto NOVA HABITAT constituye una estrategia fundamental para garantizar una toma de decisiones informada, coordinada y basada en datos precisos desde la etapa de diseño. En proyectos de uso mixto localizados en zonas con condiciones climáticas exigentes como Puyo, donde predominan la alta pluviosidad, la humedad relativa y temperaturas constantes, el diseño de la envolvente adquiere un carácter crítico. En este contexto, BIM permite no solo una coordinación eficiente entre disciplinas, sino también la integración de análisis ambientales que aportan criterios de confort y eficiencia al proceso proyectual.

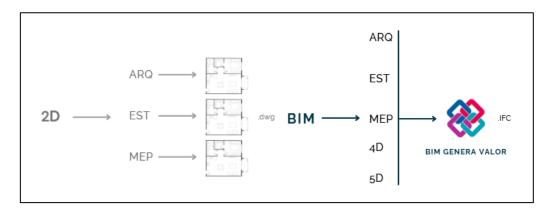


Ilustración 3 Importancia de la metodología BIM

Dentro del alcance de este estudio, se ha empleado el modelo BIM para realizar simulaciones de trayectoria solar, determinando el comportamiento de la radiación a lo largo del año y su impacto en las fachadas. Esto permitió optimizar la orientación y composición de la envolvente, reduciendo ganancias térmicas no deseadas y mejorando el desempeño energético pasivo del edificio. A su vez, se realizaron análisis climatológicos y de iluminación natural utilizando herramientas como Autodesk Insight y plugins especializados, lo cual permitió proponer soluciones constructivas que mejoran la iluminancia de los espacios interiores y reducen la dependencia de iluminación artificial durante el día.

Además, se incorporaron estrategias de confort térmico pasivo ajustadas a la realidad climática de Puyo, como el uso de materiales con inercia térmica adecuada, protección solar, ventilación cruzada controlada y elementos de control higrotérmico en los sistemas de cerramiento. Estas estrategias fueron evaluadas comparativamente mediante simulaciones dentro del entorno BIM, relacionando aspectos técnicos con criterios de eficiencia energética, sostenibilidad y viabilidad constructiva.

En conjunto, el alcance del proyecto BIM no se limita únicamente al modelado geométrico y coordinación técnica, sino que se extiende a la evaluación multicriterio de alternativas de fachada, vinculando diseño, ambiente, costos y planificación dentro de una plataforma integral que permite entregar soluciones coherentes con los requerimientos del proyecto y los desafíos del entorno

1.4. Justificación

La decisión de implementar la metodología BIM en el proyecto NOVA HABITAT responde a la necesidad de abordar de forma integral y coordinada el diseño y análisis técnico de su sistema de fachada, considerado un elemento constructivo clave en términos de eficiencia energética, confort térmico y desempeño ambiental. En un contexto climático como el de Puyo, caracterizado por una alta humedad relativa, elevada pluviosidad y temperatura constante, la envolvente arquitectónica requiere responder no solo a criterios estéticos y estructurales, sino también a exigencias de protección climática, durabilidad y eficiencia operativa.

El uso de BIM en este proyecto permite modelar, simular y comparar con una alternativa de fachada, integrando datos de geometría, comportamiento térmico, iluminación natural, costos y tiempos de instalación en un entorno colaborativo. Estas capacidades han sido estructuradas conforme a los lineamientos definidos en el EIR

(Employer's Information Requirements) del proyecto, el cual establece los objetivos de información, los usos BIM aplicables, el nivel de desarrollo (LOD), los estándares de calidad, y los entregables requeridos. Este documento guía la generación y gestión de la información técnica durante el ciclo de vida del proyecto, garantizando trazabilidad, cumplimiento normativo y alineación con los intereses del cliente.

La metodología también facilita la detección temprana de conflictos, la estandarización de procesos de modelado, y la automatización de tareas vinculadas al análisis de desempeño, como simulaciones de iluminación natural y eficiencia energética. Gracias a esto, es posible seleccionar un sistema de envolvente que maximice la relación costo-beneficio, minimice el mantenimiento y contribuya a mejorar la calidad ambiental interior del edificio.

En resumen, BIM no solo proporciona una plataforma de coordinación técnica, sino que se convierte en una herramienta estratégica de análisis para tomar decisiones basadas en datos, alineadas al EIR del proyecto y a los objetivos de sostenibilidad, confort y optimización de recursos definidos desde la etapa inicial de diseño.

1.5. Problemática

El proyecto NOVA HABITAT plantea un reto técnico y metodológico vinculado a la selección del sistema de fachada más adecuado para un edificio de uso mixto emplazado en condiciones climáticas particulares, como las de la ciudad de Puyo. El cliente ha establecido desde el inicio del proceso una serie de requerimientos explícitos en el documento EIR, en los que se definen los objetivos generales del proyecto, los entregables digitales, los niveles de desarrollo (LOD), los usos BIM a implementar, y las expectativas de desempeño técnico, ambiental y económico de la envolvente.

Ante estos requerimientos, surge la necesidad de desarrollar un BEP (Plan de Ejecución BIM) que articule de forma estructurada las estrategias de diseño, modelado, coordinación y análisis que permitan dar respuesta a las exigencias planteadas en el EIR. El desafío principal radica en evaluar comparativamente una solución constructiva para la fachada, considerando múltiples variables: eficiencia térmica, durabilidad, costos directos e indirectos, tiempos de instalación, mantenimiento futuro y comportamiento frente al clima local.

El problema no se limita únicamente a la selección del material o sistema constructivo, sino que implica integrar dicha elección dentro de un proceso BIM que asegure coherencia técnica entre disciplinas, trazabilidad de la información, interoperabilidad entre plataformas, y cumplimiento de normativas y estándares de calidad. Esto exige una gestión eficiente de la información y una coordinación rigurosa entre los actores del proyecto, lo cual refuerza la necesidad de adoptar flujos de trabajo colaborativos, protocolos claros, y plataformas de análisis que permitan evaluar objetivamente el impacto de cada alternativa.

En consecuencia, el presente estudio aborda el problema desde una perspectiva metodológica, proponiendo el uso de BIM como herramienta integral para la evaluación de envolventes arquitectónicas, estructurada a partir del EIR y consolidada mediante la elaboración y aplicación de un BEP específico para el proyecto NOVA HABITAT

CAPÍTULO 2

2. Marco teórico.

2.1. BIM como herramienta de gestión integral en proyectos de edificación.

La metodología BIM ha transformado la manera de crear, diseñar, planificar y ejecutar proyectos de construcción en todo el mundo. A diferencia de los métodos tradicionales,

BIM permite centralizar la información técnica, gráfica y documental en un entorno digital colaborativo, facilitando la toma de decisiones, la coordinación interdisciplinaria y el control de los procesos constructivos (Eastman, 2011).

Diversos autores y estudios coinciden en que BIM no debe entenderse únicamente como un software, sino como una metodología integral que abarca personas, procesos y tecnología, y que impacta positivamente en la eficiencia y sostenibilidad de los proyectos (Smith, 2014; López, 2021). En este sentido, la correcta implementación de BIM en las primeras etapas de un proyecto contribuye a minimizar errores, optimizar recursos y mejorar la calidad de los resultados.

En el caso del proyecto Edificio de uso mixto NOVAHABITAT, se optó por aplicar BIM como eje estratégico desde la fase de planificación, con el objetivo de estructurar la información técnica, coordinar equipos de trabajo y garantizar que las decisiones de diseño y construcción se basen en datos precisos y actualizados.

2.2. Planificación de proyectos de construcción en entornos BIM.

La planificación es una de las fases más críticas en cualquier proyecto constructivo. La falta de coordinación entre disciplinas, los errores de diseño no detectados a tiempo y la escasa trazabilidad de la información son algunas de las causas frecuentes de sobrecostos y retrasos en obra (Morales, 2019).

BIM ofrece una alternativa eficaz para superar estas limitaciones al permitir la planificación virtual del proyecto antes de su ejecución física. La utilización de modelos 3D coordinados y simulaciones 4D permite identificar interferencias, optimizar la secuencia constructiva y anticipar problemáticas que, de otra forma, solo se llegan a verificar en obra.

En el proyecto NOVAHABITAT, esta capacidad de planificación anticipada se potenció mediante la elaboración de documentos clave como el EIR (Requisitos de Información del Cliente) y el BEP (Plan de Ejecución BIM), los cuales definieron los flujos de trabajo, los estándares de calidad y los niveles de detalle requeridos en cada etapa.

2.3. La importancia de la coordinación interdisciplinaria en entornos BIM.

Uno de los principios fundamentales de la metodología BIM es la integración y coordinación efectiva entre las distintas disciplinas involucradas en el proyecto: arquitectura, estructura, instalaciones MEP, entre otras. Esta coordinación se logra a través de modelos federados que permiten visualizar el proyecto de forma integral y detectar posibles interferencias antes de la construcción (Sacks et al., 2018).

La detección temprana de colisiones mediante BIM reduce significativamente los conflictos en obra, optimiza los tiempos de ejecución y mejora la calidad final del proyecto. En NOVAHABITAT, la implementación de procesos de coordinación periódicos, el uso de herramientas como Navisworks Manage y la gestión de información en el Entorno Común de Datos (CDE) son clave para lograr este nivel de integración.

2.4. BIM y sostenibilidad: hacia una construcción más eficiente y responsable.

Más allá de los beneficios técnicos y organizativos, BIM se ha consolidado como una herramienta que contribuye a la sostenibilidad en los proyectos de construcción. Al permitir simular el comportamiento energético, optimizar el uso de materiales y planificar de forma eficiente los procesos constructivos, BIM facilita la toma de decisiones que minimizan el impacto ambiental de las edificaciones (Smith, 2014).

La aplicación de BIM en proyectos de mediana escala en Ecuador no solo mejora la eficiencia técnica, sino que permite incorporar criterios de sostenibilidad de manera

práctica y medible. En el caso de NOVAHABITAT, estas estrategias se materializaron en la selección responsable de materiales, el análisis de eficiencia energética y la optimización de procesos constructivos, en coherencia con los objetivos planteados en el EIR y el BEP.

2.5. Metodología

2.5.1. Objetivo general

Aplicar la metodología BIM para analizar y seleccionar la alternativa más eficiente de sistema de fachada para el proyecto NOVA HABITAT, integrando variables técnicas, económicas, climáticas y de confort, en respuesta a los requerimientos definidos en el EIR y conforme a los flujos establecidos en el BEP del proyecto

2.5.2. Objetivos específicos

- Desarrollar modelos BIM multidisciplinarios (Arquitectura, Estructura, MEP) con niveles de detalle progresivos (LOD 300–350) que permitan evaluar el sistema de envolvente en condiciones reales del sitio.
- Aplicar simulaciones de análisis solar, iluminación natural y comportamiento térmico pasivo para determinar el desempeño ambiental de cada alternativa de fachada.
- Vincular los modelos BIM al cronograma de obra (4D) y al presupuesto (5D), permitiendo evaluar el impacto de cada solución en el tiempo y en los costos del proyecto.
- Coordinar los modelos mediante procesos de detección de interferencias (clash detection) y auditoría técnica, garantizando la viabilidad constructiva de la alternativa seleccionada.
- Sistematizar la información generada en el entorno común de datos (CDE), aplicando protocolos definidos en el BEP y asegurando la trazabilidad y calidad de los entregables

2.5.3. Resultados esperados

- Generación de un modelo federado que permita la evaluación comparativa de al menos tres alternativas de sistemas de fachada, considerando parámetros técnicos, estéticos, económicos y de sostenibilidad.
- Elaboración de simulaciones de desempeño ambiental (trayectoria solar, iluminación natural, transferencia térmica) integradas al modelo digital, que justifiquen técnicamente la elección de la alternativa más eficiente.
- Producción de cronogramas simulados y presupuestos detallados vinculados al modelo 5D, con proyecciones de tiempo de instalación y costos por sistema propuesto.
- Definición de criterios técnicos de diseño aplicables a proyectos futuros en contextos similares, promoviendo la implementación de soluciones de envolvente adaptadas a condiciones climáticas ecuatoriales.
- Entrega de documentación técnica estructurada en el CDE, conforme al EIR, que respalde la toma de decisiones del cliente y facilite las fases posteriores de ejecución, operación y mantenimiento del activo

CAPÍTULO 3

- 3. BEP: BIM Execution Plan.
- 3.1. Alcance y enfoque BIM del equipo de trabajo.

3.1.1. Implementación de la metodología BIM

La implementación en el proyecto NOVA HABITAT se enfocó en establecer una estructura de gestión digital que permitiera evaluar técnicamente las alternativas de fachada mediante procesos coordinados, automatizados y trazables. Bajo un enfoque normativo basado en ISO 19650, se organizaron flujos de información, herramientas interoperables y entregables vinculados al análisis de desempeño ambiental, costos y planificación constructiva. Esta aplicación práctica de BIM permitió no solo consolidar los modelos técnicos, sino convertirlos en instrumentos de decisión estratégica orientados

a la eficiencia constructiva, sostenibilidad y control de riesgos desde etapas tempranas del proyecto.

3.1.2. Protocolos y documentación

La correcta implementación de la metodología BIM en el proyecto NOVA HABITAT requirió la definición y aplicación de protocolos normativos que estructuren el flujo de información y aseguren la calidad de los datos generados durante el ciclo de vida del proyecto. Estos protocolos fueron establecidos conforme a los lineamientos del EIR y desarrollados en detalle dentro del BEP, siguiendo estándares internacionales de gestión colaborativa de la información.

Como base normativa, se adoptaron los lineamientos de la ISO 19650, complementados con referencias técnicas específicas como el Manual de Nomenclatura de Documentos de buildingSMART y el Manual de Nomenclatura de Elementos de BIM Learning. Estos documentos proporcionaron una guía sólida para la estructuración de códigos, clasificación de archivos y elementos modelados, garantizando coherencia, trazabilidad y uniformidad entre disciplinas. La adaptación de estos lineamientos se concretó en los manuales internos de la empresa, en los que se especificaron las convenciones propias del proyecto, asegurando su aplicabilidad al entorno local y las particularidades del edificio multifuncional.

Entre la documentación generada se incluyen: el Plan de Ejecución BIM (BEP), los contratos y asignaciones de roles BIM, el protocolo de nomenclatura para documentos y elementos modelados, el manual gráfico de estilos, y el cronograma de entregables por disciplina. Todo este conjunto fue desarrollado para asegurar el control documental, el cumplimiento de los flujos de revisión, la estandarización del modelado y el orden jerárquico de archivos en el Entorno Común de Datos (CDE), implementado en Autodesk

Construction Cloud. Este entorno garantizó la seguridad de la información, la trazabilidad de versiones, y la adecuada transición entre estados de la documentación: WIP, Compartido, Publicado y Archivado.

En conjunto, estos protocolos y documentos han permitido consolidar un proceso de modelado riguroso, coordinado y adaptable, orientado a la toma de decisiones técnica y estratégica sobre el sistema de fachada, conforme a los objetivos establecidos en el EIR

3.1.3. Control de cumplimiento y plazos de entrega

El control del cumplimiento y de los plazos de entrega en el proyecto NOVA HABITAT se gestionó mediante una planificación estructurada de hitos técnicos definida en el BEP y alineada con los requerimientos del EIR. Para garantizar que los entregables respondan a los niveles de desarrollo (LOD) y calidad requeridos, se estableció un sistema de seguimiento basado en revisiones periódicas, flujos de aprobación y registros en el entorno común de datos (CDE).

Cada disciplina fue responsable de generar y subir sus modelos al entorno WIP de Autodesk Construction Cloud, donde pasaban por un proceso de revisión técnica, coordinación y validación antes de ser promovidos a los estados de Compartido y Publicado. Este flujo aseguraba que ningún entregable avance sin control de calidad previo, trazabilidad documental y verificación de cumplimiento técnico. Las fechas de entrega, aprobaciones parciales y reportes de revisión se documentaron en actas de coordinación y matrices de seguimiento integradas al cronograma maestro del proyecto.

Se establecieron auditorías de modelo por disciplina, arquitectura, estructura y MEP; verificando aspectos como estructura del modelo, cumplimiento del protocolo de nomenclatura, asignación de parámetros, georreferenciación, uso de familias estándar y consistencia entre vistas, hojas y niveles. Estos controles técnicos se registraron en

informes de auditoría respaldados por plantillas internas de revisión, conforme a lo estipulado en el manual de auditoría del proyecto.

Adicionalmente, se aplicaron flujos automatizados de validación en ACC y hojas de control compartidas en tiempo real mediante Google Sheets, lo que permitió al equipo BIM monitorear el avance de entregables, anticipar desviaciones y reprogramar tareas críticas en función de las observaciones generadas. Esta integración entre entorno digital, metodología y gestión documental permitió cumplir con los plazos pactados y mantener altos estándares de calidad técnica en cada fase del modelado

3.1.4. Seguridad de datos y transparencia

La seguridad de la información y la transparencia en la gestión de datos fueron pilares fundamentales en la implementación BIM del proyecto NOVA HABITAT. Para garantizar la integridad, trazabilidad y control de acceso a los modelos y documentación técnica, se configuró un Entorno Común de Datos (CDE) a través de la plataforma Autodesk Construction Cloud (ACC), en cumplimiento con los principios establecidos por la norma ISO 19650 y los protocolos definidos en el BEP.

Cada integrante del equipo BIM firmó un contrato laboral en el que se estipularon compromisos explícitos de confidencialidad, ética profesional y transparencia en el manejo de la información técnica, enmarcados en los estándares BIM vigentes. Este documento contractual reforzó la responsabilidad individual sobre la gestión de los datos, y su cumplimiento fue considerado un componente obligatorio dentro del esquema de gobernanza digital del proyecto.

En cuanto a la operatividad del CDE, se asignaron permisos de acceso diferenciados según los roles definidos en el organigrama BIM: lectura, edición o aprobación. Estas restricciones garantizan que cada miembro acceda únicamente a la

información relevante para su disciplina, protegiendo la integridad del contenido y evitando modificaciones no autorizadas. Además, cada acción dentro de la plataforma queda registrada con trazabilidad completa (usuario, fecha, tipo de modificación), lo que permite un monitoreo constante y verificable del flujo de información.

El sistema gestionó la información en estados jerárquicos (WIP, Compartido, Publicado, Archivado), en los que las transiciones entre fases estuvieron condicionadas a controles de calidad, validaciones formales y cumplimiento de requisitos establecidos en el BEP. A su vez, la plataforma ACC permitió una gestión de incidencias y observaciones en tiempo real, con comentarios geolocalizados sobre el modelo y flujos de aprobación, fortaleciendo la coordinación interdisciplinar y asegurando total visibilidad sobre las decisiones adoptadas en el proceso de selección del sistema de fachada

3.2. Alcance de las actividades

3.2.1. Seguridad de datos y transparencia

El EIR (Employer's Information Requirements) es el documento estratégico que establece las necesidades de información del cliente y los lineamientos que deben guiar la ejecución del proyecto bajo metodología BIM. En el caso del proyecto NOVA HABITAT, este documento fue determinante para estructurar el modelo de gestión digital y orientar los procesos de diseño, modelado, coordinación y análisis técnico, particularmente en la evaluación del sistema de fachada.

El EIR del proyecto incluyó una serie de componentes esenciales que permitieron al equipo BIM desarrollar un enfoque metodológico alineado con los objetivos del cliente. Entre los elementos definidos se encuentran: descripción básica del proyecto, equipo de trabajo y roles, objetivo general y específicos, usos BIM, plan de entrega de información (IDP), requisitos de información, plantillas de proyecto, nivel de detalle

(LOD), nivel de información (LOIN), responsabilidades por disciplina, protocolo de coordinación, estándares de calidad y auditoría, protocolo de nomenclatura, software autorizado, entregables formales y conclusiones de propuesta. Todos estos aspectos fueron posteriormente integrados y desarrollados en el BEP, asegurando su aplicación operativa en el proyecto.

Desde una perspectiva académica, el EIR constituye el punto de partida contractual para la gestión de información en entornos BIM y debe ser lo suficientemente detallado para alinear expectativas, procesos y entregables (Eastman et al., 2011). Asimismo, su desarrollo se realizó conforme a los principios de la norma ISO 19650-1, la cual establece que este documento debe comunicar claramente las condiciones para el uso efectivo de la metodología BIM, la trazabilidad de la información y el cumplimiento de estándares colaborativos (BSI, 2018).

A partir del EIR, se definieron los usos BIM prioritarios para el proyecto: diseño de especialidades, coordinación 3D, planificación 4D, estimación de costos 5D, análisis de iluminación natural, simulaciones térmicas pasivas y generación de documentación técnica interoperable. Estos usos, aplicados estratégicamente al análisis del sistema de fachada, permitieron desarrollar un flujo de trabajo coherente, colaborativo y altamente técnico.

3.2.2. Usos BIM aplicados según el EIR

Los usos BIM aplicados en el proyecto NOVA HABITAT fueron definidos a partir de los lineamientos establecidos en el EIR y desarrollados detalladamente en el BEP, respondiendo a una estructura metodológica alineada a las mejores prácticas internacionales y al marco normativo de la ISO 19650. Estos usos permitieron estructurar flujos de trabajo eficientes y colaborativos para evaluar de manera técnica y cuantitativa

las alternativas de fachada propuestas para el edificio. El EIR contempló los siguientes usos BIM prioritarios:

- Análisis de requerimientos del programa de arquitectura: se utilizó BIM como
 herramienta para validar espacialmente los requerimientos funcionales del cliente
 y garantizar la coherencia del diseño arquitectónico con las condiciones de sitio y
 normativa local.
- Obtención de documentación: se generaron entregables gráficos y no gráficos (planos, modelos, reportes) a partir de los modelos BIM, asegurando precisión geométrica, consistencia documental y trazabilidad digital.
- Diseño de especialidades: se modelaron las disciplinas de arquitectura, estructura
 y MEP con niveles de desarrollo progresivos, integrando parámetros técnicos,
 constructivos y ambientales para facilitar la toma de decisiones.
- Coordinación 3D: se ejecutaron procesos de federación y detección de interferencias mediante Navisworks Manage, garantizando la compatibilidad geométrica entre disciplinas y reduciendo riesgos de colisiones en obra.
- Modelado 4D / Planificación de fases: se vinculó el modelo federado con cronogramas de obra, simulando la secuencia constructiva de cada alternativa de fachada para evaluar su impacto temporal.
- Estimación de cantidades y costos (5D): se integraron herramientas como Cost-It y Presto para extraer cantidades directamente del modelo y realizar presupuestos comparativos de cada solución de envolvente.
- Revisión de modelos de diseño: se implementaron procesos de validación continua por disciplina, con revisiones técnicas, auditorías internas y flujos de aprobación documentados en el entorno común de datos (CDE).

Estos usos BIM, definidos con claridad en el EIR, no solo aportaron valor técnico en la etapa de diseño, sino que permitieron una toma de decisiones estratégica, reduciendo incertidumbre y anticipando problemas antes de la ejecución. Como señalan Succar (2009) y Eastman et al. (2011), la correcta definición e implementación de usos BIM es fundamental para lograr eficiencia, trazabilidad y mejora continua en proyectos colaborativos, especialmente cuando se integran análisis multicriterio como los vinculados a envolventes arquitectónicas.

NHBT-INB-FP-XX-EIR-MNG-001-EIR-S0-01

NHBT-INB-FP-XX-TMP-COO-001-Plant.Mod.Arg. - SO-01 NHBT-INB-FP-XX-TMP-COO-001-Plant.Mod.Est. - SO-01 NHBT-INB-FP-XX-TMP-COO-001-Plant.Mod.MEP.-SO-01

Ilustración 4: Anexos de los documentos

3.3. Información del proyecto

Tabla 1: Informaciòn del proyecto NOVA HABITAT

Promotor	INNOBIM	
Nombre Del Proyecto	NOVA HABITAT	
Ubicación Del Proyecto	Av. Francisco de Orellana y calle Ceslao	
	Marin, Puyo, Ecuador.	
Descripción Breve Del Proyecto	Edificio de uso mixto de vivienda y	
	comercio.	
Área Del Predio	703.80 m2	

Área De Construcción	
Número De Predio	

3.4. Hitos relevantes

Tabla 2: Hitos, formatos y responsables.

НІТО	FORMATO	RESPONSABLE	
Eir	PDF	Gerente BIM	
Pre bep	PDF	Gerente BIM	
Вер	PDF	Gerente BIM	
Anteproyecto volumétrico	PDF	Coordinador BIM	
Plantillas de trabajo	RFA	Coordinador BIM	
Modelo arquitectónico	RVT	Líder arquitectura	
Modelo estructural	Modelo estructural RVT Líder estruct		
Modelo mep	RVT	Líder MEP	
Coordinación de interferencias	NWD	Coordinador BIM	
Planos arquitectónicos	PDF	Líder arquitectura	
Planos estructurales	PDF	Líder estructura	
Planos mep	PDF	Líder MEP	
Simulación constructiva	NWD	Coordinador BIM	
Presupuesto de obra	presto	Gerente/Coordinador BIM	

3.5. Organigrama del equipo de trabajo.

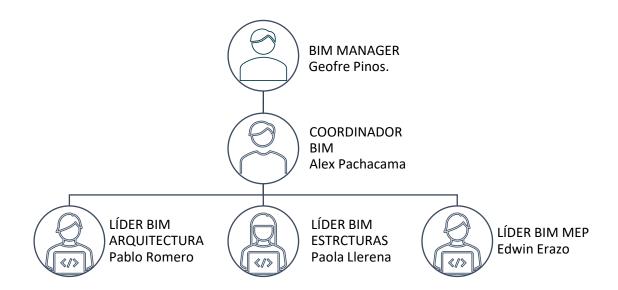


Ilustración 5: Organigrama de INNOBIM

3.6. Roles y responsabilidades

Gerente BIM

- Coordinación de diseño arquitectónico base
- Supervisar y coordinar todas las actividades relacionadas con BIM en el proyecto.
- Asegurar la integración y colaboración entre todas las disciplinas.
- Gestionar la implementación de BIM y garantizar el cumplimiento de los objetivos del proyecto.
- Análisis de costos y presupuestación general de la Obra
- Planificación del cronograma de Obra

Coordinador BIM

- Entrega de Plantillas de vista de cada disciplina y libro de estilos.
- Coordinar el flujo de información entre los diferentes equipos y disciplinas.

- Asegurar la correcta implementación de los estándares y protocolos BIM.
- Revisión de calidad de los modelos
- Realizar revisiones periódicas del modelo BIM para identificar y resolver posibles conflictos.
- Verificación de cumplimiento de las normativas de los modelos

Líder arquitectura

- Creación y supervisión del modelo 3D
- Colaborar con los equipos estructurales y MEP para asegurar la coherencia del diseño.
- Participar en la elaboración del libro de estilo de arquitectura y plantillas de vistas de arquitectura
- Resolución de las colisiones disciplinares
- Elaboración de la documentación y entregables de acuerdo con lo descrito en el contrato según su disciplina.

Líder estructura

- Diseñar, analizar y modelar la estructura del edificio, asegurando su estabilidad y seguridad.
- Coordinar con el equipo de arquitectura para integrar los elementos estructurales en el diseño general.
- Participar en la elaboración del protocolo de estilo y plantillas de vistas
- Resolver las colisiones disciplinares
- Elaboración de la documentación y entregables de acuerdo con lo descrito en el contrato según su disciplina.

Líder MEP

- Diseñar, planificar y modelar los sistemas mecánicos, eléctricos e hidrosanitarios del proyecto.
- Asegurar que los sistemas MEP cumplan con las normativas vigentes y no interfieran con otros elementos del proyecto.
- Colaborar con los equipos de arquitectura y estructura para integrar los sistemas MEP en el diseño general.
- Participar en la elaboración del protocolo de estilo y plantillas de vistas
- Desarrollo de los flujos de trabajo de la disciplina
- Resolver las colisiones disciplinares
- Elaboración de la documentación y entregables de acuerdo con lo descrito en el contrato según su disciplina.

3.7. Niveles de detalle por elemento (LOD)

Tabla 3: Niveles de detalle por elementos (LOD)

	Usos BIM	Descripción	LOD
1	Análisis de requerimientos del programa de arquitectura	Es el proceso en el cual se pueden plasmar los requerimientos del Cliente, este proceso permitió la toma de decisiones de diseño estructural, arquitectónico y MEP en la cual se determinó la posición de las salas de cine, restaurante, oficinas, baños y patio de comidas. Asimismo, se recomendó la fachada y las mejores opciones de para la cubierta del patio de comidas.	200
2	Obtención de documentación	Generar documentación gráfica y no gráfica que permita el entendimiento claro del proyecto para su construcción mediante el uso del entorno común de datos, en este caso Autocad Construction Cloud	200
3	Diseño de especialidades	Desarrollo de los modelos arquitectónico, estructural y MEP, tomando en cuenta las necesidades del proyecto (aislamiento acústico, iluminación en salas, estructura, sistemas MEP, recolección de aguas lluvia)	300

4	Modelede 4D	Planificación de la fase de construcción tomando en	300-
4	Modelado 4D	cuenta todas especialidades	350

3.8. Introducción al Plan de Ejecución BIM (BEP)

El Plan de Ejecución BIM (BEP) es un documento estratégico que define cómo se implementará la metodología Building Information Modeling (BIM) a lo largo del ciclo de vida de un proyecto, estableciendo los procesos, responsabilidades, estándares y flujos de información para garantizar una correcta colaboración entre los diferentes actores involucrados. Según la ISO 19650, el BEP es esencial para coordinar la producción y el intercambio de información en entornos colaborativos, asegurando que los requisitos del cliente se cumplan mediante un enfoque sistemático y trazable (ISO 19650-1, 2018).

En el caso del proyecto NOVA HABITAT, ubicado en Puyo, Ecuador, el BEP se configura como una herramienta clave para garantizar la calidad, sostenibilidad y eficiencia del desarrollo constructivo, integrando estándares internacionales, protocolos de intercambio y herramientas digitales como Revit, BIM 360, Navisworks y Presto. Tal como establece la Guía para la Elaboración del BEP del Gobierno de España, el BEP "debe adaptarse a las necesidades específicas de cada proyecto, estableciendo las condiciones particulares de producción, coordinación y entrega de los modelos BIM". (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 9) Para este proyecto, el BEP articula el uso de modelos multidisciplinares, planificación 4D, presupuestación 5D y mantenimiento 6D, asegurando así una visión integral y sustentable en todas las fases del ciclo de vida del edificio.

3.8.1. Referencias

Este apartado establece el marco normativo y técnico en el que se basa la implementación BIM del proyecto Edificio Multifuncional NOVA HABITAT. Incluye

normas internacionales, estándares nacionales, guías metodológicas y documentos internos que definen los criterios para el modelado, nomenclatura, coordinación, auditoría, intercambio y entrega de información. Estas referencias aseguran la coherencia, interoperabilidad, trazabilidad y calidad durante todas las fases del ciclo de vida del proyecto, y su aplicación es obligatoria para todos los actores involucrados.

Tabla 4: Referencias y descripción.

Referencia	Descripción	
ISO 19650-1, 2 y 3	Normas internacionales para la gestión de la información en entornos BIM. Regulan el ciclo de vida del activo, el entorno común de datos (CDE) y los flujos de trabajo colaborativos.	
ISO 9001:2015	Norma de gestión de calidad aplicada al control y aseguramiento de procesos BIM y entregables.	
ISO 14001:2015	Norma de gestión ambiental para procesos de diseño y construcción sostenibles.	
ISO 45001:2018	Norma para gestión de la seguridad y salud en el trabajo, aplicable al diseño y planificación de obra BIM.	
EN 17412-1:2020	Norma europea que define el Nivel de Necesidad de Información (LOIN), clave para estructurar el contenido informativo de los modelos BIM.	
BS 1192:2007 + A1:2015	Estándar británico para producción colaborativa de información y codificación de archivos.	
AIA G202-2013	Protocolo del Instituto Americano de Arquitectos que establece los usos BIM por fase y roles informativos.	
IFC (ISO 16739)	Formato abierto para interoperabilidad entre plataformas BIM y software especializado.	
Estrategia Nacional BIM de Colombia (2020–2026)	Marco estratégico latinoamericano que orienta la adopción de BIM en la región.	
Manual de Nomenclatura BIM – INNOBIM Studio	Documento interno que define la codificación de archivos, objetos y planos del proyecto según ISO 19650 y buildingSMART.	
EIR – Requisitos de Intercambio de Información	Documento contractual del cliente que define los entregables esperados, LOD/LOI, nomenclatura, auditorías y herramientas.	
Protocolo BIM y Criterios Generales de Modelado	Documento que regula el uso del CDE, nomenclatura, auditorías, granularidad y criterios de interoperabilidad.	

Plan de Ejecución BIM Documento principal que articula los procesos, roles,	
(BEP)	herramientas, planificación y controles del desarrollo BIM del
	proyecto.

3.8.2. Definiciones

Este apartado tiene como propósito establecer un glosario común de términos esenciales utilizados en la implementación BIM del proyecto. La claridad conceptual es fundamental para asegurar una comunicación efectiva entre los distintos agentes del proyecto y evitar ambigüedades en la interpretación de procesos, responsabilidades y entregables. Tal como lo establece la Guía para la Elaboración del BEP (2020), "la definición clara y compartida de los términos es uno de los pilares para la colaboración eficaz en entornos BIM" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 6).

A continuación, se presenta una tabla con los términos clave, sus definiciones y su aplicación directa en el proyecto.

Tabla 5: Términos claves y definiciones.

Término	Definición	Aplicación BIM en el Proyecto	
BEP (Plan de Ejecución BIM)	Documento que define cómo se implementará BIM en un proyecto, especificando procesos, roles, entregables y herramientas	Guía principal para la gestión colaborativa del modelo BIM en NOVA HABITAT desde diseño hasta operación	
EIR (Exchange Information Requirements)	Requisitos del cliente sobre la información que debe generarse, intercambiarse y entregarse en el proyecto	Define los entregables informativos exigidos por el promotor, incluyendo formatos, niveles de detalle y cronograma	
LOD (Level of Development)	Nivel de desarrollo del modelo BIM, incluyendo precisión geométrica y atributos no gráficos	Se aplican LOD 300-350 para arquitectura y estructuras, y LOD 300 para MEP, conforme a la fase de diseño constructivo	
LOI (Level of Information)	Nivel de información no gráfica que debe contener un objeto BIM	Define los parámetros técnicos, de mantenimiento y clasificación de los elementos modelados.	

LOIN (Level of Information Need)	Combinación de LOD + LOI + lógica de entrega según EN 17412	Permite ajustar la carga informativa del modelo según su uso y etapa del proyecto
Modelo Federado	Integración de modelos disciplinares en una sola vista común para coordinación	Permite identificar interferencias y validar consistencia espacial entre ARQ, EST y MEP con Navisworks.
CDE (Common Data Environment)	Entorno común de datos donde se almacena, gestiona y comparte toda la información del proyecto	Implementado con Autodesk Construction Cloud (ACC) para control de versiones, trazabilidad y flujos de revisión
Clash Detection	Proceso automatizado de detección de interferencias entre modelos BIM	Se aplica en Navisworks para validar el modelo federado antes de la entrega y durante revisiones periódicas.
Entregables BIM	Documentos y archivos que constituyen los productos formales del proceso BIM	Incluyen modelos RVT/IFC, planos PDF, reportes NWD, cronogramas 4D y presupuestos 5D, definidos en el IDP.
IDP (Information Delivery Plan)	Plan que define qué información se debe entregar, cuándo y en qué formato	Cronograma contractual de entregables BIM alineado al EIR y al BEP del proyecto.
Interoperabilidad	Capacidad de distintos sistemas y software de compartir e interpretar información sin pérdida de datos	Se asegura mediante formatos abiertos (IFC) y el cumplimiento de normas ISO 16739.
Roles BIM	Funciones y responsabilidades asignadas a cada participante en el proyecto	Incluyen BIM Manager, Coordinador BIM, Líderes disciplinares y modeladores, conforme a la estructura definida por INNOBIM Studio.

3.8.3. Acrónimos

Este apartado recopila los acrónimos y abreviaturas clave utilizados en el Plan de Ejecución BIM (BEP) y en la documentación técnica del proyecto NOVA HABITAT. Su propósito es estandarizar la terminología para todos los actores involucrados, garantizando claridad y coherencia en los procesos de comunicación, modelado, documentación y gestión de información. Tal como sugiere la Guía para la Elaboración

del BEP, la inclusión de una lista de acrónimos facilita la lectura del documento y evita interpretaciones erróneas en entornos colaborativos (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 6).

Tabla 6: Acrónimos utilizados.

Acrónimo	Significado	Aplicación en el Proyecto
ВЕР	BIM Execution Plan	Define cómo se implementará BIM en NOVA HABITAT
EIR	Exchange Information Requirements	Documento del cliente con requerimientos informativos
CDE	Common Data Environment	Plataforma centralizada (ACC) para gestión de archivos y modelos
LOD	Level of Development	Nivel de desarrollo geométrico e informativo de un objeto BIM
LOI	Level of Information	Información no gráfica asociada a un objeto
LOIN	Level of Information Need	Especificación combinada de LOD + LOI + lógica de entrega
MIDP	Master Information Delivery Plan	Cronograma maestro de entregas de información
IDP	Information Delivery Plan	Plan específico de entregables por fase
IFC	Industry Foundation Classes	Formato abierto para interoperabilidad entre software BIM
ACC	Autodesk Construction Cloud	Plataforma usada como CDE para control documental
RVT	Revit Project File	Formato nativo del modelo BIM en Autodesk Revit
NWD/	Navisworks File	Formato de modelos federados y de
NWC		coordinación
WIP	Work In Progress	Archivos en desarrollo no listos para revisión externa
ISO	International Organization for Standardization	Normas internacionales de gestión de calidad, seguridad y BIM
EPD	Environmental Product Declaration	Certificación ambiental de materiales utilizados
MEP	Mechanical, Electrical and Plumbing	Sistemas electromecánicos modelados en el proyecto

ARQ	Arquitectura	Disciplina del diseño arquitectónico en Revit
EST	Estructura	Disciplina estructural del proyecto
COO	Coordinación	Responsable de federación y revisión interdisciplinaria

3.9. Plan de Ejecución BIM

La implementación de la metodología BIM en el proyecto NOVA HABITAT, ubicado en Puyo, Ecuador, responde a la necesidad de optimizar la planificación, coordinación y sostenibilidad del desarrollo urbano contemporáneo. Este enfoque busca garantizar la trazabilidad de la información, la eficiencia en los procesos constructivos y la transparencia en la toma de decisiones mediante un entorno digital colaborativo. Tal como lo destaca la Guía para la Elaboración del BEP, "el BEP permite establecer un marco común para que todos los agentes colaboren con objetivos alineados y un lenguaje compartido" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 10).

La visión de este BEP es consolidar una gestión integral de la información desde la fase de diseño hasta la operación del activo, aplicando los principios de interoperabilidad, control de calidad y mejora continua. Con ello, se busca contribuir a la sostenibilidad ambiental, la eficiencia energética y la reducción de errores y sobrecostos durante el ciclo de vida del edificio.

3.9.1. Objetivo General

Optimizar la gestión de la información del proyecto NOVA HABITAT mediante la implementación de la metodología BIM, garantizando eficiencia, trazabilidad, sostenibilidad y calidad en las fases de diseño, construcción y operación del activo.

3.9.2. Objetivos Específicos

 Implementar un entorno común de datos (CDE) basado en Autodesk Construction Cloud.

- Federar modelos de arquitectura, estructura y MEP en formato NWD para coordinación y clash detection.
- Aplicar estándares ISO 19650, ISO 9001, 14001 y 45001 en los flujos de trabajo.
- Estandarizar nomenclaturas y codificación según el manual de INNOBIM Studio.
- Generar cronogramas 4D y presupuestos 5D vinculados a los modelos RVT.
- Reducir en un 10% los errores de obra mediante detección de interferencias.
- Aplicar criterios de sostenibilidad en la selección de materiales (certificaciones EPD).
- Fortalecer el trabajo colaborativo interdisciplinar bajo el liderazgo del BIM Manager.

Tabla 7: Tabla de objetivos específicos.

Objetivo Específico	Usos BIM	Descripción	Responsable
	Relacionados		
Desarrollar un modelo BIM federado conforme a la plantilla de proyecto	Modelado 3D disciplinar Modelado federado	Generación de modelos independientes por disciplina y su integración en un modelo federado coordinado	Coordinador BIM
Implementar un modelo BIM multidisciplinario en un entorno colaborativo	Entorno común de datos (CDE) Gestión documental	Uso de ACC para control de versiones, trazabilidad y flujos de trabajo colaborativo	BIM Manager
Aplicar protocolos de intercambio de información y estándares internacionales	Gestión de entregables Control de calidad	Aplicación del IDP, estándares ISO 19650 y normas internas para organización de información	BIM Manager
Detectar y clasificar interferencias mediante herramientas de clash detection	Detección de interferencias (Clash detection)	Identificación y resolución de conflictos entre disciplinas con Navisworks	Coordinador BIM
Implementar un Plan de Entregas de Información (IDP) para definir plazos y formatos	Planificación de entregas (MIDP/IDP)	Definición de cronogramas de entregables BIM conforme a lo solicitado en el EIR	Coordinador BIM
Reducir en un 10% los errores de obra	Simulación 4D Clash detection	Validación temprana del diseño para evitar reprocesos, omisiones y conflictos en obra	Coordinador BIM +

			Líderes disciplinares
Generar modelos 5D	Estimación de	Vinculación del modelo con	Líder BIM
para gestión de	costos (5D)	presupuestos y planificación de	Costos /
costos y 6D para	Mantenimiento	mantenimiento mediante	Coordinador
mantenimiento	y operación (6D)	parámetros LOIN	BIM
Fortalecer	Capacitación	Aplicación de flujos	BIM
habilidades de	BIM Flujos de	estandarizados en ACC,	Manager
trabajo colaborativo	revisión	reuniones semanales y	
y gestión de		auditorías internas	
información			

3.9.3. Información General del Proyecto

El proyecto NOVA HABITAT es un desarrollo multifuncional ubicado en Puyo, Ecuador, diseñado para integrar vivienda, comercio y espacios comunitarios sostenibles. Se trata de un edificio de uso mixto con un área de construcción de 1.485 m², orientado a la optimización energética, funcionalidad arquitectónica y gestión eficiente de recursos mediante la metodología BIM.

Desde su concepción, el proyecto ha adoptado estándares internacionales y estrategias digitales para garantizar la interoperabilidad, trazabilidad y coordinación efectiva entre disciplinas. Esto responde al enfoque colaborativo propuesto por la norma ISO 19650, que establece como prioridad la gestión integral de la información durante todo el ciclo de vida del activo (ISO 19650-1:2018).

Tabla 8: Detalles del proyecto.

Elemento	Detalle
Nombre del Proyecto	Edificio Multifuncional NOVA HABITAT
Ubicación	Puyo, Provincia de Pastaza, Ecuador
Área de construcción	1.485 m ²
Tipo de proyecto	Uso mixto: residencial + comercial
Promotor	INNOBIM Studio Cía. Ltda.

Plataforma de desarrollo BIM	Autodesk Revit + Navisworks + Autodesk Construction Cloud (ACC)
Normativa técnica aplicada	ISO 19650-1, 19650-2, ISO 9001, ISO 14001, ISO 45001
Coordinador BIM	Ing. Alex Pachacama
BIM Manager	Arq. Geofre Pinos

3.9.4. Descripción del proyecto

El proyecto NOVA HABITAT tiene como propósito principal la implementación de un sistema de fachada innovador, que supere las limitaciones de las soluciones tradicionales en términos de rendimiento térmico, eficiencia energética y sostenibilidad ambiental. Para ello, se adopta la metodología BIM como herramienta estratégica para analizar, comparar y coordinar alternativas constructivas desde etapas tempranas de diseño.

La metodología BIM permite integrar variables ambientales, constructivas y operativas en un entorno digital que facilita la toma de decisiones informadas sobre el comportamiento de la envolvente, optimizando su desempeño a lo largo del ciclo de vida del edificio. La fachada del proyecto no solo será un componente arquitectónico, sino un sistema técnico que responde a condiciones climáticas locales, control solar, ventilación cruzada y reducción de la demanda energética del edificio.

Este enfoque integral posiciona al proyecto como una referencia en el uso de BIM para soluciones pasivas de eficiencia energética en entornos urbanos de clima húmedo tropical, alineado con estándares internacionales de sostenibilidad y las mejores prácticas de diseño bioclimático.

3.9.5. Justificación del Enfoque BIM

La adopción de BIM en NOVA HABITAT responde a la necesidad de integrar de forma eficiente el diseño arquitectónico, la estructura y las instalaciones (MEP),

minimizando errores de obra, optimizando costos y facilitando la sostenibilidad ambiental. Se busca establecer un precedente en el uso de tecnologías digitales en la región amazónica ecuatoriana, fortaleciendo la toma de decisiones basadas en datos verificables.

3.9.6. Herramientas para el desarrollo

Ilustración 6: Programas utilizados.

3.10. Niveles de Desarrollo

Los niveles de desarrollo (LOD – Level of Development) establecen el grado de precisión geométrica y de información no gráfica que debe tener un elemento dentro del modelo BIM, en función de su uso y etapa del proyecto. Esta clasificación es clave para la planificación progresiva de entregables y la toma de decisiones informadas.

Según la Guía para la Elaboración del BEP del MITMA, "la definición de niveles de desarrollo garantiza que cada disciplina sepa exactamente qué información debe modelar en cada fase del proyecto, evitando sobrecargas o ambigüedades" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 16). A su vez, organizaciones como BIMForum (2019) estandarizan estos niveles bajo la nomenclatura LOD 100 a LOD 500, ampliamente utilizada a nivel internacional.

Tabla 9: Niveles de LOD.

Nivel	Definición General	Aplicación en el Proyecto NOVA HABITAT
LOD 100 – Conceptual	Representación gráfica genérica con información básica de masas y ubicación. No apta para análisis detallado.	Se utiliza en los estudios preliminares de volumetría y análisis de ocupación del lote.
LOD 200 – Esquemático	Elementos modelados con geometría aproximada, identificables por categoría y ubicación. Contiene propiedades genéricas.	Aplicado en la etapa de diseño anteproyecto para definir zonas de fachada, áreas funcionales y sistemas generales.
LOD 300 – Desarrollo Detallado	Geometría precisa y parametrizada. Elementos definidos dimensionalmente y coordinados espacialmente.	Nivel mínimo exigido para arquitectura, estructura y MEP durante la etapa de diseño constructivo. Base para detección de interferencias y modelos federados.
LOD 350 – Coordinación	Elementos con detalles de conexiones, interacción entre disciplinas y soporte físico representado.	Se aplica en componentes de fachada que requieren coordinación precisa con estructura y MEP (anclajes, vanos técnicos, juntas).
LOD 400 – Fabricación	Geometría lista para producción o prefabricación. Contiene detalles específicos de montaje.	Aplicable en soluciones de fachada industrializada o sistemas prefabricados si se selecciona esta alternativa.
LOD 500 – As-Built / Gestión	Representa fielmente el activo construido. Incluye datos reales de instalación, fabricante, mantenimiento y operación.	Será implementado al final del proyecto como modelo de operación 6D, con datos de la envolvente, equipamientos e instalaciones.

3.10.1. Partes interesadas

En el contexto de un proyecto BIM, las partes interesadas (stakeholders) son todas aquellas personas, grupos u organizaciones que pueden afectar, verse afectadas o percibirse como afectadas por las decisiones, actividades o resultados del proyecto. Según el PMBOK® Guide del PMI, la adecuada identificación y gestión de stakeholders es esencial para el éxito del proyecto, ya que su influencia puede determinar la viabilidad técnica, económica y operativa de los entregables (PMI, 2021).

En la metodología BIM, las partes interesadas no solo se definen por su rol contractual o financiero, sino también por su participación en la producción, validación, uso y operación de los modelos. La norma ISO 19650 y la Guía para la Elaboración del BEP destacan la importancia de una comunicación clara, estructuras de responsabilidad definidas y un entorno colaborativo para alinear intereses diversos en torno a objetivos comunes (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 7).

Tabla 10: Categorías y responsabilidades.

Categoría	Stakeholder	Rol Principal	Responsabilidad en BIM
Cliente / Promotor	UISEK / Elmer muñoz	Mandante del proyecto	Define el EIR, valida entregables, toma decisiones
BIM Manager	Arq. Geofre Pinos	Gestión integral BIM	Coordina la ejecución BIM conforme al BEP y estándares ISO
Coordinador BIM	Ing. Alex Pachacama	Coordinación interdisciplinaria	Supervisa integración de modelos y detección de interferencias
Diseñadores disciplinares	Líderes ARQ, EST, MEP	Producción de modelos	Desarrollan y actualizan modelos conforme a LOD/LOIN y protocolos
Modeladores BIM	Equipo técnico de cada disciplina	Desarrollo de contenido	Modelan elementos según parámetros definidos y entregables

3.10.2. Contactos y Requisitos de Responsabilidad

El presente apartado define los principales responsables de la ejecución BIM del proyecto NOVA HABITAT, detallando su rol, empresa asignada, funciones específicas dentro del proceso colaborativo y datos de contacto. Esta información asegura trazabilidad, comunicación eficiente y cumplimiento de las responsabilidades descritas en este BEP y el EIR del proyecto.

Tabla 11: BEP y EIR del proyecto.

Empresa	Cargo	Descripción del Cargo	Nombre Responsable	Teléfono
UISEK	Cliente	Mandante del proyecto. Supervisa cumplimiento del EIR y valida entregables.	Elmer Muñoz	
INNOBIM Studio	BIM Manager	- Coordinación general de la ejecución BIM Implementación del BEP y estándares ISO Control de entregables y cumplimiento del EIR Supervisión del CDE y gestión documental Reporte a la dirección del proyecto.	Arq. Geofre Isaac Pinos Zapata	09967731 64
INNOBIM Studio	Coordinador BIM	- Integración de modelos disciplinares Planificación del cronograma BIM Revisión de calidad de modelos Generación de reportes de interferencias Coordinación entre los líderes de disciplina.	Ing. Alex Pachacama	09989678 77
INNOBIM Studio	Líder Arquitectura	- Desarrollo del modelo 3D arquitectónico Participación en protocolos de estilo Resolución de interferencias disciplinares Elaboración de entregables de arquitectura.	Arq. Pablo Alejandro Romero Hallo	09964001 64
INNOBIM Studio	Líder Estructuras	- Desarrollo del modelo estructural 3D Participación en plantillas y protocolos Coordinación con arquitectura y MEP Generación de entregables estructurales.	Ing. Paola Maritsa Llerena Bonilla	09870872 36
INNOBIM Studio	Líder MEP	- Desarrollo de modelos eléctricos, sanitarios y HVAC Revisión y resolución de interferencias. - Producción de entregables técnicos MEP.	Ing. Edwin Stalyn Erazo	09961013 39

3.10.3. Matriz de Comunicación y Flujo de Información

Una comunicación efectiva y estructurada entre las partes interesadas es fundamental para garantizar el éxito de un proyecto BIM. Según la ISO 19650-2, "la gestión de la información requiere definir claramente los flujos de intercambio, revisión y validación de datos entre roles responsables" (ISO, 2018). Por su parte, el PMI enfatiza que "la gestión de las comunicaciones del proyecto asegura que la información correcta llegue a las personas adecuadas en el momento oportuno" (PMI, 2021).

En el proyecto NOVA HABITAT, se implementa un entorno común de datos (CDE) basado en Autodesk Construction Cloud (ACC) que centraliza los flujos de trabajo colaborativos, revisiones y aprobaciones. La siguiente matriz establece los canales, frecuencia, medios y responsables clave para la coordinación y control informativo.

Tabla 12: Actividades asignadas.

Actividad	Emisor	Receptor	Medio	Frecuencia	Propósito
Reunión de coordinación BIM	BIM Manager	Todos los líderes disciplinare s	Microsoft Teams / Presencial	Semanal	Revisión de avances, interferencias y planificación
Entrega de modelos WIP	Líder disciplinar	Coordinado r BIM	ACC (WIP Folder)	Quincenal	Compartir avances internos para revisión previa
Revisión de interferencia s	Coordinador BIM	Líderes ARQ / EST / MEP	Navisworks clash report (PDF/NWD)	Quincenal	Detectar, clasificar y asignar resolución a conflictos

Aprobación de entregables	Coordinador BIM	BIM Manager / Cliente	ACC (Folder Compartido	Según hitos IDP	Validar modelos antes de entrega oficial
Comunicació n de incidencias	Cualquier miembro del equipo	Coordinado r BIM	ACC / Email	Inmediata	Reportar errores críticos, colisiones o riesgos
Actualización del cronograma BIM	Coordinador BIM	Todos los responsable s	ACC / Excel compartido	Mensual	Visualizar planificación de entregables e hitos
Comunicació n con autoridades locales	Representant e del cliente	Entidades reguladoras	Email / Oficio	Según requerimiento s	Presentar documentació n técnica y tramitar licencias
Emisión de reportes de control	BIM Manager	Dirección de proyecto	Informe PDF / Presentació n	Mensual	Evaluar cumplimiento del BEP, EIR y KPI BIM

3.11. Flujo general de trabajo

El flujo general de trabajo en un entorno BIM se define como la secuencia lógica y coordinada de actividades que regulan la producción, validación, integración y entrega de modelos y documentación técnica entre todos los agentes del proyecto. Esta organización es fundamental para garantizar la trazabilidad, calidad y eficiencia en la gestión de la información digital.

3.11.1. Etapas del Flujo General de Trabajo en NOVA HABITAT

Tabla 13: Etapas de flujo general.

Etapa	Descripción	Herramienta/Medio	Responsables
1. Generación de modelos WIP	Cada disciplina desarrolla sus modelos en estado de trabajo interno (Work in Progress).	Revit / ACC – Carpeta S0	Líderes de disciplina (ARQ, EST, MEP)
2. Revisión interna y control de calidad	Se aplican auditorías automáticas y manuales al modelo según checklist del BEP.	Revit + Solibri / ACC	Coordinador BIM

3. Integración de modelos en federado	Modelos disciplinarios se integran en Navisworks para clash detection y validación espacial.	Navisworks Manage / NWD	Coordinador BIM
4. Revisión de interferencias	Detección y clasificación de colisiones según tipología y responsable.	Navisworks + Reporte PDF	Coordinador BIM / Líderes de disciplina
5. Resolución de interferencias	Los líderes de cada disciplina ajustan sus modelos según el reporte aprobado.	Revit / ACC	Líderes ARQ, EST, MEP
6. Aprobación y entrega de modelos compartidos	Modelos actualizados se cargan al entorno compartido para revisión del cliente.	ACC – Carpeta S1 a S4	Coordinador BIM / BIM Manager
7. Validación por el cliente	El cliente o supervisor valida los modelos y entregables para aprobación oficial.	ACC – Carpeta S6 / Informe PDF	Cliente / BIM Manager
8. Entrega final y archivado	Los modelos aprobados se entregan formalmente y se almacenan en el entorno archivado.	ACC – Carpeta As- Built (S7)	BIM Manager / Coordinador BIM

3.12. Flujo de usos BIM

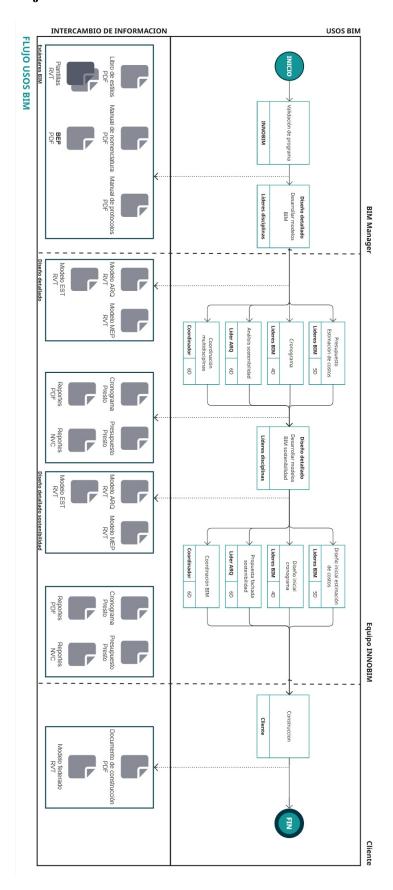


Ilustración 7: Flujo de usos BIM.

3.13. Recursos del Equipo

La correcta asignación de recursos humanos y técnicos es fundamental para garantizar la implementación efectiva de los **usos BIM** definidos en el proyecto. Cada uso BIM requiere perfiles específicos con competencias técnicas, responsabilidades claramente definidas y herramientas adecuadas. Según la *Guía para la Elaboración del BEP* (MITMA, 2020), "la identificación de los recursos necesarios para cada uso BIM permite optimizar la planificación, evitar sobrecargas y asegurar la calidad del proceso colaborativo" (p. 13).

A continuación, se presenta una tabla que relaciona cada uso BIM con los recursos del equipo de trabajo asignados en NOVA HABITAT.

3.13.1. Recursos del Equipo según Usos BIM

Tabla 14: Recursos del equipo según usos BIM.

Uso BIM Aplicado	Responsable(s)	Rol BIM	Recurso Humano o Técnico	Herramientas / Plataformas
Modelado 3D disciplinar	Pablo Romero(ARQ) Paola Llerena (EST) Edwin Erazo (MEP)	Líder BIM de disciplina	Modeladores Revit por disciplina	Autodesk Revit
Modelo federado	Alex Pachacama	Coordinador BIM	Equipo de coordinación y QA/QC	Navisworks Manage
Clash Detection	Alex Pachacama	Coordinador BIM	Analista de colisiones	Navisworks + Reporte NWD
Estimación de Costos 5D	Geofre Pinos	BIM Manager	Especialista en presupuesto vinculado a BIM	Presto / Cost- It / Excel
Programación 4D	Coordinador BIM	Coordinador BIM	Modelador con experiencia en secuencias temporales	Navisworks Simulate / ACC

Simulación energética / Sostenibilidad 6D	BIM Manager + MEP	Consultor ambiental o MEP	Especialista en análisis energético y materiales	Autodesk Insight / Excel / EPD
Gestión documental y CDE	Geofre Pinos + Pablo Romero (Consultor)	BIM Manager	Administrador de plataforma CDE	Autodesk Construction Cloud (ACC)
Gestión de entregables e IDP	Alex Pachacama	Coordinador BIM	Líderes disciplinares + QA/QC	ACC + Matriz Excel
Protocolos de nomenclatura y estilo	Todos los líderes BIM	Coordinador + Modeladores	Manual de nomenclatura institucional	Manual NHBT-INB- FP-XX-MNL- MNG-001

3.14. Flujos de trabajo para diseño de especialidades

3.14.1. Flujo de trabajo modelado arquitectónico

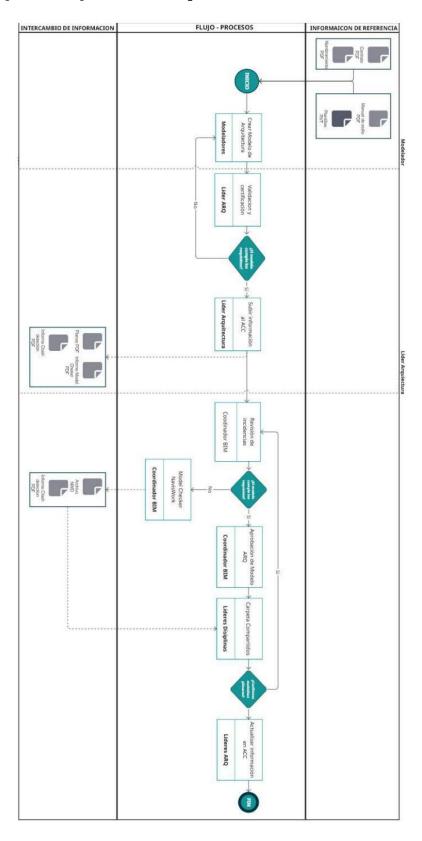


Ilustración 8: Flujo de trabajo modelado arquitectónico.

3.14.2. Flujo de trabajo modelado estructural

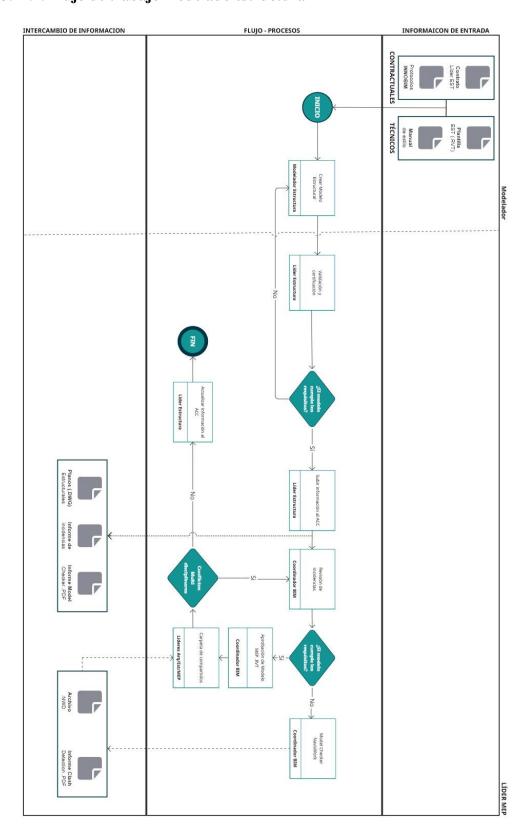


Ilustración 9: Flujo de trabajo modelado estructural.

3.14.3. Flujo de trabajo modelado MEP

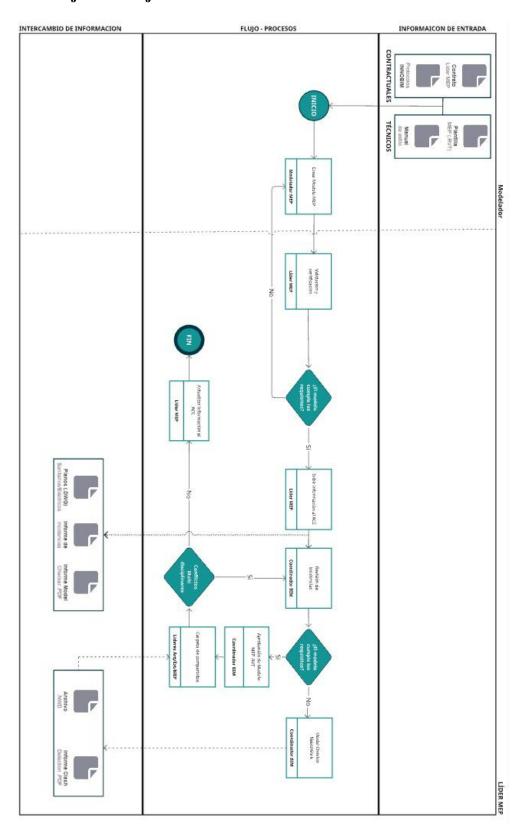


Ilustración 10: Flujo de trabajo modelado MEP

3.15. Coordinación de Modelos y Detección de Interferencias e Incompatibilidades

La coordinación de modelos BIM y la detección de interferencias son procesos fundamentales para asegurar la coherencia técnica, la compatibilidad entre disciplinas y la reducción de errores constructivos. Según la Guía BEP del MITMA, "la coordinación BIM debe contemplar procedimientos claros para la federación de modelos, identificación de colisiones, asignación de responsabilidades y validación de soluciones adoptadas" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 14).

En el proyecto NOVA HABITAT, la coordinación se realizará a través de la integración periódica de los modelos disciplinares (ARQ, EST, MEP) en un modelo federado, utilizando herramientas de revisión y análisis espacial como Navisworks Manage. Los resultados del proceso de clash detection se documentarán mediante reportes automáticos y serán discutidos en reuniones semanales de coordinación.

(A)-ARQ	Cielo Ras	o vs AR	Q Pared	es Fxt		4 0	evo Activo Revisa 0 4	0	0		Estado Aceptar			
									Eleme	ento 1			Elem	ento 2
magen	Nombre de conflicto	Estado	Ubicación de rejilla	Descripción	Fecha de detección		Punto de conflicto	ID de elemento	Сара	Elemento Nombre	Elemento Tipo	ID de elemento	Capa	Elemei Nombi
>	Conflicto1	Revisado	G-1 : ARQ-P01- PLANTA- PB	Estático	2025/6/26 03:31	Lider ARQ	x:9975933.792, y:502387.250, z:16.271	ID de elemento: 640097	ARQ-P06- PLANTA DE TERRAZA- N +13.74	Enlucido - Blanco	Sólido	ID de elemento: 840170	ARQ-P06- PLANTA DE TERRAZA- N +13.74	Pladur Estruct
1	Conflicto2	Revisado	H-2 : ARQ-P01- PLANTA- PB	Estático	2025/6/26 03:31	Lider ARQ	x:9975938.566, y:502385.072, z:13.261	ID de elemento: 639197	ARQ-P05- PLANTA ALTA 3-N +10.68	Enlucido - Blanco	Sólido	ID de elemento: 838141	ARQ-P05- PLANTA ALTA 3-N +10.68	Pladur
1	Conflicto3	Revisado	H-2 : ARQ-P01- PLANTA- PB	Estático	2025/6/26 03:31	Lider ARQ	x:9975938.570, y:502385.051, z:10.201	ID de elemento: 639007	ARQ-P04- PLANTA ALTA 2-N +7.62	Muro por	Sólido	elemento:	ARQ-P04- PLANTA ALTA 2-N +7.62	Pladur
7	Conflicto4	Revisado	H-2 : ARQ-P01- PLANTA- PB	Estático	2025/6/26 03:31	Lider ARQ	x:9975938.570, y:502385.051, z:7.141	ID de elemento: 755370	ARQ-P03- PLANTA ALTA 1-N +4.56	Muro por defecto	Sólido		ARQ-P03- PLANTA ALTA 1-N +4.56	Pladur

Ilustración 11: Informe de conflictos.

3.15.1. Flujo de Coordinación y Clash Detection – NOVA HABITAT

Tabla 15: Flujo de Coordinación y Clash Detection – NOVA HABITAT

Etapa	Actividad	Responsable	Herramienta / Medio	Frecuencia
1	Subida de modelos WIP a ACC (S0)	Líderes de disciplina	Revit / ACC	Semanal
2	Federación de modelos (NWD)	Coordinador BIM	Navisworks Manage	Quincenal
3	Clash detection automática	Coordinador BIM	Navisworks Manage	Quincenal
4	Clasificación de interferencias	Coordinador BIM	Clash Matrix	Quincenal
5	Revisión y resolución colaborativa	Líderes ARQ, EST, MEP	Revit / ACC / Navisworks	Semanal
6	Validación de modelos coordinados	BIM Manager / Coordinador BIM	Informe PDF / NWD validado	Según entregables (IDP)

3.15.2. Clasificación de Interferencias

Tabla 16: Clasificación de Interferencias.

Tipo de Interferencia	Descripción	Grado de Impacto
Crítica (Tipo 1)	Impide ejecución de obra o genera riesgo de colapso funcional	Alta
Moderada (Tipo 2)	Requiere rediseño menor pero no detiene obra	Media
Leve (Tipo 3)	No afecta funcionalidad; se resuelve en detalle constructivo	Baja

3.16. Planificación de fases y cronograma

La planificación por fases es una herramienta fundamental para organizar de manera estructurada el desarrollo progresivo de los modelos BIM, la entrega de información y la coordinación interdisciplinar. Según la Guía BEP del MITMA, "el cronograma debe reflejar los hitos informativos relevantes del proyecto, alineando

entregables con las fases de diseño, construcción y operación" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 15).

En el caso del proyecto NOVA HABITAT, el cronograma BIM ha sido estructurado en función del Plan Maestro de Entregas (MIDP/IDP) y se articula en torno a cinco fases principales: planificación, diseño, coordinación, validación y operación. Estas fases están interrelacionadas con los usos BIM definidos y los niveles de desarrollo (LOD) aplicables en cada etapa.

3.16.1. Fases del Proyecto y Actividades BIM

Tabla 17: Fases del Proyecto y Actividades BIM.

Fase	Periodo	Actividad BIM Principal	LODs Aplicados	Responsables
1. Planificación	Mayo-2025	Definición del EIR, BEP, protocolo y plantilla de nomenclatura	LOD 100-200	BIM Manager
2. Diseño Preliminar	Junio-2025	Modelado inicial ARQ- EST-MEP, volumetría, revisión ambiental	LOD 200	Líderes de disciplina
3. Diseño Detallado	Julio-2025	Modelos disciplinares con desarrollo técnico y funcional	LOD 300-350	Líderes + Coordinador BIM
4. Coordinación y Clash Detection	Julio-2025	Integración de modelos, detección y resolución de interferencias	LOD 350	Coordinador BIM
5. Validación y Entrega	Agosto-2025	Revisión por el cliente, entregables formales, cronograma 4D y presupuesto 5D	LOD 350-400	BIM Manager / Cliente

3.16.2. Herramientas de Planificación Utilizadas

- Matriz IDP/MIDP: Define quién entrega qué, cuándo y en qué formato.
- Microsoft Excel / Project: Seguimiento de tiempos y secuencia de entregables.
- Navisworks Simulate: Simulación de construcción 4D para vincular modelo con tiempos.

- Autodesk Construction Cloud (ACC): Control documental, revisiones y aprobaciones.
- Reuniones semanales: Validación de avances e identificación de desvíos.

3.17. Estimación de Cantidades y Costos (BIM 5D)

La estimación de cantidades y costos es uno de los usos más estratégicos del modelo BIM, ya que permite vincular la información geométrica y paramétrica del modelo con el análisis económico del proyecto. Este proceso, conocido como BIM 5D, mejora la precisión de los presupuestos, reduce errores por descoordinación entre diseño y costos, y facilita la toma de decisiones financieras informadas.

Según la Guía BEP del MITMA, "la integración de la dimensión 5D en el modelo BIM permite automatizar el proceso de extracción de mediciones y su vinculación con bases de precios, favoreciendo la trazabilidad del presupuesto y la transparencia del proyecto" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 16). A su vez, la norma ISO 19650-2 recomienda que esta información se estructure según clasificaciones reconocidas y niveles de información acordados (LOIN).

3.17.1. Procedimiento de Estimación de Cantidades y Costos en NOVA HABITAT

Tabla 18: Procedimiento de Estimación de Cantidades y Costos en NOVA HABITAT.

Etapa	Actividad	Responsable	Herramienta	Observaciones
1	Definición de parámetros LOIN	BIM Manager + Líderes disciplinares	Manual LOIN / BEP	Según uso: fase, propósito, unidad
2	Asignación de parámetros de medición	Modeladores BIM	Revit	Campos personalizados: tipo, unidad, rendimiento
3	Extracción de cantidades del modelo	Especialista 5D	Revit + Cost-It / Excel	Generación de cuadros de medición

4	Vinculación con base de precios	Especialista 5D / Coordinador BIM	Presto 5D	Asignación de costos unitarios (Base INEC, mercado local)
5	Generación de presupuesto dinámico	Especialista 5D	Presto / Excel	Presupuesto editable según avance de diseño
6	Revisión y validación	BIM Manager / Cliente	Reporte PDF / ACC	Aprobación de partidas clave por el cliente

3.17.2. Criterios de Costeo y Estructura de Datos

- Clasificación de partidas: Uniformat II / CSI MasterFormat / códigos internos según fase.
- Costos directos: materiales, mano de obra, equipos.
- Costos indirectos: logística, imprevistos, gestión BIM.
- Estructura por elemento constructivo (muros, cubiertas, carpintería, instalaciones).
- Separación por fase constructiva y ubicación (subniveles o zonas).
- Integración de criterios de sostenibilidad: selección de materiales con certificaciones EPD y análisis de ciclo de vida (LCA).

Ilustración 12: Programación 4D y 5D vinculadas al modelo federado.

3.17.3. Ejemplo de Estructura de Presupuesto 5D – Proyecto NOVA HABITAT

La siguiente tabla muestra un desglose típico de costos BIM 5D estructurado por elemento constructivo, vinculado a parámetros del modelo y clasificado según **Uniformat II** y **LOIN**. Esta estructura permite una estimación dinámica y trazable desde Revit hacia Presto/Cost-It.

Tabla 19: Códigos de elementos para COST-IT.

Código	Elemento Constructivo	Descripción / Tipología	Unidad	Cantidad (BIM)	Costo Unitario	Costo Total	Fuente
A1010	Muros Estructurales	Hormigón armado 200 mm + acero A500	m³	125.60	145.00 USD	18,212.00 USD	Base INEC / Local
A2010	Cerramiento Fachada	Panel compuesto aluminio + aislamiento + subestructura	m²	230.00	165.00 USD	37,950.00 USD	Proveedor / catálogo
B1020	Puertas Exteriores	Aluminio con rotura de puente térmico	u	12	380.00 USD	4,560.00 USD	Lista proveedor
B2020	Ventanas	Doble vidrio bajo emisivo 6mm / ALU	m²	88.50	240.00 USD	21,240.00 USD	Manual técnico BIM
D3010	Instalación Eléctrica	Canalización + cableado + tomacorrientes	m² (área útil)	950.00	35.00 USD	33,250.00 USD	Referencia local
G2050	Urbanismo / Jardinería	Césped natural y riego por goteo	m²	110.00	18.00 USD	1,980.00 USD	Manual de paisajismo

3.17.4. Parámetros BIM Vinculados (Revit/Presto)

- CódigoUniformat: Código de clasificación (ej. A1010).
- TipoElemento: Tipo de muro, ventana, puerta, etc.
- UnidadMedida: m², m³, unidad, ml.
- Rendimiento: Factor de producción estimado.
- ProveedorReferencial: Fuente de datos económicos o comerciales.
- ID Presupuesto: Vínculo con tabla en Presto o Excel.

3.17.5. Flujo de simulación de programación – 4D

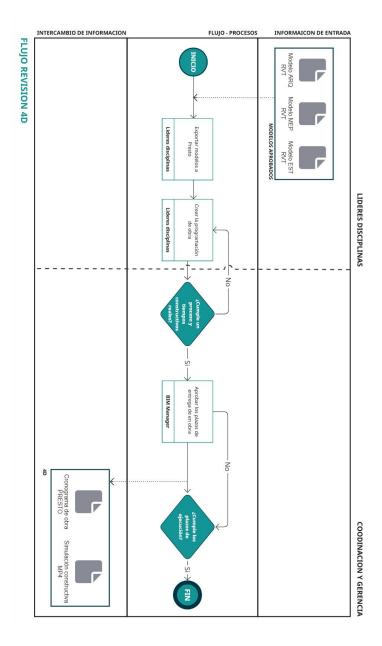


Ilustración 13: Flujo de simulación de programación – 4D

3.17.6. Flujo de revisión presupuesto – 5D

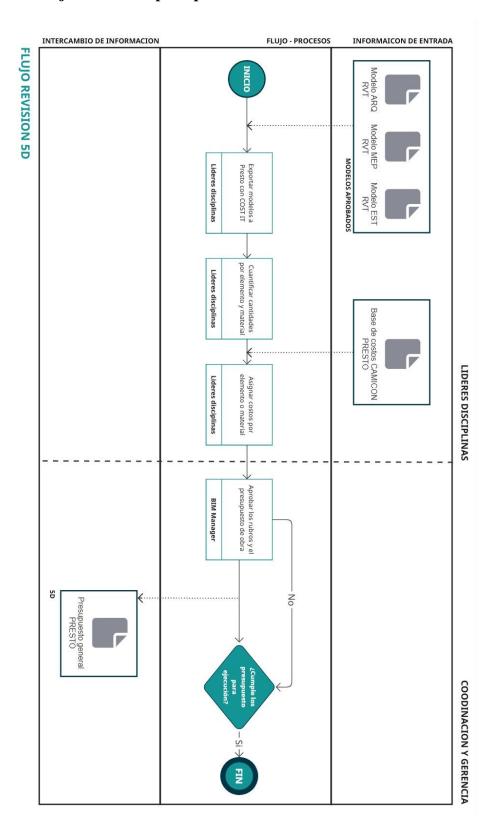


Ilustración 14: Flujo de revisión presupuesto – 5D

3.18. Estructura de Desglose del Proyecto

La estructura de desglose del proyecto (EDP) define la forma en que se divide, organiza y coordina el desarrollo de modelos BIM según disciplinas, fases, niveles y áreas funcionales. Este desglose es fundamental para establecer una jerarquía clara de información, facilitar la colaboración entre equipos y permitir el control modular del avance del modelo.

Según la Guía BEP, "la descomposición del proyecto en submodelos permite que diferentes agentes trabajen simultáneamente sobre elementos distintos del proyecto, mejorando la eficiencia y el control" (Ministerio de Transportes, Movilidad y Agenda Urbana, 2020, p. 17).

3.18.1. Desglose por Disciplinas y Submodelos

Tabla 20: Desglose por Disciplinas y Submodelos.

Disciplina	Código	Submodelo	Descripción
Arquitectura	ARQ	ARQ-01	Modelo general arquitectónico (muros, puertas, ventanas, techos, acabados)
Arquitectura	ARQ	ARQ-02	Mobiliario fijo y elementos de diseño interior
Estructuras	EST	EST-01	Elementos estructurales de concreto armado
Estructuras	EST	EST-02	Fundaciones, vigas, losas, columnas
MEP – Eléctrico	МЕР-Е	MEP-E-01	Alimentadores, tableros, ductos, iluminación
MEP – Sanitario	MEP-S	MEP-S-01	Red de agua potable y aguas servidas
MEP – Climatización	MEP- HVAC	MEP- HVAC-01	Equipos, ductos y rejillas de ventilación
Coordinación BIM	COO	COO-01	Modelo federado coordinado (NWD)
Gestión documental	MNG	MNG-01	Documentación técnica, nomenclatura, protocolos
Fachadas	ARQ + MEP	FCH-01	Submodelo especializado para análisis y solución de sistema de fachada

3.18.2. Desglose por Niveles y Zonas

Tabla 21: Desglose por Niveles y Zonas.

Nivel / Zona	Código	Descripción
Sótano	S01	Infraestructura y redes técnicas bajo rasante
Planta Baja	PB	Accesos, circulación principal, comercio
Planta Tipo	P01, P02	Vivienda – áreas habitacionales repetitivas
Terraza técnica	RT	Equipos de climatización y mantenimiento
Zona 1	Z01	Área frontal del terreno – acceso peatonal
Zona 2	Z02	Área posterior – espacio verde y servicio

3.18.3. Organización para Coordinación

- Submodelos separados por disciplina cargados y vinculados en un modelo federado coordinado (Navisworks).
- **Organización de vistas** según plantilla institucional: plantas, cortes, fachadas, detalles.
- Uso de **worksets y fases** en Revit para controlar visibilidad, tiempo y responsabilidad.
- Aplicación de plantillas de vista y filtros por categoría para revisión y documentación.

3.19. Estructura de trabajo por disciplina

Cada disciplina participante en el desarrollo del proyecto BIM debe estructurar su trabajo de forma ordenada, interoperable y trazable, de acuerdo con los criterios definidos en el BEP. Esta estructura organiza los modelos, vistas, familias, archivos y entregables según plantillas de trabajo estandarizadas, nomenclatura institucional y responsabilidades asignadas.

Según la Guía BEP, "la estructuración del modelo BIM por disciplina debe garantizar que la información generada sea coherente, coordinada y fácilmente integrable con el resto de los modelos del proyecto" (Ministerio de Transportes, Movilidad y

Agenda Urbana, 2020, p. 17). Cada equipo debe trabajar sobre su submodelo específico, manteniendo integridad geométrica, compatibilidad de parámetros y codificación alineada al Manual de Nomenclatura BIM.

3.19.1. Arquitectura (ARQ)

Tabla 22: Modelos y submodelos de arquitectura.

Elemento	Detalle
Submodelos	ARQ-01 (modelado general) / ARQ-02 (mobiliario y acabados)
Estructura de vistas	Plantas arquitectónicas, cortes, fachadas, detalles constructivos, planos de acabados
Clasificación de elementos	Muros, pisos, puertas, ventanas, cubiertas, componentes
Worksets	Fachadas, estructura arquitectónica, mobiliario, entorno
Plantillas aplicadas	Vista general, detalle técnico, impresión PDF
LOD/LOIN objetivo	LOD 200–350 / Información de material, área, acabado, EPD

3.19.2. Estructuras (EST)

Tabla 23: Modelos y submodelos de estructura.

Elemento	Detalle
Submodelos	EST-01 (estructura general), EST-02 (cimentación y conexiones)
Estructura de vistas	Planos estructurales, detalles de conexión, cortes técnicos
Clasificación	Vigas, columnas, losas, zapatas, acero, concreto
Worksets	Fundaciones, estructuras horizontales y verticales
LOD/LOIN objetivo	LOD 300–350 / Propiedades estructurales, secciones, cuantificación

3.19.3. MEP – Instalaciones (MEP-E, MEP-S, MEP-HS)

Tabla 24: Modelos y submodelos MEP.

Elemento	Detalle
Submodelos	MEP-E (eléctrico), MEP-S (sanitario), MEP-HVAC (climatización)
Estructura de vistas	Diagramas de red, plantas de instalaciones, isometrías
Clasificación	Canalizaciones, luminarias, redes de agua, rejillas HVAC, tableros

r sistema (eléctrico, sanitario, ventilación) y por planta
DD 300–350 / Diámetro, caudal, carga térmica, eficiencia ergética
•

3.19.4. Coordinación (COO)

Tabla 25: Modelos y submodelos de coordinación.

Elemento	Detalle
Submodelo	COO-01: Modelo federado (Navisworks NWD)
Estructura	Planificación de interferencias, checklist de coordinación
Flujo	Integración de modelos, clash detection, revisión y validación
Herramientas	Navisworks Manage, BIM 360, Excel de colisiones

- Cada disciplina es responsable del desarrollo, revisión y entrega de sus modelos, con control de versiones mediante el CDE (Autodesk Construction Cloud).
- Se mantiene una estructura común de carpetas, vistas y plantillas para facilitar la interoperabilidad.
- Los modelos deben estar georreferenciados y coordinados en origen compartido, según lo indicado en el BEP.

3.20. Requerimientos de Intercambio de Información

Los Requerimientos de Intercambio de Información (EIR) definen los criterios técnicos y operativos para la generación, organización, entrega y validación de los modelos y documentos del proyecto BIM. Este conjunto de lineamientos es obligatorio para todos los actores y disciplinas involucradas y busca garantizar la coherencia, interoperabilidad y trazabilidad de la información durante el ciclo de vida del activo.

Según la ISO 19650-2, el EIR debe contemplar aspectos relacionados con las normas de información, formatos, nomenclatura, niveles de detalle, frecuencia de entregas y calidad esperada, entre otros (ISO, 2018). En el caso de NOVA HABITAT,

estos requerimientos han sido adaptados a partir del documento oficial NHBT-INB-FP-XX-EIR-MNG-001-EIR-S0-01 y se detallan a continuación.

	Matris de Intercambio de Información. Basada en 150 1965/b -2. / Aquitectura , Estructura y MID - Pase de Diseño y Construcción											
Nº							Formato	Frecuencia (hitos de coordinación)	Nivel de Información (LOIN)			Uso BIM previsto
1	Diseño Preliminar	Modelado 3D inicial	Arquitectura	Modelo arquitectónico básico (zonificación, envolvente)	Lider ARQ	Coordinador BIM	RVT, PDF	Una vez por etapa	LOD 200 / LOI 100	Sin mobiliario fijo ni detalles de acabados	Información conceptual	Validación conceptual, coordinación preliminar
2	Diseño Preliminar	Modelado 3D inicial	Estructura	Ejes estructurales, columnas, vigas principales	Lider EST	Coordinador BIM	RVT, PDF	Una vez por etapa	LOD 200 / LOI 100	Sin armaduras ni análisis estructural		Coordinación espacial con arquitectura
3	Diseño Preliminar	Modelado 3D inicial	MEP	Trazado redes principales (agua, electricidad, climatización)	Lider MEP	Coordinador BIM	RVT, PDF	Una vez por etapa	LOD 200 / LOI 100	Sin conexiones ni diagramas unifilares		Análisis de interferencias preliminares
4	Diseño de Detalle	Modelado 3D detallado	Arquitectura	Modelo con familias, acabados, carpinteria, muros interiores	Lider ARQ	Coordinador BIM, cliente	RVT, IFC	Quincenal	LOD 350/LOI 200	Sin señalética ni mobiliario decorativo	Coordinacion espacial	Coordinación avanzada, validación con cliente
5	Diseño de Detalle	Modelado 3D detallado	Estructura	Armaduras, fundaciones, placas, anclajes	Lider EST	Coordinador BIM	RVT, IFC, DWG	Quincenal	LOD 300 / LOI 200	Sin detalles de montaje o soldaduras		Análisis estructural, coordinación constructiva
6	Diseño de Detalle	Modelado 3D detallado	MEP	Redes completas con especificaciones técnicas y artefactos	Lider MEP	Coordinador BIM	RVT, IFC	Quincenal	LOD 300 / LOI 200	Sin secuencia de instalación ni balances térmicos		Modelado federado, análisis de interferencias
7	Coordinación Final Diseño	Clash detection, modelo federado	Todas	Modelo federado, reportes de interferencias	Coordinador BIM	Cliente / Dirección técnica	NWD, PDF	Mensual	LOD 300 / LOI 200	Sin simulaciones constructivas	Modelo de planificación visual	Validación técnica, cierre de diseño
8	Evaluación técnica fachadas	Análisis comparativo de alternativas	Arquitectura	Estudio de alternativas sistema de fachada con criterios técnicos/económicos	Lider ARQ, Coordinador BIM	Cliente / Promotor	PDF, Excel, RVT	Por hito de decisión	LOD 350/ LOI 200	Sin detalles constructivos finales		Selección técnica y económica de fachadas
9	Documentación para obra	Documentación ejecutiva, cómputos métricos	Todas	Planos constructivos, cómputos métricos	Coordinadores disciplinares	Constructor, dirección obra	RVT, NWC, Excel	Final de diseño	LOD 350 / LOI 300	Sin simulaciones de rendimiento		Generación de cantidades, planificación 4D / 5D básica
10	Planificación	Modelo federado como producto final	Todas	Modelo federado final con integración de arquitectura, estructura y MEP para planificación	Coordinador BIM	Cliente / Dirección técnica	RVT, NWD, PDF	Final de planificación	LOD 350 / LOI 300	Sin simulaciones de procesos constructivos detallados	Modelo completo	Simulación de construcción, detección de cuellos de botella, validación final de coordinación
11	Cronograma de obra	Modelo 4D	Todas	Modelo con parámetros de tiempo vinculados por elemento (cronograma 40)	Coordinador BIM	Cliente / Dirección técnica	RVT, Excel, Presto	Por hito de contratación	LOD 350 / LOI 350	Sin análisis de proveedores ni costos indirectos	Cronograma vinculado	Computos métricos, control de presupuesto, estimación de costos
12	Estimación de costos y presupuesto	Modelo 5D	Todas	Modelo con parámetros de costos vinculados por elemento (presupuesto SO)	Coordinador BIM, gestor de costos	Cliente / Dirección técnica	RVT, Excel, Presto	Por hito de contratación	LOD 350 / LOI 350	Sin análisis de contratiempos	Presupuesto general	Cómputos métricos, control de presupuesto, estimación de costos

Ilustración 15 Matriz de intercambio de información

3.20.1. Normas de información

Las siguientes normas y guías técnicas regulan la producción, intercambio y validación de la información:

Tabla 26: Normas de información.

Norma / Guía	Contenido Aplicado
ISO 19650-1 y 2	Gestión de la información en entorno colaborativo (EIR, BEP, MIDP, CDE)
ISO 16739 (IFC)	Interoperabilidad de modelos en formatos abiertos
EN 17412-1:2020	Definición de niveles de información requeridos (LOIN)
LOD Specification (BIMForum)	Nivel de desarrollo geométrico y no gráfico
BS 1192 + A1	Codificación, control de versiones y organización de archivos
Manual de Nomenclatura NHBT-INB-FP-XX- MNL-MNG-001	Estructura de archivos, abreviaturas, códigos por vista, plano, elemento y familia
ISO 9001 / ISO 14001 / ISO 45001	Control de calidad, sostenibilidad y gestión de seguridad integrada en procesos BIM

3.20.2. Convenciones de nomenclatura

Para garantizar la organización estandarizada de los archivos, vistas, familias y entregables, se aplican las siguientes convenciones, conforme al manual institucional:

3.20.2.1. Nomenclatura de Archivos

Formato:

NHBT-INB-FP-XX-[DISC]-[TIPO]- NIVEL]- Descripcion-[[VERSIÓN]

Ejemplo:

NHBT-INB-FP-AR-PLN-Levantamiento-P01-A1

- Proyecto NOVA HABITAT,
- Disciplina ARQ,
- plano de planta nivel 1,
- Versión A1

3.20.2.2. Abreviaturas de disciplinas

Tabla 27: Abreviaturas de disciplinas.

Disciplina	Código
Arquitectura	ARQ
Estructura	EST
MEP Eléctrico	MEP-E
MEP Sanitario	MEP-S
MEP Hidrosanitario	MEP-HS
Coordinación BIM	C00
Gestión	MNG

3.20.2.3. Nomenclatura de vistas en Revit

Tabla 28: Nomenclatura de vistas en Revit.

Tipo de Vista	Código
Planta Arquitectónica	PLA
Corte Longitudinal	CLL
Fachada Principal	FCP
Detalle Constructivo	DET
3D General	V3D

3.20.3. Códigos designados

Se establecen códigos específicos para identificar el uso, nivel, y fase de cada vista o plano, permitiendo rastrear su función dentro del proyecto:

Tabla 29: Códigos designados.

Código de Vista	Uso Principal	Aplicación
PLA-P01	Planta nivel 1	Documentación gráfica – arquitectura
CLL-E01	Corte estructural eje 1	Coordinación estructural
DET-MEP01	Detalle HVAC – red principal	Validación técnica de instalaciones
V3D-ARQ- COORD	Vista 3D de coordinación	Clash detection y presentación
PLN-EXT	Plano exterior completo	Entrega PDF final a cliente
S6-FC-AR-PLN- PB	Carpeta CDE Entrega Final (S6), Fachada, ARQ, Planta Baja	Identificación en ACC

3.21. Estrategias de Mejora de Modelos

Las estrategias de mejora de modelos BIM tienen como finalidad asegurar su calidad, eficiencia operativa, trazabilidad y adaptabilidad para su uso en las distintas fases del ciclo de vida del proyecto. Estas estrategias contemplan tanto aspectos técnicos (coherencia geométrica, precisión, interoperabilidad), como de gestión (estructura de archivos, flujos de coordinación, rendimiento del modelo).

Ilustración 16 Documentos base de protocolos.

3.22. Estrategia de federación

La federación de modelos es el proceso de integración de los submodelos disciplinares en un único modelo central coordinado. Este modelo federado permite detectar interferencias, validar coherencia espacial y generar entregables coordinados para construcción o revisión.

Tabla 30: Estrategia de federación.

Elemento	Detalle	
Herramienta de federación	Autodesk Navisworks Manage	
Frecuencia	Quincenal (revisión previa a entregas)	
Responsable	Coordinador BIM	
Submodelos federados	ARQ, EST, MEP (HVAC, eléctrico, sanitario), Fachada	
Resultado	Archivo NWD con reporte de interferencias y checklist de coordinación	

3.22.1. Georreferenciación

La georreferenciación garantiza que todos los modelos estén alineados a un mismo sistema de coordenadas real, evitando desplazamientos entre disciplinas y facilitando la vinculación con datos topográficos, GIS o análisis ambientales.

Tabla 31: Sistemas de georreferenciación.

Sistema de coordenadas	WGS84 / UTM 17S
Punto base compartido	Centro de la planta baja – eje A1
Herramienta aplicada	Revit (Shared Coordinates) / Revisión en Navisworks
Aplicación	Compatibilidad con plataformas GIS, análisis solar, interferencias reales

3.22.2. Organización de archivos

La organización de archivos sigue un sistema estandarizado para facilitar su identificación, control de versiones y trazabilidad en el entorno común de datos (CDE).

Tabla 32: Organización de archivos.

Formato de nomenclatura	NHBT-INB-FP-XX-[DISC]-[TIPO]-[NIVEL]-[VERSIÓN]
Estructura de carpetas en ACC	S0: WIP / S1: Coordinación / S4: Validación / S6: Entrega / S7: As-Built
Control de versiones	Revisión automática por ACC y manual en matriz de entregas
Plantillas aplicadas	Por disciplina y tipo de entregable (plano, modelo, informe)

Fuente: Manual de Nomenclatura NHBT-INB-FP-XX-MNL-MNG-001

3.22.3. Gestión del tamaño de los archivos

El control del tamaño de los archivos es fundamental para garantizar el rendimiento del modelo, la estabilidad de la plataforma y la eficiencia en las sesiones colaborativas. Se establecen límites y prácticas recomendadas:

Tabla 33: Gestión del tamaño de los archivos.

Disciplina	Tamaño máximo recomendado por archivo (RVT)	Prácticas de optimización
Arquitectura	≤ 200 MB	Uso de worksets, limpieza periódica, vistas duplicadas
Estructura	≤ 150 MB	Uso de familias livianas, niveles organizados
MEP (cada sistema)	≤ 180 MB	Dividir por disciplina (HVAC, sanitario, eléctrico)
Modelo federado (NWD)	≤ 300 MB	Solo geometría necesaria + datos clave

3.22.4. Otras medidas:

- Limpieza con herramientas como Purge, Audit, Compact.
- Eliminar vínculos obsoletos, vistas no utilizadas y familias redundantes.
- Evitar modelado excesivo de detalles en etapas tempranas (LOD progresivo).

3.23. Procedimientos de Colaboración

Los procedimientos de colaboración definen la forma en que los distintos actores del proyecto BIM interactúan para compartir, revisar, validar y gestionar la información de manera segura y estructurada. Estos procesos deben estar basados en flujos de trabajo estandarizados, roles bien definidos y el uso de un entorno digital común.

Según la ISO 19650-2, "la gestión de la información debe apoyarse en un entorno común de datos (CDE) y una herramienta de gestión documental que garantice trazabilidad, control de versiones, seguridad y transparencia" (ISO, 2018). La Guía BEP también enfatiza que una buena colaboración depende del uso correcto de plataformas y convenciones homogéneas (MITMA, 2020, p. 18)

3.23.1. Sistema de gestión documental (EDMS)

Para este proyecto, se adopta como EDMS la plataforma Autodesk Construction Cloud (ACC), que permite almacenar, controlar, revisar y compartir archivos de forma estructurada en la nube.

Tabla 34: Sistema de gestión documental (EDMS).

Funcionalidad	Aplicación en ACC
Gestión de usuarios y permisos	Control de acceso por disciplina, rol y fase
Versionado automático	Registro cronológico de revisiones con historial
Revisión y comentarios	Marcado en PDF/3D, asignación de tareas, verificación
Auditoría	Registro de actividad, flujo de aprobación
Integración con Revit/Navisworks	Publicación directa desde el software de modelado

3.23.2. Entorno Común de Datos (CDE)

El CDE está estructurado según las recomendaciones de la ISO 19650, en carpetas con estados de información claramente diferenciados:

Tabla 35: Entorno Común de Datos (CDE).

Estado	Nombre / Código	Uso	Acceso
Trabajo en progreso	S0 - WIP (Work In Progress)	Modelos en desarrollo interno por disciplina	Solo equipo modelador
Compartido para coordinación	S1 - Shared	Modelos compartidos entre disciplinas para federación y clash detection	Coordinador BIM y líderes disciplinares
Validado para revisión del cliente	S4 - Review	Modelos listos para revisión y validación	BIM Manager y cliente
Publicado / Entregado	S6 - Published	Entregables oficiales del proyecto (PDF, IFC, NWD)	Cliente y autoridades
Archivado / Histórico	S7 - Archive	Copias de seguridad y versiones finales	BIM Manager

Cada carpeta está organizada por disciplina, tipo de documento, fase y fecha. Los archivos se nombran según el sistema oficial de nomenclatura (ver capítulo 4.2).

3.23.3. Plataformas y formatos aceptados

Tabla 36: Plataformas y formatos aceptados.

Tipo	Plataforma / Software	Formatos aceptados
Modelado	Autodesk Revit	RVT
Coordinación	Autodesk Navisworks	NWD / NWC
Gestión documental	Autodesk Construction Cloud (ACC)	RVT, PDF, DWG, XLSX, IFC, NWD
Visualización web	ACC / BIM 360 Docs / Revit Viewer	PDF, RVT, NWD
Formato abierto interoperable	IFC – ISO 16739	IFC 2x3 / IFC 4
Presupuestos y cuantificación 5D	Presto / Cost-It	XLSX, BC3
Simulación 4D	Navisworks Simulate	NWD / XML vinculado con cronograma
Informes técnicos	MS Excel / Word / Power BI	PDF / XLSX / DOCX / PBIX

3.24. Procedimientos de Producción e Intercambio

Este capítulo define los lineamientos técnicos para la elaboración, validación y entrega de información entre los diferentes actores del proyecto, asegurando la coherencia entre disciplinas, el cumplimiento de los requisitos contractuales (EIR) y la trazabilidad de los modelos y documentos a lo largo del ciclo de vida del proyecto.

Según la Guía BEP, "el intercambio de información debe estar regulado por procedimientos normalizados, formatos interoperables y un sistema de codificación que permita identificar de forma inequívoca cada entrega" (MITMA, 2020, p. 20).

3.24.1. Requisitos de formatos

Los formatos aceptados en el proyecto se clasifican según el tipo de uso, disciplina y fase. Estos garantizan la interoperabilidad entre plataformas, la compatibilidad para revisión, y el cumplimiento con normas como ISO 16739 (IFC).

Tabla 37: Requisitos de formatos.

Tipo de Información	Formato Principal	Uso / Plataforma	Observaciones
Modelo BIM nativo	RVT (Revit)	Desarrollo disciplinar	Archivo fuente editable
Modelo coordinado	NWD / NWC	Coordinación y federación (Navisworks)	Revisión de interferencias
Documentación gráfica	PDF (A1/A3)	Entregables técnicos	Planos firmados digitalmente
Cuantificación y Costos	XLSX / BC3	Cost-It, Presto	Presupuesto vinculado a modelos
Documentos de texto	DOCX / PDF	Informes y actas	Actas, matrices de validación, minutas
Formato interoperable	IFC 2x3 / IFC 4	Revisión por cliente o software externo	Aprobado según ISO 16739
Cronograma BIM 4D	XML / NWD	Planificación temporal	Vinculado desde Navisworks

Datos de auditoría	XLSX / PDF	Control de calidad	Checklist, reportes de colisiones, seguimiento de incidencias

3.24.2. Documentos y entregables por hitos

Los entregables se agrupan según los hitos del cronograma BIM (ver capítulo 2.13) y son organizados en el CDE según la estructura S0–S7. Cada hito debe cumplir con los niveles LOD/LOIN y formatos definidos, además de pasar por revisión previa y validación.

Tabla 38: Documentos y entregables por hitos.

Hito	Entregables Principales	Formato / Nivel LOD	Responsables
Diseño Preliminar	Modelo ARQ + concepto fachada	RVT / PDF / IFC / LOD 200	Líder ARQ / BIM Manager
Diseño Detallado	Modelos ARQ, EST, MEP + fachada	RVT / NWD / PDF / LOD 300– 350	Todos los líderes disciplinarios
Coordinación BIM	Modelo federado + reporte de interferencias	NWD / Clash Report (PDF)	Coordinador BIM
Entrega cliente revisión	Entregables gráficos + presupuesto 5D + cronograma 4D	PDF / XLSX / NWD / LOD 350	BIM Manager
Entrega final	Modelos validados + planos + presupuesto aprobado	IFC / PDF / XLSX / DOCX	BIM Manager / Cliente
Modelo As-Built	Modelo real construido + parámetros 6D	RVT / IFC / PDF / LOD 500	Coordinador BIM / Constructora
Documentación técnica	Manuales, fichas técnicas, matrices de validación	PDF / XLSX	Coordinador BIM / QA

3.25. Coordinación

La coordinación de modelos BIM tiene como objetivo garantizar la compatibilidad entre disciplinas, la detección y resolución oportuna de interferencias, y la validación del cumplimiento de los estándares definidos. Estos procesos son clave para evitar errores en obra, minimizar retrabajos y asegurar la calidad de los entregables.

Según la Guía BEP, "la coordinación BIM no debe limitarse a la revisión geométrica, sino también abarcar aspectos informativos y de calidad para una entrega fiable y útil" (MITMA, 2020, p. 21).

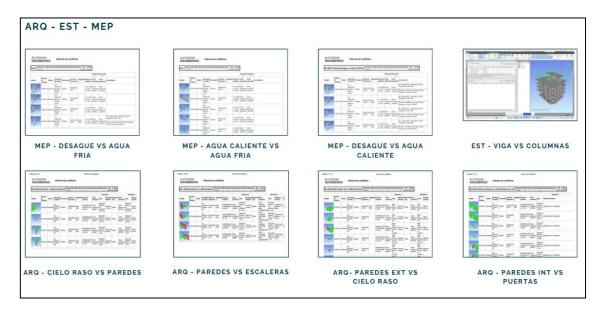


Ilustración 17: Informes de coordinación generados interdisciplinares

3.25.1. Tipos de pruebas

Las pruebas aplicadas durante el proceso de coordinación se dividen en pruebas geométricas, informativas y funcionales:

Tabla 39: Tipos de pruebas.

Tipo de Prueba	Objetivo	Herramienta	Frecuencia
Visual	Verificar alineación, modelado correcto y ubicación de elementos	Revit, Navisworks	Semanal
Clash Detection	Identificar interferencias entre disciplinas	Navisworks Manage	Quincenal
Validación de parámetros	Verificar consistencia de datos LOIN (materiales, ID, codificación)	Excel / ACC	Quincenal
Revisión normativa	Evaluar cumplimiento de normas locales (espacios mínimos, rutas)	Checklists / manual técnico	Según hito
Revisión de entregables	Validar cumplimiento con el IDP en forma y contenido	ACC / PDF Reviewer	Por hito contractual

3.25.2. Clasificación de interferencias

Para el análisis y resolución de conflictos se utilizará una tipología de interferencias basada en su gravedad y prioridad de resolución:

Tabla 40: Clasificación de interferencias.

Tipo	Descripción	Impacto	Resolución esperada
Tipo 1 – Crítica	Impide la ejecución de obra o representa un conflicto funcional grave	Alta	Inmediata
Tipo 2 – Moderada	Requiere rediseño o coordinación, pero no detiene la obra	Media	Antes de la próxima entrega
Tipo 3 – Leve	Errores menores sin consecuencias funcionales	Baja	Al consolidar entregables

3.25.3. Protocolo de coordinación y calidad

El proceso de coordinación sigue una secuencia definida que incluye:

- Carga de modelos WIP en ACC por cada disciplina (S0).
- Federación quincenal de los modelos en Navisworks.
- Generación automática de colisiones por zonas, niveles y sistemas.
- Reporte de interferencias clasificado por tipo y responsable.
- Asignación de tareas correctivas vía ACC.
- Revisión cruzada de solución antes de nueva federación.
- Checklists de revisión técnica e informativa antes de cada entrega.

La revisión incluye también aspectos informativos: presencia de parámetros

clave (material, código, clasificación), uso de familias aprobadas y limpieza de vistas.

3.25.4. Tolerancias y estándares de revisión

Se establecen tolerancias geométricas mínimas aceptables para evitar interferencias innecesarias y asegurar precisión constructiva.

Tabla 41: Tolerancias y estándares de revisión.

Elemento	Tolerancia Aceptada	Referencia
Conducto vs. Viga / Forjado	≥ 50 mm de separación	Revisión BIM MEP

Ductos vs. Tuberías paralelas	≥ 25 mm entre ejes	Manual interno
Muros y columnas contiguas	≤ 5 mm de diferencia	Modelado ARQ / EST
Alineación de niveles	Máx. 10 mm de desviación vertical	Coordenadas compartidas
Colisiones informativas	0 – todos los elementos deben tener parámetros obligatorios completos	LOIN institucional

3.26. Auditoría y Control de Calidad

El control de calidad es una parte esencial del flujo BIM, ya que asegura que los modelos entregados cumplan con los requisitos técnicos, normativos e informativos establecidos en el BEP y el EIR. La auditoría debe realizarse de forma periódica y automatizada, complementada con revisiones manuales que validen tanto la geometría como los datos asociados a los elementos modelados.

Según la Guía BEP, "las auditorías deben ser planificadas como parte del proceso de control de calidad, evaluando parámetros como la estructura del modelo, la codificación, la nomenclatura, el uso de plantillas y la consistencia con los entregables definidos" (MITMA, 2020, p. 22).

3.26.1. Model Checker (Revit)

Se utilizarán herramientas integradas o complementarias a Revit como la herramienta de interoperabilidad Model-Checker para la auditoría interna de los modelos por disciplina.

3.26.2. Model Checker Arquitectura

Ilustración 18: Model checker arquitectura

3.26.3. Model Checker Estructura

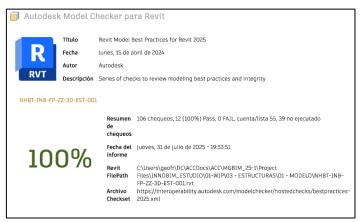


Ilustración 19 Model checker estructura

3.26.4. Model Checker MEP

Ilustración 20 Model checker MEP

Tabla 42: Objetivos del model chequer.

Objetivo	Verificar consistencia geométrica y paramétrica de los modelos disciplinarios
Parámetros auditados	Nombre de tipo, ID, materiales, clasificación, LOD, LOIN
Revisión automatizada	Scripts Dynamo, plugins Model Checker for Revit
Frecuencia	Quincenal antes de cada federación

3.26.5. Revisión de interferencias (Navisworks)

El proceso de detección de colisiones será auditado con Navisworks Manage, permitiendo clasificar interferencias por tipo, disciplina y severidad.

Tabla 43: Revisión de interferencias (Navisworks)

Herramienta	Navisworks Manage – Clash Detective
Resultados	Listado de interferencias, filtros por nivel, sistema, tipo
Coordinador BIM	Responsable del análisis y reporte
Documentación	Clash Matrix en Excel + Reporte PDF

3.26.6. Revisión de vínculos

Todos los modelos deben cumplir con la estructura de vínculos definidos en el

BEP. Se realizará una validación de:

- Ubicación correcta de archivos vinculados
- Coordenadas compartidas activas
- No duplicación de vínculos
- Actualización periódica de referencias

Esta revisión se realiza directamente en Revit, con checklist por parte del

Coordinador BIM y validación del BIM Manager en entregas clave.

3.26.7. Informes de auditoría

Se generará un informe de auditoría por cada fase de coordinación y entrega, documentando:

Tabla 44: Informes de auditoría.

Contenido del Informe	Formato
Resumen de revisión de parámetros (Revit)	PDF / XLSX
Listado de interferencias por tipo	Excel (Clash Matrix)
Observaciones y recomendaciones	DOCX
Capturas de errores críticos	PDF o imagen
Validación de estructura de carpetas y nomenclatura	Checklist BEP

Todos los informes se alojan en el CDE (ACC) en la carpeta S4 – Revisión y son aprobados por el BIM Manager antes de cualquier entrega oficial.

3.26.8. Federación interdisciplinar

El modelo federado será evaluado en términos de:

- Consistencia geométrica entre disciplinas
- Ausencia de colisiones críticas sin resolver
- Correcta estructura por niveles, zonas y fases
- Verificación de cumplimiento con entregables del IDP

Tabla 45: Federación interdisciplinar.

Herramienta	Navisworks Manage + Visor ACC
Frecuencia	Cada ciclo de coordinación
Responsable	Coordinador BIM + Líderes de disciplina
Resultado esperado	Modelo federado NWD limpio, con tolerancias aceptadas

3.27. Entregables Finales y Gestión de Información

Este capítulo reúne las condiciones técnicas y organizativas para la entrega formal de modelos y documentación, asegurando que la información producida durante el ciclo de vida del proyecto BIM sea verificable, trazable, reutilizable y conforme a los requisitos definidos por el cliente en el EIR.

La entrega final debe contemplar tanto los modelos digitales como la documentación asociada, los reportes de auditoría y los elementos informativos clave como cronogramas 4D y presupuestos 5D. Todo ello debe gestionarse bajo criterios de control de calidad, interoperabilidad y estructura coherente de archivos.

3.27.1. Protocolo de coordinación

El objetivo principal del protocolo de coordinación en el proyecto NOVA HABITAT es establecer una metodología clara, estructurada y colaborativa para la

validación técnica de los modelos disciplinarios que componen el entorno BIM del proyecto. Esta coordinación se realiza mediante un proceso iterativo de revisión, retroalimentación y aprobación, que garantiza que cada modelo cumpla con los estándares geométricos, informativos y normativos definidos en el BEP y el EIR, antes de ser integrado al modelo federado.

El protocolo no solo busca detectar y corregir interferencias entre disciplinas, sino también asegurar la trazabilidad documental, el control de versiones, y el alineamiento de la información compartida dentro del entorno común de datos (CDE, Autodesk Construction Cloud). A través de flujos de aprobación digital, el sistema permite verificar la calidad de los modelos en términos de:

- Geometría adecuada y correcta ubicación espacial
- Cumplimiento de los parámetros obligatorios (LOIN)
- Estructura de vistas, niveles, vínculos y familias autorizadas
- Coherencia con los entregables y cronogramas establecidos (IDP/MIDP)
- Documentación asociada para validación del cliente

Asimismo, este protocolo establece responsabilidades por parte de los líderes disciplinares, del Coordinador Manager en cada fase de revisión, fomentando un entorno colaborativo basado en la transparencia, la mejora continua y la detección temprana de errores. De esta manera, el protocolo de coordinación se convierte en un componente clave para garantizar la calidad técnica del modelo federado y la confiabilidad de la información BIM para la toma de decisiones y la planificación constructiva.

- Validación de federación final sin colisiones críticas.
- Checklist de cumplimiento del BEP y del IDP.
- Coordinación documentada entre disciplinas (revisión por pares).
- Confirmación de niveles LOD/LOIN alcanzados según fase.
- Firma de conformidad técnica por el Coordinador BIM y BIM Manager.

3.27.2. Etapas del Protocolo

- I. Revisión interna del modelo disciplinar por parte del líder de cada disciplina.
- II. Subida del modelo al entorno común de datos (ACC) en la carpeta correspondiente del estado S0 WIP.
- III. Activación del flujo de aprobación en ACC, creado por el BIM Manager, para que el Coordinador BIM revise el modelo.
- IV. Emisión del dictamen de revisión en uno de los siguientes estados:
 - Aprobado
 - Aprobado con comentarios
 - Rechazado
- V. Si el modelo es aprobado, el Coordinador BIM lo mueve a la carpeta S1 Shared /
 Referencias para su uso en coordinación.

3.27.3. Flujo de Revisión y Aprobación

En el módulo de revisión de ACC, el BIM Manager define flujos de aprobación de una sola etapa, permitiendo a los revisores (Coordinador BIM o BIM Manager) emitir sus evaluaciones con comentarios y registrar trazabilidad.

3.27.4. Estados de Revisión y Comentarios

Los revisores podrán seleccionar el estado de revisión desde el panel de ACC y añadir comentarios contextualizados:

Tabla 46: Estados de revisión y comentarios.

Estado	Descripción
Aprobado	Cumple con los requisitos definidos en el BEP. Listo para federación.
Aprobado con comentarios	Puede ser federado, pero requiere ajustes menores.
Rechazado	No cumple con parámetros críticos. Debe ser corregido y reenviado.

3.28. Ubicación de Archivos Revisados dentro del CDE

Una vez aprobado, el archivo es movido por el Coordinador BIM a la siguiente ruta dentro de ACC:

02-INNOBIM/

└── 00 INFORMACIÓN DEL PROYECTO/

□ 01-WIP/

└── 00-REFERENCIAS/

└── 01-ARQ/

└── 02-REFERENCIA/

└──04-RVT/

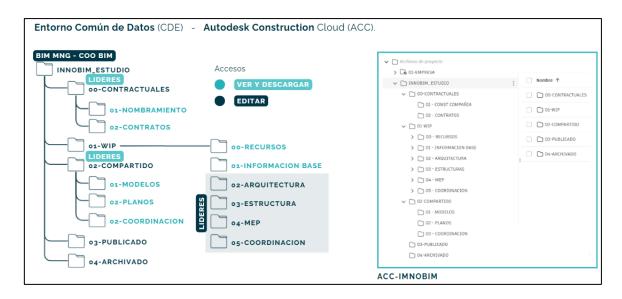


Ilustración 21: Organización del CDE

3.28.1. Prioridades de Modelos

Según los lineamientos establecidos, el desarrollo de modelos debe responder a una secuencia de madurez disciplinar, para asegurar una base estable antes de iniciar procesos dependientes como coordinación o interferencias. Las prioridades son:

Tabla 47: Prioridades de Modelos.

Disciplina	Condición de avance mínima para liberar modelado
Arquitectura (ARQ)	Inicia el modelado base (LOD 200–300)
Estructuras (EST)	Se habilita cuando ARQ esté al 60% con niveles definidos
MEP (todas)	Solo puede iniciar con ARQ + EST al 60–80% coordinado (LOD 300 mínimo)
Coordinación (COO)	Inicia tras primera federación de ARQ + EST (al menos)

3.29. Diseño de Pruebas de Coordinación

Se definen tres niveles de pruebas BIM:

Tabla 48: Diseño de Pruebas de Coordinación.

Tipo de Prueba	Objetivo	Frecuencia	Herramienta
Visual (modelo disciplinar)	Verificar geometría, vistas, vínculos, nomenclatura	Semanal	Revit
Clash Detection	Detectar interferencias entre disciplinas	Quincenal	Navisworks Manage
Validación informativa	Verificar parámetros obligatorios (LOIN)	Quincenal	ACC + Excel Model Checker

3.29.1. Matriz de Colisiones Detallada

La siguiente matriz permite clasificar interferencias detectadas durante la coordinación, con base en severidad, tipo, responsables y plazos de corrección:

Tabla 49: Matriz de Colisiones Detallada.

Código	Tipo de Colisión	Disciplinas Involucradas	Impacto	Responsable de corrección	Plazo Máximo de Solución
C1	Ducto atraviesa viga estructural	MEP – EST	Crítico	Líder MEP / Coordinador BIM	2 días
C2	Puerta bloqueada por tubería	ARQ – MEP	Moderado	Líder ARQ	4 días
C3	Solape de luminaria y falso techo	MEP-E – ARQ	Leve	Modelador MEP	5 días

C4	Red sanitaria fuera de pendiente mínima	MEP-S	Crítico	Líder MEP-S	2 días
C5	Nivel de proyecto mal alineado entre disciplinas	ARQ – EST – MEP	Crítico	Coordinador BIM	1 día

3.29.2. Tolerancias de Coordinación por Tipo de Elemento

Establecidas para evitar interferencias innecesarias y mantener criterios realistas de revisión:

Tabla 50: Tolerancias de Coordinación por Tipo de Elemento.

Elemento	Tolerancia aceptada	Criterio / Justificación
Ductos vs. Vigas	≥ 50 mm	Revisión estructural funcional
Bandejas vs. Tuberías paralelas	≥ 25 mm entre ejes	Espacio de mantenimiento
Equipos MEP vs. muros	≥ 30 mm	Espacio libre para montaje
Superposición de modelos	0 mm (coincidencia total en origen)	Georreferenciación precisa
Ausencia de parámetros clave	No permitido	Validación informativa obligatoria

3.29.3. Diseño de pruebas:

El diseño de pruebas BIM establece los procedimientos, herramientas y criterios que se utilizarán para **verificar y validar** los modelos disciplinarios antes de cada entrega o federación. Este sistema incluye tres niveles de revisión: geométrica, informativa y normativa, y es responsabilidad compartida entre los líderes de disciplina, el Coordinador BIM y el BIM Manager.

Tabla 51: Diseño de pruebas.

Tipo de Prueba	Descripción	Herramienta / Medio	Frecuencia	Responsable
1. Revisión Visual	Verificación manual de geometría, vistas,	Revit (vista 3D, cortes)	Semanal	Líder de disciplina

	vínculos, niveles y nomenclatura			
2. Clash Detection	Revisión de interferencias entre modelos disciplinarios	Navisworks Manage	Quincenal	Coordinador BIM
3. Validación Informativa	Revisión de parámetros obligatorios, nombres, clasificaciones, unidades	Excel + Model Checker for Revit	Quincenal	Coordinador BIM / QA
4. Prueba de Coordinación Vertical	Alineación de niveles, elevaciones, grids y puntos de origen	Revit / Navisworks	En cada federación	Coordinador BIM
5. Auditoría de Vínculos	Verificación de vínculos activos, actualizados y sin errores	Revit	Antes de cada entrega	Coordinador BIM
6. Revisión Normativa	Cumplimiento de espacios, pendientes mínimas, alturas libres, normativas locales	Checklist técnico	Por fase	Consultor técnico / QA

3.29.4. Matriz de interferencias detallada

Esta matriz permite clasificar, registrar, asignar y hacer seguimiento de cada interferencia detectada durante los procesos de federación y coordinación del modelo BIM. Cada colisión es documentada con su tipo, ubicación, disciplinas involucradas, responsable de corrección y estado de resolución.

3.29.5. Hitos de coordinación

Los hitos de coordinación representan los momentos clave dentro del proceso BIM en los cuales se evalúan los modelos integrados, se emiten reportes de colisiones, se aprueban avances técnicos y se liberan entregables para su uso en fases posteriores (presupuesto, planificación, construcción, etc.).

Cada hito requiere la ejecución de actividades de federación, revisión de interferencias, generación de matrices de colisiones y validación formal del cumplimiento de los requerimientos del BEP y EIR

Tabla 52: Hitos de coordinación.

Hito	Fecha Estimada	Actividades Clave	Requisitos BIM	Responsables
H1 – Primer Modelo Coordinado ARQ + EST	15/julio/2025	Federación inicial entre arquitectura y estructura	LOD 300 / Coordinación vertical	Coordinador BIM + Líderes ARQ y EST
H2 – Coordinación ARQ + EST + MEP (1ª iteración)	25/julio/2025	Clash detection tridisciplinar inicial	LOD 300	Coordinador BIM + Todos los líderes disciplinares
H3 – Entrega de Informe de Colisiones N°1	27/julio/2025	Matriz detallada de interferencias + tareas asignadas	Reporte en ACC + Clash Matrix	Coordinador BIM
H4 – Revisión de Resoluciones y 2ª Federación	03/agosto/2025	Revisión de tareas resueltas + nueva federación	LOD 350 preliminar	Coordinador BIM + BIM Manager
H5 – Aprobación para Entrega Técnica Cliente	08/agosto/2025	Validación de entregables gráficos + modelo federado	LOD 350 aprobado / validación ACC	BIM Manager + Cliente
H6 – Coordinación Final / Preconstrucción	25/agosto/2025	Modelo final federado libre de colisiones críticas	LOD 400 / checklist completo	Coordinador BIM + QA
H7 – Entrega As-Built Coordinado	Según construcción	Validación de modelo construido con ajustes en campo	LOD 500 / georreferenciado / informativo completo	BIM Manager + Constructora

3.29.6. Georreferenciación de modelos

La georreferenciación de los modelos es un aspecto esencial en la gestión de proyectos BIM, ya que permite asegurar la coherencia espacial entre disciplinas, la

interoperabilidad con sistemas GIS y la compatibilidad con herramientas de análisis ambiental y planificación territorial. En el proyecto **NOVA HABITAT**, todos los modelos deben estar vinculados a un sistema de coordenadas **compartidas y realistas**, específicamente **UTM Zona 17 Sur / WGS84**, definido como sistema oficial de referencia geoespacial.

Esta georreferenciación se aplicará directamente desde Autodesk Revit, mediante el uso del **punto base compartido**, que ha sido previamente establecido en el centro de la planta baja del edificio (eje A1). A su vez, se validará esta configuración utilizando **Navisworks Manage** durante la federación de modelos, comprobando la correcta alineación de los submodelos y la ausencia de desplazamientos o rotaciones indebidas.

La correcta ubicación del modelo garantiza que todas las disciplinas modelen en el mismo sistema de referencia, evitando errores en la documentación, en la planificación de obra, y facilitando el análisis solar, el estudio de asoleamiento y la integración con sistemas de consulta urbana o catastro digital. Esta condición también es crítica para futuras fases de mantenimiento y operación, especialmente si se vincula el modelo a herramientas de gestión de activos urbanos o plataformas de Smart Cities.

El cumplimiento de este requerimiento será verificado en cada fase de revisión por el **Coordinador BIM**, utilizando los visores de Revit y Navisworks, así como mediante el checklist de auditoría interna de modelos. Todo modelo que no esté correctamente georreferenciado será devuelto para su ajuste antes de ser aprobado para federación.

3.30. Normas básicas de manejo de intercambio de información

El intercambio de información en el entorno BIM del proyecto **NOVA HABITAT** debe realizarse bajo criterios rigurosos que aseguren la trazabilidad, el control de calidad y la organización estandarizada de los archivos. Para tal fin, se aplican

las **normas internas de codificación y estructura de archivos** definidas en el manual institucional de nomenclatura (*NHBT-INB-FP-XX-MNL-MNG-001*), el cual establece cómo deben nombrarse los documentos y modelos según disciplina, tipo, nivel y versión. Esta codificación permite identificar cada archivo de forma unívoca, facilitando su clasificación en el Entorno Común de Datos (CDE).

Todos los archivos que ingresen al proceso colaborativo deben estar sujetos a un control de versiones automático gestionado desde Autodesk Construction Cloud (ACC). A su vez, cada versión será auditada manualmente mediante planillas de control que verifican la estructura del modelo, los parámetros esenciales, los vínculos activos, la nomenclatura de vistas y la calidad gráfica de los entregables.

Es obligatorio que **solo se intercambien archivos que hayan sido previamente validados** mediante los flujos de aprobación definidos en el BEP (ver punto 10.1). Esto implica que todo archivo —ya sea modelo RVT, plano PDF, archivo IFC o matriz Excel— debe haber pasado por revisión técnica y cumplir con los requerimientos establecidos en el EIR.

Además, cada archivo debe ser revisado en términos de contenido gráfico y paramétrico, evaluando aspectos como: estructura de vistas, uso de familias aprobadas, cumplimiento del LOIN por fase, presencia de metadatos obligatorios y relaciones correctas entre vínculos. Este enfoque garantiza que la información sea coherente, útil y segura en todas las etapas del proyecto, desde diseño hasta operación.

3.31. Matriz de intercambio de información

ti E	11 0	10 PI	9 00	8	7 00	6 0	5 Di	4 Di	3 D	2 Di	1 0	N ₁₀	
Estimación de costos y presupuesto	Cronograma de obra	Planificación	Documentación para obra	Evaluación técnica fachadas	Coordinación Final Diseño	Diseño de Detaile	Diseño de Detalle	Diseño de Detalle	Diseño Preliminar	Diseño Preliminar	Diseño Preliminar	Fase del Proyecto	
Modelo 5D	Modelo 4D	Modelo federado como producto final	Documentación ejecutiva, cómputos métricos	Análisis comparativo de alternativas	Clash detection, modelo federado Todas	Modelado 3D detallado	Modelado 3D detallado	Modelado 3D detallado	Modelado 3D inicial	Modelado 3D inicial	Modelado 3D inicial	Uso BIM	
Todas	Todas	Todas	Todas	Arquitectura	Todas	MEP	Estructura	Arquitectura	MEP	Estructura	Arquitectura	Disciplina	
Modelo con parámetros de costos vinculados Coordinador BIM, gestor de nor elemento (presupuesto SD)	Modelo con parámetros de tiempo vinculados por elemento (cronograma 4D)	Modelo federado final con integración de arquitectura, estructura y MEP para planificación	Planos constructivos, cómputos métricos	Estudio de alternativas sistema de fachada con criterios técnicos/económicos	Modelo federado, reportes de interferencias	Redes completas con especificaciones técnicas y artefactos	Armaduras, fundaciones, placas, anclajes	Modelo con familias, acabados, carpintería, muros interiores	Trazado redes principales (agua, electricidad, climatización)	Ejes estructurales, columnas, vigas principales	Modelo arquitectónico básico (zonificación, envolvente)	Información a entregar	Basa
Coordinador BIM, gestor de costos	Coordinador BIM	Coordinador BIM	Coordinadores disciplinares Constructor, dirección obra RVT, NWC, Excel Final de diseño	Lider ARQ, Coordinador BIM Cliente / Promotor	Coordinador BIM	Lider MEP	Lider EST	Lider ARQ	Lider MEP	Lider EST	Lider ARQ	Responsable	Matriz de Intercambio de Información Basada en ISO 19650-2: Arquitectura, Estructura y MEP – Fase de Diseño y Construcción
Cliente / Dirección técnica	Cliente / Dirección técnica	Cliente / Dirección técnica RVT, NWD, PDF Final de planificación	Constructor, dirección obra	Cliente / Promotor	Cliente / Dirección técnica NWD, PDF	Coordinador BIM	Coordinador BIM	Coordinador BIM, cliente	Coordinador BIM	Coordinador BIM	Coordinador BIM	Receptor	Matriz de Intercambio de Información Arquitectura, Estructura y MEP – Fase c
RVT, Excel, Presto	RVT, Excel, Presto	RVT, NWD, PDF	RVT, NWC, Excel	PDF, Excel, RVT	NWD, PDF	RVT, IFC	RVT, IFC, DWG	RVT, IFC	RVT, PDF	RVT, PDF	RVT, PDF	Formato	iormación EP – Fase de Di
Por hito de contratación	Por hito de contratación		Final de diseño	Por hito de decisión	Mensual	Quincenal	Quincenal	Quincenal	Una vez por etapa	Una vez por etapa	Una vez por etapa	Frecuencia (hitos de coordinación)	seño y Construcción
LOD 350 / LOI 350	LOD 350 / LOI 350	LOD 350 / LOI 300	TOD 350 / LOI 300	LOD 350/ LOI 200	TOD 300 / TOI 200	LOD 300 / LOI 200	LOD 300 / LOI 200	LOD 350/ LOI 200	LOD 200 / LOI 100	LOD 200 / LOI 100	LOD 200 / LOI 100	Nivel de Información (LOIN)	
Sin análisis de contratiempos	Sin análisis de proveedores ni costos indirectos	Sin simulaciones de procesos constructivos detallados	Sin simulaciones de rendimiento	Sin detalles constructivos finales	Sin simulaciones constructivas	Sin secuencia de instalación ni balances térmicos	Sin detalles de montaje o soldaduras	Sin señalética ni mobiliario decorativo	Sin conexiones ni diagramas unifilares	Sin armaduras ni análisis estructural	Sin mobiliario fijo ni detalles de acabados	Exclusiones	
contrattempos Presupuesto general	Cronograma vinculado	Modelo completo	Documentación constructiva sin simulaciones	Evaluacion de la alternativas	Sin simulaciones constructivas Modelo de planificación visual	Coordinacion espacial	Coordinacion espacial	Coordinacion espacial	Información conceptua	Información conceptual	Información conceptual	Justificacion de las exclusiones	
Cómputos métricos, control de presupuesto, estimación de costos	Cómputos métricos, control de presupuesto, estimación de costos	Simulación de construcción, detección de cuellos de botella, validación final de coordinación	Generación de cantidades, planificación 4D / 5D básica	Selección técnica y económica de fachadas	Validación técnica, cierre de diseño	Modelado federado, análisis de interferencias	Análisis estructural, coordinación constructiva	Coordinación avanzada, validación con cliente	Análisis de interferencias preliminares	Coordinación espacial con arquitectura	Validación conceptual, coordinación preliminar	s Uso BIM previsto	

Ilustración 22: Matriz de intercambio de información.

Tabla 53: Matriz de intercambio de información.

REQUERIMIENTO	DESCRIPCIÓN APLICADA EN NOVA HABITAT
Idioma	Español
Sistema de medición	Sistema Métrico Internacional
Largo	Metros (m) con 2 cifras decimales
Área	Metros cuadrados (m²) con 2 cifras decimales
Volumen	Metros cúbicos (m³) con 2 cifras decimales
Ángulo	Grados (°) con 2 cifras decimales
Pendientes	Porcentaje (%)
Revisiones del proyecto	Autodesk Revit 2024 + Entorno común de datos (Autodesk Construction Cloud)
Coordinación de modelos	Navisworks Manage 2024
Gestión documental	Autodesk Desktop Connector
Auditoría de modelos	Autodesk Model Checker for Revit 2024
Comunicación (texto e imágenes)	Autodesk Construction Cloud / mensajería integrada
Reuniones / videocomunicación	Google Meets – Universidad Internacional SEK (UISek)
Entorno Común de Datos (CDE)	Autodesk Construction Cloud (ACC)

3.31.1. Estrategia de organización de archivos

Tabla 54: Estrategia de organización de archivos.

Ubicación	Contenido
S0 – WIP	Modelos en desarrollo por disciplina
S1 – Shared	Modelos compartidos para coordinación
S4 – Revisión	Modelos revisados por el coordinador y listos para aprobación
S6 – Entrega	Entregables formales (modelos IFC, PDF, NWD, informes)
S7 – Archivo	Documentación histórica, modelos As-Built

3.31.2. Estrategia de gestión del tamaño de los archivos

Tamaño límite por submodelo disciplinar:

• ARQ: ≤ 200 MB

• EST: ≤ 150 MB

• MEP: ≤ 180 MB por sistema

Prácticas:

- Limpieza de vistas no utilizadas.
- Compresión y purgado semanal.
- Revisión de familias cargadas y archivos vinculados.
- División en submodelos si se supera el umbral definido.

3.32. Cronograma 4D, Presupuesto 5D

En el proyecto NOVA HABITAT, se implementan las dimensiones 4D (tiempo) y 5D (costos) del modelo BIM para fortalecer la planificación constructiva, la toma de decisiones financieras y el control de avances. Estas dimensiones permiten simular el proceso constructivo en tiempo real y generar presupuestos precisos y trazables desde el modelo digital.

3.32.1. Cronograma 4D

El modelo BIM será vinculado a un cronograma de obra para visualizar la secuencia constructiva en forma animada y verificar la viabilidad de plazos.

Tabla 55: Cronograma 4D.

Elemento	Detalle
Formato	NWD (Navisworks) + XML del cronograma
Herramientas	Autodesk Navisworks Simulate / Manage
Origen del cronograma	Planificación base en MS Project o Excel
Frecuencia de revisión	Mensual (coordinado con los hitos IDP)
Visualización	Por zonas, fases, disciplinas, o sistema constructivo

Objetivo	Validar secuencia lógica, detectar solapes, mejorar logística de
	obra

3.32.2. Presupuesto 5D

La estimación de costos estará integrada al modelo mediante extracción automática de cantidades y vinculación a una base de precios actualizada, con estructura conforme a codificación propia del manual de nomenclatura

Tabla 56: Presupuestos 5D.

Elemento	Detalle
Formato	Excel (XLSX) / BC3 (intercambio con Presto)
Herramientas	Presto 5D / Cost-It / Revit
Vinculación	Por parámetros del modelo: tipo, material, unidad, rendimiento
Origen de precios	Base INEC / proveedores locales / históricos internos
Objetivo	Automatizar el presupuesto y reducir errores de cuantificación

Ilustración 23: Presupuesto 5D.

3.32.3. Matriz de colisiones

- Archivo Excel con resumen de interferencias detectadas, clasificadas y resueltas.
- Cada interferencia incluye:

- o Tipo (crítica, moderada, leve)
- o Disciplinas involucradas
- o Nivel y ubicación
- o Responsable de resolución
- o Estado: pendiente / resuelta / aprobada
- Adjunta como anexo técnico al informe final de coordinación.

Matriz de deteccion de interferencias		Arquitectura										Estructura						Agua FyC				Electricidad					Fontanería y desagües			
		Suelos	Cubiertas	Falsos techos	Acabados de piso	Acabados de Pared	Acabados de techo/cieloraso	Escaleras y Rampas	Carpinterías (Ventanas y Puertas)	Zapatas/Riostras	Muros	Pilares	Vigas	Losas/Forjados/soleras	Estructura metálica	Tuberías	Valvuleria	Equipos	Accesorios	Bandejas	Cableado/tubos	Luminarias	Cuadros	Accesorios	Tuberías	Valvuleria	Equipos	Sanitarios		
Arquitectura												_	_				_						_		_					
Tabiques/paredes	Ш	В	В	Α	Α		В	Α	В		Α	Α	Α	Α		Α		В	Α		В		В		Α	Α	Α	Α		
Suelos	В				В	В		В			В					Α	В		Α		Α				Α		В	В		
Cubiertas	Α		Ш	В								_	В			Α			В		В	Α			Α		Ш			
Falsos techos	Α					В					Α	В	L			В		С	Α		В	Α	С		Α					
Acabados de piso	Α	С				В		В			В			Α		С	В		В		С				В		С	С		
Acabados de Pared	В	В	В	Α	С		С		В		С	С	С	В		С		С	В		В		С		В	С	С	С		
Acabados de techo/cieloraso	В			В		С					С					С			В		С	Α			В					
Escaleras y Rampas		С			В	В					Α			В							C									
Carpinterías (Ventanas y Puertas)	В	В			В	В					3					Α			В		Α	С			В					
Estructuras																														
Zapatas/Riostras											Α	С				В									В					
Muros										Α	В	В	В	С		В		С			С				С					
Pilares										В	В	Α	В	В		Α	В	Α	В		Α	В	В		А	С	В	В		
Vigas					iden	1					С	В		А		Α	С		В		Α	Α			А	В				
Losas/Forjados										С	В	В	А			С	Г	В	С		С	С	Г	Г	В	П	С	С		
Estructura metálica													Г												Г					
Agua FyC																														
Tuberias										Α	Α	В	Α	Α		Α	С	В	С		Α	Α	В		А	С	Α	Α		
Valvuleria											В	Г	С		П	С		С			В		Г		В		П			
Equipos					iden	1					В	С	Г	В		В	С	С	С		В			Г	А	С	П			
Accesorios											В	Г	Г			С		С			С				В	С				
Electricidad																_			_						_					
Bandejas																Г									Г			\neg		
Cableado/tubos											А		Α	Α		А			В	ı	Α	С	С		А		В	П		
Luminarias				1	iden	ı				П	В	c	В	В		А	Г	В	П		С		Г	Г	А	П	П	П		
Cuadros											С		Т	Г	П	С					С				С			П		
Accesorios										П	В	С	Г	Т		А									Г		С	П		
Fontanería y desagües																														
Tuberías										Α	Α	В	Α	Α		Α	С	Α	Α		А		В		А	С	Α	Α		
Valvuleria										П	В		С		П	В					Α				С		С	С		
Equipos					iden	1					В	С	Г	В	П	Α	С				С				А	С	В	С		
Sanitarios							В		Г	Г	П	В	С						С		А	С	С							

Ilustración 24: Matriz de colisiones.

3.33. Informe de cumplimiento y control

El Informe de Cumplimiento y Control constituye el documento final de verificación técnica del proyecto NOVA HABITAT, y tiene como objetivo certificar que todos los entregables BIM han sido elaborados y coordinados conforme a lo establecido en el Plan de Ejecución BIM (BEP) y el Documento de Requisitos de Información (EIR).

Este informe consolida los resultados de auditorías, procesos de coordinación y control de calidad ejecutados durante el ciclo de desarrollo del modelo, validando que cada disciplina haya cumplido con:

- El alcance esperado de desarrollo geométrico (LOD) y de información (LOIN),
- La aplicación de normas de modelado, nomenclatura, estructura de vistas y vínculos,
- La resolución efectiva de colisiones críticas identificadas durante el proceso de federación,
- La correcta georreferenciación de los modelos conforme al sistema UTM 17S / WGS84,
- Y la entrega completa de los formatos requeridos en IFC, PDF, NWD, XLSX y BC3. Este informe es elaborado y revisado de forma conjunta por el Coordinador BIM y el BIM Manager, quienes certifican mediante firma digital la conformidad de los entregables con lo estipulado en el BEP. La documentación queda oficialmente registrada en la carpeta S6 Entregas Finales del Entorno Común de Datos (ACC), junto con los modelos federados, presupuestos, cronogramas, actas y reportes de colisiones.

Tabla 57: Informe de cumplimiento y control.

Sección	Contenido
1. Portada	Nombre del proyecto, código del informe, fecha, firmas
2. Resumen ejecutivo	Alcance de coordinación y entregables incluidos
3. LOD/LOIN por disciplina	Tabla de cumplimiento por modelo y fase
4. Informe de colisiones	Total de colisiones detectadas / resueltas / abiertas
5. Auditoría de georreferenciación	Verificación de coordenadas compartidas y origen
6. Verificación de formatos	Tabla de archivos entregados por formato y versión
7. Anexos	Capturas de revisión, matrices de control, checklist firmados

3.33.1. Firma y Archivo

Firmantes responsables:

o Coordinador BIM: [Nombre completo]

o BIM Manager: [Nombre completo]

• Formato del archivo: PDF (firmado digitalmente)

3.34. Entregables y Gestión de Información Final

Todos los entregables generados durante el desarrollo del proyecto NOVA HABITAT deben ser organizados, validados y almacenados de manera sistemática tanto en el Entorno Común de Datos (CDE) como en el repositorio final del cliente. Esto asegura su trazabilidad, revisión y aprobación formal. La entrega final debe seguir las estructuras establecidas en el BEP y cumplir con los requisitos del cliente expresados en el EIR.

El conjunto de entregables se clasifica en tres grandes categorías: generales del proyecto, específicos por rol, y aquellos asociados al proceso académico de titulación. A continuación, se detallan:

3.34.1. Entregables Generales del Proyecto

Tabla 58: Entregables Generales del Proyecto.

Elemento	Descripción
EIR	Documento con requerimientos técnicos, de gestión y comerciales del cliente
BEP	Plan de Ejecución BIM completo y actualizado
Respuestas a Requisitos	Técnicos, de gestión y comerciales, según lo solicitado
Matriz de Roles (BEP)	Asignación de responsabilidades por disciplina, fase y entregable

3.34.2. Entregables Específicos según Roles

Tabla 59: Entregables Específicos según Roles.

Elemento	Descripción
Manual de estilo	Guía de presentación de vistas, formatos, plantillas y nomenclatura
Modelos disciplinares	Arquitectura, Estructura, MEP, en formato RVT y exportaciones IFC
Modelo Federado	Modelo integrado en formato NWD, sin interferencias críticas
Hitos de Coordinación	Reportes, matrices de colisiones, evidencias de revisión y solución
Análisis de Interferencias	Informes técnicos por disciplina con capturas y descripción
Planificación 4D	Simulación constructiva en Navisworks (NWD + cronograma XML)
Costos 5D	Presupuesto vinculado al modelo, en Excel/BC3 desde Cost-It o Presto

3.34.3. Entregables según Objetivos del proyecto

Tabla 60: Entregables según Objetivos del proyecto.

Elemento	Descripción
Documento A4	Informe académico técnico completo
Archivos CDE	Organización final de carpetas del proyecto dentro de ACC
Planimetrías	Conjuntos de planos en PDF, listos para construcción o revisión
Anexos	Documentación complementaria: checklists, auditorías, cronogramas
Modelos	Versión final de los modelos, firmados y validados en IFC / PDF 3D

3.35. Conclusión

El presente Plan de Ejecución BIM (BEP) establece las bases técnicas, organizativas y colaborativas necesarias para la correcta implementación de la metodología BIM en el proyecto NOVA HABITAT. A través de la estructuración detallada de roles, flujos de trabajo, niveles de desarrollo (LOD/LOIN), formatos,

plataformas, procesos de coordinación y entregables, se garantiza que toda la información generada sea confiable, trazable, interoperable y útil para la toma de decisiones en todas las fases del ciclo de vida del edificio.

Este documento ha sido diseñado para facilitar una gestión eficiente de los modelos digitales, minimizar riesgos por interferencias, controlar los costos en tiempo real mediante BIM 5D y validar la planificación constructiva mediante simulaciones 4D. Asimismo, su aplicación permitirá integrar criterios de sostenibilidad, eficiencia energética y análisis climático desde etapas tempranas, fortaleciendo el carácter innovador del sistema de fachada propuesto.

3.36. Recomendaciones

Se recomienda aplicar este BEP como documento vivo durante el desarrollo del proyecto, permitiendo su actualización periódica conforme evolucionen los modelos, herramientas, normativas o requerimientos del cliente. Es fundamental mantener la disciplina en el uso del Entorno Común de Datos (ACC), respetar las convenciones de nomenclatura, y ejecutar con rigurosidad los protocolos de revisión y control definidos en este plan.

Asimismo, se sugiere utilizar este BEP como referente metodológico en futuros proyectos de la empresa INNOBIM Studio Cía. Ltda., adaptándolo según las particularidades de cada disciplina, a fin de consolidar una cultura de trabajo colaborativo y tecnológicamente eficiente en entornos BIM.

Finalmente, se invita al equipo a mantener una actitud abierta al aprendizaje continuo, promoviendo el uso crítico y estratégico del BIM no solo como herramienta digital, sino como una metodología para construir mejor, con mayor transparencia, calidad, y visión de largo plazo.

CAPÍTULO 4

4. Rol del líder MEP en el proyecto NOVA HABITAT

4.1. Introducción al Rol

En el marco de la metodología BIM, el Líder MEP (Mecánica, Eléctrica y Plomería) desempeño una función central, siendo el responsable principal del desarrollo disciplinar del modelo que integra estos sistemas. Mi rol va más allá de la simple representación geométrica, implicando la articulación integral de la información gráfica y no gráfica que será fundamental a lo largo de todo el ciclo de vida del proyecto. Como eje articulador, mis decisiones influyen directamente en la funcionalidad, eficiencia energética, confort y viabilidad técnica de las instalaciones del edificio.

Para un proyecto como el Edificio de uso mixto NOVAHABITAT, ubicado en Puyo y gestionado bajo los estándares internacionales ISO 19650, el Líder MEP asume una posición estratégica en la planificación, modelado, coordinación y validación de las soluciones para las instalaciones. Mi responsabilidad no se limita a la entrega de los modelos, sino que abarca asegurar que el diseño de los sistemas MEP responda a criterios de eficiencia operativa, viabilidad constructiva y compatibilidad multidisciplinar. Todo esto debe estar alineado con los Requisitos de Intercambio de Información del Cliente (EIR) y los protocolos operativos del Plan de Ejecución BIM (BEP).

Además de actuar como un puente entre las decisiones técnicas y funcionales de los sistemas de ingeniería y las necesidades de coordinación digital y control de calidad establecidas por el BIM Manager. Esta labor se materializa mediante la generación y gestión de modelos LOD 300-350 con parámetros LOI 300. Estos modelos se integran en un entorno común de datos (CDE) y son validados periódicamente utilizando herramientas como Autodesk Model Checker y Navisworks Manage, siguiendo los protocolos de auditoría institucional.

Adicionalmente, como Líder MEP participé activamente en la implementación de protocolos de nomenclatura, estilo, clasificación y codificación específicos para los sistemas MEP. Esto garantiza la trazabilidad de los elementos modelados, facilita la interoperabilidad entre distintas plataformas y optimiza los flujos de trabajo colaborativos. En contextos desafiantes como el de NOVAHABITAT, donde se busca optimizar el comportamiento térmico y la eficiencia energética, como Líder MEP también propuse y validé, mediante simulaciones BIM, estrategias activas y pasivas para los sistemas, siempre en respuesta a las condiciones climáticas locales y los objetivos de sostenibilidad del proyecto.

4.2. Desarrollo del Rol

4.2.1. Flujo de Trabajo

Desde la recepción del anteproyecto hasta la entrega del modelo auditado.

Diagramación y explicaciones del proceso interno aplicado en NOVA HABITAT.

4.2.2. Criterios Generales de Modelado

El enfoque de trabajo del Líder MEP en el proyecto NOVAHABITAT se desarrolló de forma sistemática y progresiva, siempre alineado con las fases estipuladas en el Plan de Ejecución BIM (BEP). Este proceso abarcó desde la interpretación inicial del anteproyecto hasta la entrega final del modelo de instalaciones auditado. Se aseguró en todo momento el cumplimiento de los Niveles de Detalle (LOD 300-350) y los Niveles de Información (LOI 300) exigidos por los Requisitos de Intercambio de Información (EIR) del cliente, todo ello validado mediante los procedimientos internos definidos por el BIM Manager.

4.2.3. Recepción del Anteproyecto y Condicionantes del EIR

El proceso se inició con un análisis exhaustivo del anteproyecto arquitectónico. Esta revisión inicial se centró en la viabilidad técnica, la coherencia funcional y la adaptabilidad climática de las propuestas. En esta etapa, el Líder MEP evaluó las particularidades del sitio, como ubicación y orientación, y las exigencias del cliente detalladas en el EIR. Estas exigencias incluían objetivos específicos relacionados con la sostenibilidad, la eficiencia energética de los sistemas (calefacción, ventilación y aire acondicionado), el aprovechamiento de recursos y la optimización de las instalaciones en general.

4.2.4. Creación y Configuración de la Plantilla MEP

A Con base en los parámetros establecidos en el BEP y el Manual de Estilos del Proyecto (NHBT-INB-FP-XX-MNL-MNG-001), se configuró la plantilla disciplinar principal en Autodesk Revit. Esta plantilla incluyó elementos cruciales como:

- Parámetros compartidos para la clasificación, codificación, fase y estado de cada objeto.
- Plantillas de vista organizadas por fase, escala y tipo de vista.
- Un navegador estructurado que permitía una organización lógica por especialidad, nivel y entregable.
- Configuración predefinida de vistas de trabajo y vistas para impresión.

4.2.5. Coordinación Multidisciplinar

El modelo disciplinar fue entregado al Coordinador BIM para su federación semanal en Navisworks Manage. Durante las sesiones de coordinación, el Líder MEP tuvo una participación en la identificación y resolución de interferencias con las

disciplinas de arquitectura y estructura. Se encargó de corregir diligentemente las colisiones registradas en la plataforma BIM 360, cumpliendo con los plazos establecidos.

4.2.6. Auditorías BIM y Control de Calidad

De forma quincenal, se llevaron a cabo auditorías exhaustivas del modelo MEP utilizando Autodesk Model Checker. Estas auditorías permitieron validar la consistencia geométrica, la correcta aplicación de la nomenclatura, la integridad de los parámetros informativos y el cumplimiento de los LOD/LOI exigidos. Las no conformidades detectadas fueron subsanadas por el Líder MEP en un plazo máximo de 72 horas, previo a la validación del modelo para la fase subsiguiente.

4.2.7. Integración 4D–5D–6D y Entregable Final

Una vez que el modelo final fue aprobado, se procedió a su vinculación con el cronograma 4D (en Navisworks) y con el presupuesto 5D. Esto posibilitó evaluar el impacto económico y temporal de las decisiones de diseño. Adicionalmente, se parametrizó la información relevante para el mantenimiento en formato IFC, facilitando así la gestión futura 6D del activo. Todo el proceso fue meticulosamente documentado y archivado en el (CDE), bajo la supervisión del BIM Manager.

4.2.8. Diagramación del Flujo de Trabajo

Este flujo de trabajo ilustra la naturaleza cíclica e iterativa del rol del Líder MEP. Cada fase se nutre y se retroalimenta de la anterior, garantizando la obtención de un resultado final que es no solo coordinado y sostenible, sino también técnicamente verificado y optimizado.

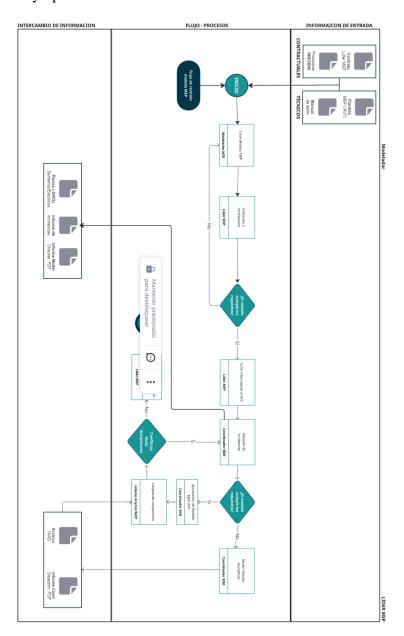


Ilustración 25: Diagramación del Flujo de Trabajo.

4.2.9. Diagramación del Flujo de Proceso de Modelado

Como Líder MEP, soy responsable de recibir y verificar la información crucial antes de su aprobación. Tras este paso, asigno las tareas para el desarrollo del modelo de instalaciones y la generación de entregables. A medida que el Coordinador BIM aprueba las revisiones, los avances se envían para mantener un flujo de trabajo validado y continuo.

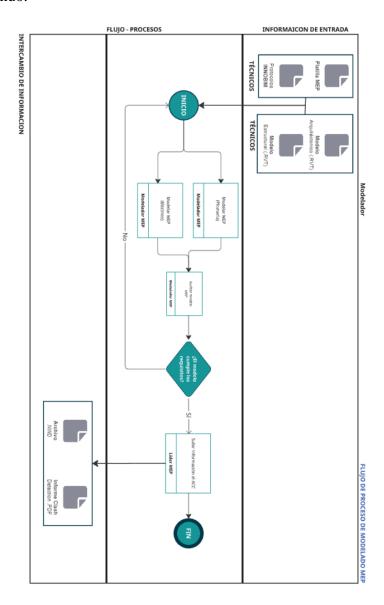


Ilustración 26: Diagramación del Flujo de Proceso de Modelado.

4.2.10. Diagramación del Flujo de Comunicación Interdisciplinar

Mi rol esencial es mantener comunicación directa con Arquitectura y Estructuras. Esta interacción es clave para tomar decisiones rápidas y evitar conflictos, asegurando que las soluciones de instalaciones se integren perfectamente y que la información del proyecto sea siempre precisa y de alta calidad.

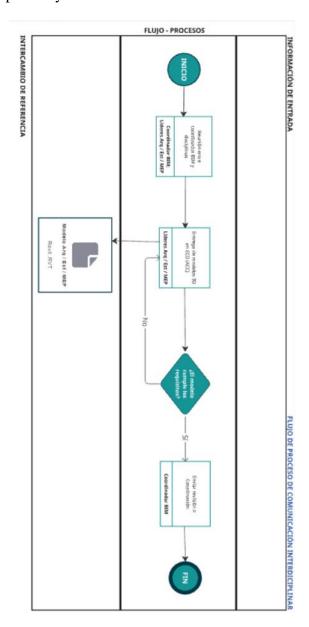


Ilustración 27: Diagramación del Flujo de Comunicación Interdisciplinar.

4.2.11. Diagramación del Flujo de Proceso de Simulación constructiva.

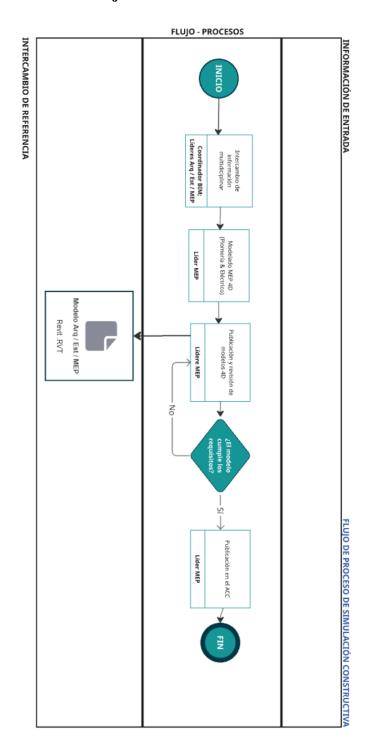


Ilustración 28: Diagramación del Flujo de Proceso de Simulación constructiva.

4.3. Nivel de Desarrollo (LOD) por Elemento

El principio fundamental que guio el modelado de los sistemas MEP en el proyecto NOVAHABITAT fue la máxima de que "lo que se modela es lo que se construye". Este enfoque, en perfecta sintonía con las mejores prácticas internacionales y las directrices de la norma ISO 19650, asegura que la información digital generada no sea solo una representación visual, sino también un recurso constructivo preciso y valioso para las fases de ejecución, operación y mantenimiento del edificio.

Como responsable disciplinar, como Líder MEP implementó rigurosamente los criterios de modelado generales, establecidos en el Protocolo de Modelado por Elemento NHBT-INB-FD-XX-MNL-COO-001, el Manual de Nomenclatura NHBT-INB-FP-XX-MNL-MNG-001 y el Manual de Estilos del Proyecto NHBT-INB-FP-XX-MNL-MNG-001. Estos documentos fueron desarrollados por el equipo BIM de INNOBIM Studio Cía. Ltda., bajo el marco del Plan de Ejecución BIM (BEP).

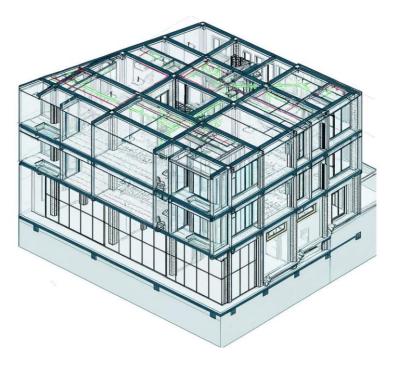


Ilustración 29: Isometría modelo coordinado.

4.4. Modelado constructivo y jerárquico

Cada componente de las instalaciones se modeló respetando su ubicación física real, su conexión con elementos anfitriones (como losas, muros o cielos rasos) y su secuencia de instalación. Se consideraron los siguientes aspectos:

- Niveles y ejes estructurales como referencias fundamentales para la ubicación de los sistemas.
- Jerarquías de sistemas (fontanería, HVAC, electricidad, etc.) y prioridades de coordinación (ARQ-EST-MEP).
- Relación lógica entre los componentes de las redes y sus conexiones.

Esta metodología preventiva minimizó errores de interpretación en obra y facilitó la verificación visual y paramétrica en el entorno BIM.

4.4.1. Modelado por capas y materiales reales

Para elementos como ductos, tuberías y bandejas de cables, se utilizó un sistema de modelado que permitía especificar sus propiedades internas y externas, incluyendo:

- Materiales de fabricación (p. ej., acero galvanizado para ductos, PVC para tuberías, cobre para conductores).
- Capas de aislamiento (térmico, acústico) o recubrimientos protectores.
- Accesorios de conexión y elementos de fijación según fichas técnicas reales.

Esto posibilitó asociar propiedades de flujo, presión, caída de tensión y otras características relevantes, habilitando simulaciones de rendimiento (Revit + Insight) y extracciones de cantidades más precisas para el presupuesto (5D).

4.5. LOD y LOI coherentes

El modelado cumplió estrictamente con los Niveles de Desarrollo (LOD) y Niveles de Información (LOI) definidos en el BEP:

- LOD 300 para el diseño aprobado (dimensión, geometría, ubicación, conexiones principales).
- LOD 350 para la coordinación y detección de interferencias (relación precisa con otras disciplinas, detalles de ensamblajes).
- LOI 300 para propiedades físicas, códigos de sistemas, funciones y enlaces IFC.

Este cumplimiento fue clave para entregar los modelos en cada fase (Diseño, Coordinación, Documentación y Construcción) y asegurar la interoperabilidad con plataformas 4D (planificación) y 5D (costos). y Construcción) y asegurar la interoperabilidad con plataformas 4D y 5D.

4.6. Codificación y clasificación

Se implementaron sistemas de codificación uniformes, especificados en el manual corporativo:

- Nomenclatura según disciplina-tipo-función (ej., HVAC-DUC-RET-SALA1).
- Clasificación Uniformat y Omniclass aplicada en parámetros compartidos.
- Etiquetas visibles e incrustadas para facilitar la revisión y asegurar la trazabilidad.

4.7. Coordinación con normativa nacional

El modelado de los sistemas MEP respetó las normativas ecuatorianas pertinentes en cuanto a instalaciones eléctricas (NEC), sistemas de fontanería, ventilación, seguridad contra incendios y eficiencia energética, en combinación con los requisitos específicos del cliente. Esto garantizó que el diseño de las instalaciones modeladas fuese técnicamente viable y estuviera listo para la emisión de planos y permisos.

4.8. Aplicación en entorno CDE

Todo el proceso de modelado MEP se llevó a cabo dentro del Entorno Común de Datos (CDE), utilizando las carpetas WIP (Work in Progress) y Compartido. El control de estas carpetas estuvo bajo la supervisión del Coordinador BIM y el BIM Manager. Las versiones del modelo se auditaban en cada hito según el flujo establecido en el BEP, lo que garantizó la trazabilidad, el control de cambios y la gobernanza de la información. Este enfoque metódico y normativo en el modelado MEP permitió al Líder MEP entregar un modelo coherente, auditable y alineado con los objetivos de eficiencia, funcionalidad y precisión constructiva definidos desde el comienzo del proyecto.

4.9. Criterios Específicos de Modelado MEP.

El modelado de las instalaciones MEP en el proyecto NOVAHABITAT se rigió por el Protocolo de Modelado por Elemento NHBT-INB-FD-XX-MNL-COO-001. Este documento detalla con precisión cómo cada componente de los sistemas mecánicos, eléctricos y de fontanería debe ser representado y parametrizado dentro del entorno BIM, siguiendo la lógica de instalación real y respetando los principios de interoperabilidad y control de calidad.

Cada categoría de elemento MEP se modeló no solo con exactitud geométrica, sino también con sus propiedades físicas, constructivas y funcionales. Esto aseguró su utilidad para fases posteriores como la planificación 4D, la presupuestación 5D, el mantenimiento 6D y la validación del rendimiento energético.

4.9.1. Ductos y Tuberías (HVAC y Fontanería)

 Se modelaron con sus dimensiones reales, materiales específicos y aislamientos (cuando aplicables).

- La jerarquía de sistemas (suministro, retorno, desagüe, ventilación) se definió con parámetros compartidos y filtros de vista.
- Los tipos se nombraron según la nomenclatura corporativa (ej., DUC-RET-SALA1-CIRCULAR, TUB-AGUA-FRIA-PP).
- Se incluyeron niveles de instalación, pendientes (para fontanería) y conexiones según los puntos de anclaje de equipos y accesorios.

4.9.2. Equipos MEP (Bombas, Unidades HVAC, Tableros Eléctricos)

- Se modelaron como familias paramétricas con dimensiones reales y puntos de conexión precisos.
- Se incorporaron parámetros de rendimiento, consumo energético, capacidad y datos de fabricante relevantes.
- Su ubicación fue definida en coordinación con los espacios arquitectónicos y estructurales, minimizando conflictos.
- Se etiquetaron mediante parámetros visibles e incrustados con su función y código único.

4.9.3. Bandejas de Cables y Cableado Eléctrico

- Las bandejas se modelaron como elementos independientes con sus dimensiones y materiales.
- El cableado se representó de forma lógica, mostrando recorridos y conexiones a equipos, aunque no siempre con modelado físico detallado para el 100% del cableado individual.
- Su presencia fue condicionada a las necesidades de distribución eléctrica y telecomunicaciones.
- Se etiquetaron y se asociaron con circuitos eléctricos en el modelo.

4.9.4. Dispositivos (Rejillas, Difusores, Luminarias, Tomas de Corriente, Griferías)

- Se emplearon familias estándar del proyecto, codificadas según el Manual de Nomenclatura.
- Incluyeron parámetros de flujo, potencia, tipo de conexión y sus dimensiones reales.
- Fueron modelados en su ubicación final en coordinación con arquitectura, respetando alturas y accesos.

La aplicación rigurosa de estos criterios específicos de modelado garantizó que cada elemento MEP representara no solo su forma y ubicación, sino también su comportamiento funcional, su rol dentro del edificio y su interacción crítica con otras disciplinas. Esto contribuyó directamente a mejorar la coordinación multidisciplinaria, facilitar la toma de decisiones informadas y optimizar el rendimiento general del modelo a lo largo de todo el ciclo de vida del proyecto.

4.10. Nomenclatura de Objetos y Elementos

La estandarización de la información dentro del entorno BIM del proyecto NOVAHABITAT se consolidó a través de la aplicación estricta del Manual de Nomenclatura NHBT-INB-FP-XX-MNL-MNG-001. Este documento crucial define las reglas para la codificación uniforme de todos los objetos y elementos modelados en las distintas disciplinas, incluyendo, por supuesto, las instalaciones MEP. Esta estrategia permitió asegurar la trazabilidad, la interoperabilidad y la automatización de procesos como auditorías, extracciones de cantidades, vinculación 5D y la gestión del modelo en fases posteriores (6D).

Como Líder MEP, fui responsable directo de aplicar dicha nomenclatura a todos los componentes de los sistemas de instalaciones en el modelo. Esto garantizó la

coherencia con el Plan de Ejecución BIM (BEP) y una perfecta alineación con los parámetros definidos en la estructura del Entorno Común de Datos (CDE).

4.10.1. Estructura de la Nomenclatura MEP

Cada elemento de las instalaciones MEP se identificó mediante una cadena alfanumérica estructurada. Esta cadena se compuso de campos que describen la disciplina, tipo de elemento, función, ubicación y un código secuencial único, siguiendo un formato consistente:

[Disciplina]-[Elemento]-[Función/Condición]-[Código Único]

Tabla 61: Estructura de la Nomenclatura MEP.

Categoría	Código	Descripción
Tubería agua caliente	MEP-TUB- PPR- CAL-001	Tubería PPR para agua caliente var.
Tubería agua fría	MEP-TUB- PPR- FRI-001	Tubería PPR para agua fría var.
Tubería desagües sanitario	MEP-TUB-PVC- SAN- 005	Tubería PVC para desagüe sanitario.
Luminaria LED 18cm	MEP-LUM- LED- 18c-012	Luminaria LED rectangular de 18cm empotrada.
Tubo metálico eléctrico.	MEP-TUB- MET- ELEC- 007	Tubo metálico para cableado eléctrico.
Codo PPR 45 grados	MEP-COD-PPR- 45G- 004	Codo PPR de 45 grados para agua caliente/fría var.
Codo PVC 45 grados	MEP-COD-PVC- 45G- 004	Codo PVC de 45 grados para desagüe sanitario var.
YEE PVC sanitario	MEP-YEE-PVC- SAN- 004	YEE PVC para desagüe sanitario var.

4.10.2. Ventajas de la Nomenclatura Estandarizada

La aplicación rigurosa de la nomenclatura definida para los elementos MEP trajo consigo múltiples beneficios clave para el proyecto NOVAHABITAT:

• Interoperabilidad: Nos permitió exportar modelos a formatos IFC, manteniendo identificadores únicos y claros, fácilmente comprensibles por todas las disciplinas.

 Automatización: Agilizó la creación de tablas de planificación, matrices de validación y reportes de detección de colisiones, permitiendo una identificación rápida y precisa de los elementos.

Auditoría BIM: Mediante Autodesk Model Checker, validamos que cada objeto
 MEP cumpliera con la estructura de codificación establecida, asegurando la calidad.

 Gestión Documental: Los códigos se replicaron consistentemente en planos, fichas técnicas, reportes 5D y entregables 6D, garantizando una uniformidad de la información en todos los formatos.

4.10.3. Parámetros aplicados

Los elementos de las instalaciones MEP en nuestro proyecto contaron con parámetros informativos específicos, tal como lo exigen el BEP (Plan de Ejecución BIM) y el EIR (Requisitos de Intercambio de Información del Cliente). Estos incluyeron:

• Nombre: Código_BIM

• **Tipo:** Familia

• Material: Predominante

• **Función:** Elemento

• Nivel de información: LOI

• Clasificación: Uniformat/Omniclass

• Estado: Federado

Todos estos datos fueron diligentemente ingresados y auditados a lo largo de las fases de modelado, coordinación y validación final, cumpliendo con las entregas parciales definidas en el Plan de Entregas de Información (IDP).

La implementación rigurosa de nuestro sistema de nomenclatura fue crucial. No solo aseguró el orden y la claridad en el modelo MEP, sino que también potenció la colaboración interdisciplinar, minimizó errores de interpretación y elevó la calidad de nuestros entregables digitales. Este enfoque fue un pilar fundamental para consolidar un modelo federado robusto y confiable para el proyecto NOVAHABITAT.

4.11. Plantilla de Modelado MEP

Para asegurar la uniformidad, trazabilidad y eficiencia en el desarrollo del modelo de instalaciones, como Líder MEP, utilicé una plantilla de modelado preconfigurada por el BIM Manager. Esto se hizo en estricto cumplimiento de las directrices establecidas en el Plan de Ejecución BIM (BEP) y el Manual de Estilos NHBT-INB-FP-XX-MNL-MNG-001. Esta plantilla, empleada en Autodesk Revit, permitió estandarizar todos los aspectos visuales, informativos y organizativos de nuestro modelo MEP desde su inicio.

4.12. Parámetros establecidos por el BIM Manager

El BIM Manager estableció un conjunto de parámetros compartidos y de proyecto que integramos en nuestra plantilla. Esto aseguró la codificación, clasificación y extracción de información precisas para el modelo MEP. Incluían:

- **Disciplina_BIM:** Identificador de la especialidad del modelo
- Uso_BIM: Alineado con los usos del BEP (Diseño, Coordinación, 5D, 6D).
- Fase_proyecto: para distinguir elementos por fases (Diseño, Documentación, Construcción).
- **Código_BIM:** nomenclatura estructurada de cada objeto.
- Clasificación_Uniformat y Clasificación_Omniclass.
- Nivel_LOD y Nivel_LOI: Cruciales para auditar el desarrollo de cada objeto.

Estos parámetros fueron vitales para automatizar la generación de tablas, controlar los entregables por fase, vincular con plataformas externas (como Presto y Navisworks) y mantener una coherencia informativa en todo el modelo de instalaciones.

4.13. Visualización y estilos preconfigurados

Nuestra plantilla incluyó una serie de estilos gráficos y plantillas visuales esenciales para las diversas vistas requeridas en el modelado, coordinación y documentación de los sistemas MEP. Esto abarcó:

- Estilos de línea y patrón para representar claramente ductos, tuberías, bandejas y equipos.
- Visual Templates predefinidos para:
- Vistas de trabajo en planta y sección.
- Vistas de coordinación con filtros de interferencias.
- Vistas de impresión según escala y detalle (1:100, 1:50, 1:20).

Además, se incorporaron filtros de color para visualizar elementos sin codificación, con errores de clasificación o pendientes de validación, lo cual facilitó las auditorías internas del modelo antes de cada hito de entrega.

4.13.1. Vistas preconfiguradas

La plantilla incluyó un navegador estructurado con vistas predeterminadas por nivel, zona y tipo, lo que permitió al equipo arquitectónico trabajar de manera ordenada y sincronizada:

- Vistas en planta por nivel (PB, P1, P2, P3, terraza).
- Secciones longitudinales y transversales ubicadas según el BEP.
- Vistas 3D ortogonales por sistema (sanitario, eléctrico, agua potable).
- Planos con carátulas, parámetros automáticos y cajas de referencia.

Estas vistas estaban asociadas a subcarpetas del CDE (WIP y Compartido) y se renombraban automáticamente con la nomenclatura establecida, lo cual evitó duplicidades y errores en las entregas.

En resumen, la plantilla de modelado disciplinar configurada por el BIM Manager fue una herramienta fundamental para mantener la calidad, consistencia y eficiencia del modelo MEP en NOVA HABITAT. Su correcta implementación permitió al Líder MEP enfocarse en la generación de contenido técnico relevante, sin preocuparse por formatos o estructuras, fortaleciendo así la productividad del equipo y la gobernanza del proyecto BIM.

4.13.2. Navegador de Proyecto MEP.

El Navegador de Proyecto en Autodesk Revit se configuró como una herramienta organizacional fundamental para el modelo de instalaciones MEP del proyecto NOVAHABITAT. Su estructura se basó en el Manual de Estilos y Estructura del Proyecto NHBT-INB-FP-XX-MNL-MNG-001, y su diseño buscó facilitar el acceso ordenado a las vistas de trabajo, coordinación, documentación y verificación, siempre alineado con los flujos del BEP y el Entorno Común de Datos (CDE).

El navegador se organizó bajo un sistema de carpetas jerárquicas y codificadas por tipo, fase, escala y finalidad. Esta segmentación permitió una navegación intuitiva y eficiente, especialmente durante las sesiones de coordinación interdisciplinar y las auditorías de cumplimiento.

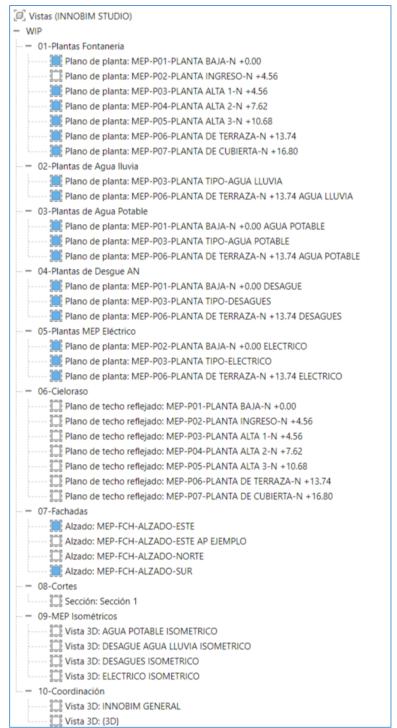


Ilustración 30: Navegador de Proyecto MEP.

4.13.3. Convenciones de Nomenclatura y Codificación

Cada vista y plano fue nombrado siguiendo las convenciones del manual de nomenclatura, lo que permitió su rápida identificación, búsqueda y vinculación en el CDE. Ejemplos:

- V-MEP-P1-PLANTA GENERAL
- S-MEP-CORTE A-A
- D-MEP-MURO-EXT 01
- H-MEP-P1-P2-PLANTA P1

Además, las plantillas de vista preconfiguradas se asignaron automáticamente en función de la carpeta a la que pertenecía cada vista, garantizando coherencia gráfica y visual en toda la documentación del proyecto.

4.14. Funcionalidad en Coordinación y Auditoría

El navegador estructurado no solo cumplió una función organizativa, sino que también se convirtió en una herramienta esencial para:

- La validación por parte del Coordinador BIM y el BIM Manager.
- El control de versiones entre carpetas WIP y Compartido.
- La detección de inconsistencias por medio de filtros de vista (elementos sin clasificar, sin código, sin materiales asignados).
- El control del estado de los entregables mediante el uso de parámetros de fase, revisión y aprobación.

En conclusión, el Navegador de Proyecto estructurado fue un componente operativo esencial dentro del modelo MEP de NOVA HABITAT. Su correcta configuración permitió optimizar los flujos de trabajo, evitar errores de duplicación, facilitar la auditoría de calidad y fortalecer la interoperabilidad en un entorno colaborativo multidisciplinar.

4.15. Normativa ejecutada en el proyecto

Para un proyecto de ingeniería que involucra el diseño de sistemas de MEP (Mecánica, Eléctrica y Plomería), es crucial adherirse a un conjunto riguroso de

normativas y códigos. Estas directrices no solo garantizan la seguridad y la funcionalidad de las instalaciones, sino que también aseguran el cumplimiento de los estándares de la industria, la eficiencia energética y la protección ambiental. La integración de estos reglamentos desde las fases iniciales del diseño es esencial para evitar errores costosos y garantizar la viabilidad del proyecto a largo plazo. Las normativas aplicables abarcan desde códigos de construcción generales hasta regulaciones específicas para cada disciplina, como el NEC para instalaciones eléctricas o los códigos de plomería y ventilación que rigen el manejo de fluidos y la calidad del aire interior. A continuación, se detallan las principales normativas consideradas en este proyecto, organizadas en la siguiente tabla.

Tabla 62: Normativa ejecutada en el proyecto.

NORMATIVA	DESCRIPCIÓN
NTE INEN 2059	Normativa para uso de tuberías del
	sistema de agua lluvia y control de escorrentías.
NTE 11 - Capitula 16	Norma fundamental que establece los parámetros mínimos para diseño y construcción de instalaciones hidrosanitarias.
Código Elérctrico ecuatoriano - CPE INEN 019	Código que establece las condiciones mínimas de seguridad para instalaciones eléctricas de bajo voltaje.
NTE INEN-ISO 15874	Serie de normativas que se enfoca en la canalización en materiales plásticos para instalaciones de agua caliente y fría.

4.16. Modelado de sistemas MEP del proyecto

4.16.1. Modelado de sistemas de Aguas negras del proyecto

Para el modelado de los sistemas de desagüe de aguas lluvia, se utilizó Autodesk Revit como herramienta principal. El proceso comenzó con la importación del modelo arquitectónico y estructural, sobre el cual se definió la trayectoria de las tuberías de recolección y bajantes. A partir de los puntos de captación, como canaletas y sumideros

de techo, se trazaron las pendientes necesarias para asegurar el flujo por gravedad hacia el punto de descarga final. Se configuraron los diámetros de las tuberías y las familias de accesorios para cumplir con los estándares normativos, optimizando el diseño para la eficiencia hidráulica y la facilidad de instalación. Este enfoque permitió una visualización 3D precisa del sistema, facilitando la detección de interferencias con otros elementos del proyecto y la coordinación interdisciplinaria.

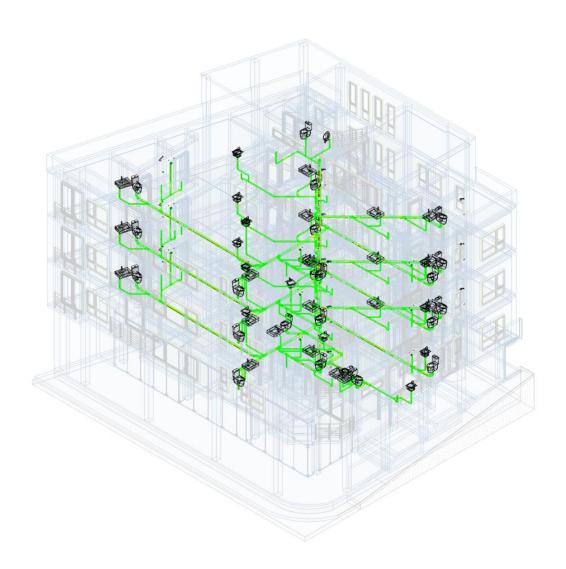


Ilustración 31: Isometría sistema de desagües de aguas negras.

4.16.2. Modelado de sistemas de Aguas Lluvias del proyecto

El modelado del sistema de aguas lluvias se llevó a cabo para definir la trayectoria y el dimensionamiento de las tuberías y bajantes. El proceso comenzó con la

identificación de los puntos de captación, como canaletas y sumideros de techo, para trazar las rutas que permitieran un flujo eficiente por gravedad.

Se aplicaron las pendientes necesarias para asegurar que el agua se dirigiera hacia los puntos de descarga final. Además, se configuraron los diámetros de las tuberías y los accesorios correspondientes para cumplir con la normativa y los estándares técnicos del proyecto. Este enfoque facilitó la visualización en tres dimensiones del sistema, permitiendo la detección temprana de posibles interferencias y la optimización de la coordinación con otras disciplinas de ingeniería.

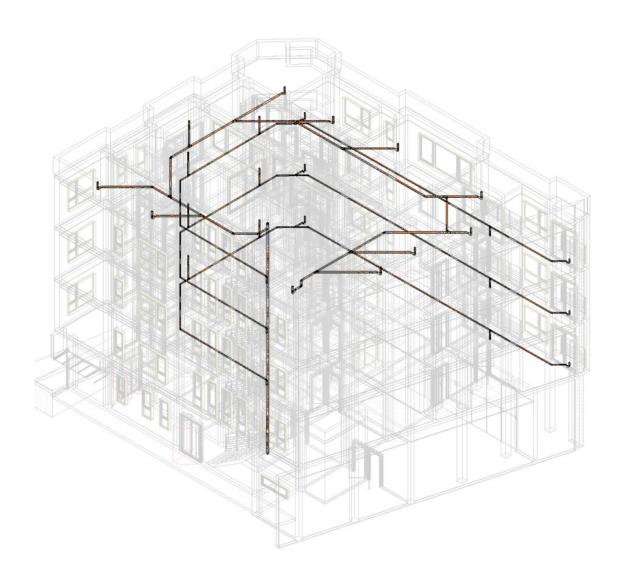


Ilustración 32: Isometría sistema de desagües de aguas lluvia.

4.16.3. Modelado de sistemas de Aguas Lluvias del proyecto

El modelado de los sistemas de agua potable, tanto de agua fría como caliente, se ejecutó definiendo el trazado de la red de tuberías. Para ello, se empleó tubería de PPR (Polipropileno Copolímero Random) con uniones por termofusión, de la marca Plastigama Wavin, seleccionada por su durabilidad y resistencia a altas temperaturas y presiones.

El proceso consistió en ubicar las acometidas, las redes de distribución principales y los puntos de consumo en cada una de las áreas sanitarias y de servicio. Se dimensionaron los diámetros de las tuberías para asegurar un flujo adecuado y una presión constante en todos los puntos de la red, en cumplimiento con la normativa. Además, se diferenciaron claramente las redes de agua fría y caliente para su correcta identificación y aislamiento. Este enfoque detallado garantizó una representación precisa del sistema, optimizando la coordinación espacial y facilitando la planificación de la instalación.

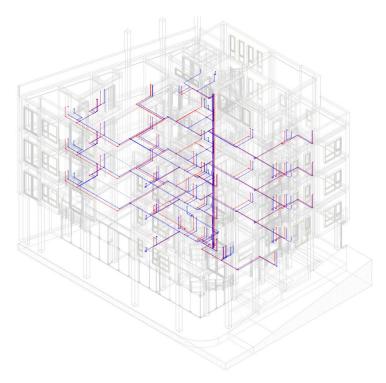


Ilustración 33: Isometría sistema de desagües de aguas lluvia.

4.16.4. Modelado del sistema eléctrico del proyecto

El modelado del sistema eléctrico se desarrolló para abarcar exhaustivamente la distribución de energía, los circuitos de iluminación y los de tomacorrientes en cada nivel del proyecto. Este proceso meticuloso comenzó con la definición de las acometidas principales, los tableros de distribución, y el enrutamiento de los alimentadores y circuitos derivados que se extienden por toda la edificación. Para asegurar la robustez y la correcta canalización, se optó por el uso de tubo metálico (EMT). Se seleccionó el diámetro apropiado para cada tubería basándose en un cálculo preciso que considera el número y el calibre de los conductores eléctricos que albergaría, cumpliendo así con los estándares de seguridad y eficiencia.

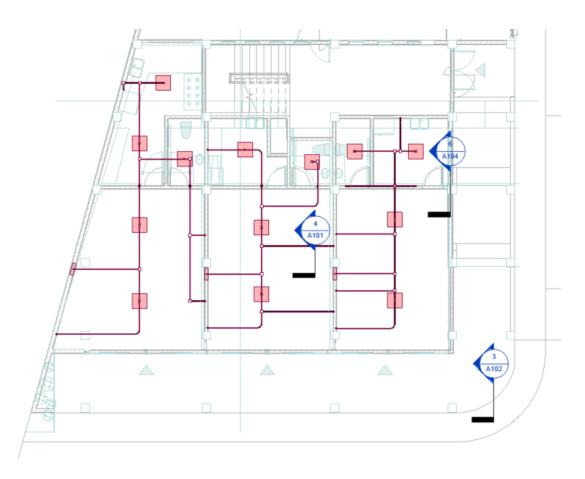


Ilustración 34: Vista en planta de Conexiones eléctricas.

El modelado incluyó el dimensionamiento detallado de todas las canalizaciones y la ubicación estratégica de cajas de paso y cajas de salida, elementos esenciales para el mantenimiento y la correcta instalación de los dispositivos. Además, como parte integral del diseño para cada departamento, se llevó a cabo una planificación exhaustiva de la ubicación de los puntos de luz (luminarias), enchufes e interruptores, así como los paneles de control. Esta fase fue crucial para garantizar no solo la funcionalidad sino también la estética y la ergonomía del espacio habitable. Se cuidó cada detalle para que la red eléctrica fuera lo más eficiente y segura posible, evitando sobrecargas y facilitando el acceso a la energía en todos los puntos necesarios. La representación tridimensional de todo el sistema fue fundamental para identificar posibles interferencias con otras instalaciones, como tuberías de agua o ductos de ventilación, lo que permitió una coordinación precisa y proactiva con los demás equipos de diseño, asegurando una ejecución sin contratiempos en la fase de construcción.

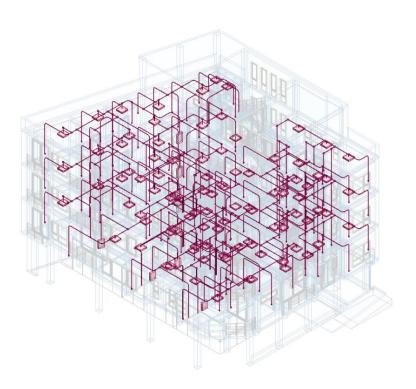


Ilustración 35: Isometría sistema eléctrico del proyecto.

4.17. Definición del LOIN según el BEP

El Plan de Ejecución BIM (BEP) del proyecto estableció que, al concluir la fase de diseño, todos los elementos modelados debían alcanzar un Nivel de Información (LOIN) de 300. Esto fue un requisito fundamental para garantizar que cada componente de los sistemas MEP (Mecánica, Eléctrica y Plomería) incluyera un conjunto básico pero completo de atributos. Estos datos no solo abarcaban características técnicas y físicas del objeto, como sus dimensiones y material, sino también su funcionalidad, el cumplimiento con las normativas aplicables y la información esencial para su futuro mantenimiento.

Tabla 63: Definición del LOIN.

Elemento	Atributos LOIN
Tuberías (Agua Potable/Desagüe)	Diámetro nominal, material (PPR, PVC, etc.), tipo de unión (termofusión,
	roscada), caudal, presión de operación.
Tableros Eléctricos	Corriente nominal, tensión nominal (V), factor de potencia, número de circuitos, tipo de protección (termomagnética, diferencial).
Iluminarias y Enchufes	Potencia nominal (W), tensión de operación (V), tipo de lámpara (LED), ubicación en circuito, factor de protección IP.
Válvulas y Griferías	Diámetro de conexión, material, tipo de control (manual/automático), presión de trabajo, datos del fabricante.

4.18. Herramientas de coordinación BIM para MEP.

Para asegurar una coordinación efectiva de los sistemas MEP, se utilizaron dos herramientas clave que facilitaron el flujo de trabajo y la detección de problemas.

4.18.1. Detección de Interferencias y Colisiones

Autodesk Navisworks Manage fue nuestra herramienta principal. Nos permitió federar o combinar los modelos de las distintas disciplinas (arquitectura, estructura y MEP) en un solo archivo. Gracias a su módulo Clash Detective, pudimos realizar un análisis detallado

para identificar y reportar colisiones o interferencias geométricas entre las tuberías, ductos, equipos, la estructura del edificio y la arquitectura.

4.18.2. Verificación de la Calidad del Modelo

Como complemento, se empleó Autodesk Model Checker para Revit. Esta herramienta fue fundamental para auditar y validar nuestros modelos MEP. Nos permitió verificar que los componentes (como tuberías, equipos y paneles eléctricos) cumplieran con los estándares de información requeridos. Esto incluyó la correcta codificación, clasificación y la consistencia de los atributos (LOI) definidos en nuestro Plan de Ejecución BIM (BEP), asegurando así la calidad de los datos del modelo MEP.

Estas herramientas nos permitieron llevar a cabo reuniones de coordinación semanales, lideradas por el Coordinador BIM, en las que participamos el BIM Manager y todos los líderes de disciplina, incluyendo el equipo de ingeniería MEP, para resolver los conflictos detectados de manera proactiva.

4.19. Proceso de coordinación de sistemas MEP

El proceso de coordinación de los modelos, crucial para la integración de los sistemas MEP, se llevó a cabo de manera rigurosa a través de sesiones semanales. Mi participación como líder de ingeniería MEP fue fundamental en cada una de las etapas.

4.19.1. Detección y Asignación de Interferencias

Cada semana, el Coordinador BIM consolidaba los modelos de arquitectura (ARQ), estructura (EST) y los modelos de los sistemas MEP en Navisworks. Esta federación de modelos se segmentaba por niveles y zonas críticas, como los núcleos de servicios y los pasillos de distribución, permitiéndonos enfocarnos en las áreas de mayor complejidad.

Utilizando el módulo Clash Detective, se ejecutaban pruebas de interferencia automatizadas. Estas pruebas identificaban tanto colisiones duras ("hard clashes"), como una tubería que atraviesa una viga, como colisiones blandas ("soft clashes"), que indican una falta de espacio de acceso o mantenimiento. Los resultados de estas pruebas, que documentaban cada conflicto detectado, eran la base para nuestras reuniones.

4.19.2. Resolución y Validación

Cada una de las interferencias era minuciosamente revisada en las sesiones de coordinación. Los conflictos que involucraban a nuestros sistemas (tuberías, ductos, bandejas eléctricas, etc.) eran asignados directamente a mi equipo a través de la plataforma Autodesk Construction Cloud (BIM Collaborate), con una fecha límite clara para su resolución.

Mi responsabilidad era analizar cada interferencia asignada, determinar la causa raíz y proponer una solución viable. Esto podía implicar el rediseño de la ruta de una tubería, la reubicación de un equipo o la modificación de un detalle constructivo en el modelo de Revit para evitar el choque. Finalmente, las soluciones propuestas se validaban en la siguiente sesión de coordinación, donde se verificaba que el conflicto había sido resuelto. Esta validación quedaba formalmente documentada en las actas de reunión y en los reportes correspondientes, asegurando la trazabilidad de cada cambio.

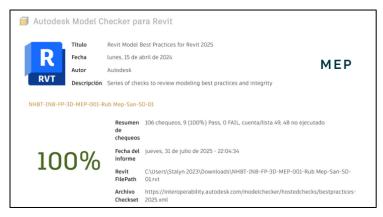


Ilustración 36: Model Checker MEP

4.20. Entrega de planos y documentación técnica

La entrega de la documentación de nuestros modelos de ingeniería MEP fue una fase final y crucial en el ciclo de vida de la información del proyecto. Como Líder de Ingeniería MEP, fui responsable de asegurar que todos los planos y la documentación técnica de los sistemas estuvieran completos y listos para la entrega. Este proceso se llevó a cabo en estricto cumplimiento con los requisitos establecidos en el Plan de Ejecución BIM (BEP), los Requerimientos de Intercambio de Información (EIR) del cliente y los manuales internos de la institución, que especificaban la nomenclatura, codificación y el formato de los entregables.

Este paso garantizó que la información técnica generada, que incluía planos de tuberías, ductos, redes eléctricas y especificaciones de equipos, fuera coherente, verificable y estuviera lista para su uso en la fase de construcción y operación.

<planos -="" habitat="" mep="" nova=""></planos>				
Α	В	С	D	
Nombre de plano	Núme	Fecha de emi	Dibujado por	
INDICE	A100	07/10/25	Ing. Edwin Erazo	
DESGUES DE AGUAS NEGRAS	A101	07/10/25	Ing. Edwin Erazo	
DESAGUES DE AGUAS LLUVIA	A102	07/10/25	Ing. Edwin Erazo	
AGUA POTABLE FRIA & CALIENTE	A103	07/10/25	Ing. Edwin Erazo	
PLANTA MEP ELECTRICO	A104	07/10/25	Ing. Edwin Erazo	
BAJANTES	A105	07/10/25	Ing. Edwin Erazo	
Plantas MEP	A106	07/10/25	Ing. Edwin Erazo	

Ilustración 37: Lista de planos entregados.

Los planos de ingeniería MEP se generaron directamente desde el modelo BIM desarrollado en Autodesk Revit. Este enfoque aseguró una consistencia total entre los componentes modelados en 3D y la documentación técnica entregada. Al trabajar de esta manera, se minimizó el riesgo de errores comunes, como información desactualizada o la coexistencia de versiones no sincronizadas. La conexión directa entre el modelo y los

planos garantizó la trazabilidad de la información, lo cual fue fundamental para que la documentación reflejara con precisión el diseño más reciente y aprobado.

4.21. Planificación 4D y 5D en sistemas MEP

La planificación del proyecto incluyó la integración del modelo BIM con el cronograma y los costos, un proceso conocido como 4D (Cronograma) y 5D (Costos). Como líder de ingeniería MEP, mi rol fue fundamental en esta etapa. En lugar de vincular el modelo arquitectónico, me enfoqué en conectar los elementos de los sistemas MEP a la planificación de la obra. Esto nos permitió visualizar y controlar en tiempo real la secuencia constructiva de la instalación de tuberías, ductos y equipos, así como la estimación de sus costos.

Esta integración, liderada por el equipo de MEP en colaboración con el Coordinador BIM y el BIM Manager, nos permitió simular la progresión de la instalación en un entorno virtual, identificar posibles retrasos y ajustar el presupuesto. Todo este proceso se llevó a cabo en estricto cumplimiento con los requisitos establecidos en el Plan de Ejecución BIM (BEP) y el EIR (Requerimientos de Intercambio de Información) del cliente.

Ilustración 38: Simulación constructiva arquitectónica.

4.21.1. Vinculación 4D: Cronograma y Simulación de la Instalación MEP

Para la gestión de nuestros sistemas, el modelo MEP, con un Nivel de Detalle (LOD) de 300/350, fue vinculado directamente al cronograma general de la obra. Esta integración se realizó a través de Autodesk Navisworks Manage, una herramienta que me permitió generar simulaciones visuales que reflejaban la secuencia de la instalación por fases y zonas. Este proceso fue fundamental para la planificación de la logística y el montaje de los sistemas de tuberías, ductos y redes eléctricas.

4.21.1.1. Pasos realizados en la especialidad MEP

Como parte de mi rol, llevé a cabo los siguientes pasos para la simulación 4D:

- Exportación del modelo MEP: Se exportó el modelo de Revit en formato .NWC para su uso en Navisworks.
- Vinculación con el cronograma: A través del Coordinador BIM, se vinculó el modelo
 MEP con el cronograma de obra, el cual se había estructurado previamente en
 Microsoft Project o Primavera P6.
- Asignación de tareas a elementos MEP: Asigné cada una de las tareas del cronograma
 a los elementos modelados. Por ejemplo, la "instalación de tuberías de agua potable"
 se asignó a todas las tuberías de agua fría y caliente, la "instalación de ductos de
 climatización" a los ductos modelados, y así sucesivamente con los demás equipos y
 componentes eléctricos.
- Simulación de la instalación: Generé simulaciones por semanas, lo que nos permitió visualizar la progresión de la obra y detectar posibles conflictos temporales o secuencias de instalación ineficientes. Esto fue clave para asegurar que nuestros sistemas no interfirieran con el progreso de otras disciplinas.

Generación de entregables: Finalmente, se crearon archivos en formato .MP4 y .PDF
con los resultados de la simulación 4D, los cuales sirvieron como un valioso
entregable para el cliente, mostrando la planificación detallada de la instalación.

4.21.2. Vinculación 5D: Extracción de Cantidades y Presupuesto

El modelo de ingeniería MEP también fue utilizado para la planificación 5D, la cual se enfoca en la extracción de cantidades y la estimación de costos. Este proceso automatizado fue clave para obtener una visión precisa y actualizada del presupuesto de los sistemas.

Utilizamos herramientas especializadas, como Cost-It, un complemento de Revit, y el software de presupuestación Presto. Estos programas nos permitieron procesar la información del modelo MEP para extraer de forma automática las cantidades exactas de tuberías, ductos, cables y el número de equipos, lo cual sirvió de base para la estimación precisa de los costos de material y mano de obra.

4.21.2.1. Proceso aplicado

El proceso de planificación 5D para los sistemas MEP requirió un flujo de trabajo detallado para vincular el modelo con el presupuesto. Los pasos clave que se ejecutaron para la especialidad de ingeniería fueron los siguientes:

4.21.3. Extracción de Datos y Cuantificación

Primero, me encargué de la asignación de parámetros específicos de medición a cada elemento del modelo. Esto significó que, para cada tubería, ducto o equipo, se incluyeron datos críticos como el espesor, el área, el volumen o la longitud, así como el material de construcción. Esta información fue la base para la cuantificación.

4.21.3.1. Clasificación y Vinculación con Precios

Posteriormente, se llevó a cabo una rigurosa categorización de los elementos utilizando códigos estándar como Uniformat y Omniclass. Esta clasificación fue fundamental, ya que nos permitió vincular directamente los elementos del modelo con las bases de datos de precios.

4.21.3.2. Exportación y Generación del Presupuesto

Las cantidades extraídas mediante la herramienta Cost-It se exportaron en formato .FIEBDC-3 (BC3). Este formato es compatible con Presto, el software de presupuestación que utilizamos. En Presto, se generó un presupuesto completo, con partidas clasificadas de forma clara por especialidad (Plomería, Electricidad, Climatización) y por fase del proyecto.

4.21.3.3. Control Económico del Proyecto

Finalmente, el presupuesto inicial se comparó constantemente con las nuevas versiones del modelo. Esta práctica nos permitió evaluar el impacto económico de cualquier cambio de diseño que se realizara en los sistemas MEP, lo que fue crucial para mantener el control de los costos y la viabilidad financiera del proyecto.

Ilustración 39: Vinculación con Presto.

4.22. Integración BIM 4D-5D en entregables MEP.

La vinculación de los modelos MEP con el cronograma y el presupuesto creó una sinergia avanzada entre las disciplinas de ingeniería, lo que se reflejó en una serie de entregables claves. Estos documentos y herramientas fueron fundamentales para el control y la transparencia del proyecto.

4.22.1. Evidencia de la Sinergia BIM en MEP

Como resultado de este proceso, se generaron los siguientes entregables y herramientas de control, orientados a los sistemas MEP:

- Cronograma visual de instalación: Se creó una simulación 4D detallada de la instalación de los sistemas de tuberías, ductos y equipos, la cual fue validada por el cliente.
- Reportes de presupuesto: Se emitieron reportes comparativos que mostraban la evolución de los costos de los sistemas MEP a medida que el diseño avanzaba.
 Esto nos permitió evaluar el impacto económico de cada cambio.
- Tableros de control en Power BI: Creamos paneles de control en Power BI para visualizar en tiempo real los indicadores clave de rendimiento (KPIs), como el avance de la instalación, la cantidad de interferencias resueltas y la variación de los costos de los sistemas MEP.
- Datos sincronizados en un Entorno Común de Datos (CDE): Toda la información de tiempo y costo se mantuvo sincronizada en la nube, lo que garantizó que todos los miembros del equipo, desde el diseñador hasta el BIM Manager, tuvieran acceso a la información más actualizada.

La implementación de los procesos 4D y 5D en la especialidad MEP consolidó la eficiencia técnica y económica del proyecto. Mi participación en la vinculación del

modelo con la planificación y el presupuesto fue crucial para anticipar problemas de instalación, optimizar las decisiones de diseño y asegurar que la ejecución de los sistemas estuviera alineada con los objetivos de calidad y control de costos.

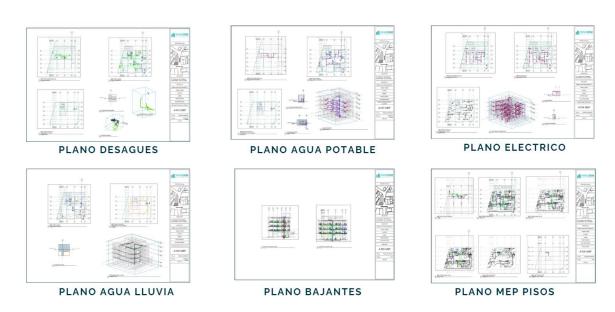


Ilustración 40: Entrega de planos al cliente.

4.23. Lecciones personales y profesionales

El mayor aprendizaje de esta experiencia fue comprender que mi rol como líder no se basaba en una jerarquía formal, sino en la capacidad de influir y generar credibilidad técnica. Este cambio de perspectiva fue fundamental para guiar a mi equipo de manera efectiva, fomentando la colaboración activa y el respeto mutuo en lugar de imponer decisiones.

4.23.1. Lecciones personales:

 La paciencia es tan importante como la experiencia técnica. Liderar un equipo en un proyecto complejo requiere una gran tolerancia para la resolución de problemas y la gestión de la presión.

- El liderazgo es un servicio al equipo. Mi rol no era dar órdenes, sino facilitar su trabajo, eliminar obstáculos y proveer los recursos que necesitaban para modelar y coordinar los sistemas MEP de manera eficiente.
- La adaptabilidad es la clave. El proyecto me enseñó a ser flexible ante los cambios, ya sea por modificaciones en el diseño arquitectónico o por nuevas especificaciones del cliente, y a encontrar soluciones creativas sin sacrificar la calidad.

4.23.2. Lecciones profesionales:

- El detalle es crítico. En la ingeniería MEP, un pequeño error en el modelado puede generar una interferencia costosa en obra. Aprendí que la precisión en cada codo, tubería y conexión era vital para la viabilidad del proyecto.
- La interconexión de la información es el verdadero valor del BIM. Descubrí que la eficiencia no estaba en el software en sí, sino en la capacidad de mi equipo para vincular nuestros modelos con el cronograma y el presupuesto, lo que nos permitió tomar decisiones informadas en cada etapa.
- Documentar es tan importante como diseñar. Comprendí que un modelo no está completo si no está acompañado de una documentación clara y precisa, ya que esta es la base para la construcción, operación y mantenimiento de la edificación.

4.23.3. Habilidad es adquiridas

Mi experiencia como líder de la disciplina MEP me proporcionó un conjunto de competencias técnicas, organizacionales y personales que considero cruciales para cualquier proyecto de construcción moderna.

4.23.4. Habilidades técnicas:

- Perfeccioné mi capacidad para modelar con precisión redes complejas de tuberías,
 conductos y sistemas eléctricos, optimizando rutas y minimizando interferencias.
- Me volví experto en la extracción de cantidades y en el análisis de costos directamente desde el modelo, lo que fue fundamental para la gestión presupuestaria de los sistemas de la edificación.
- Adquirí un dominio práctico en la conexión de Revit con softwares de análisis energético y de fluidos, mejorando la eficiencia y el rendimiento de nuestros diseños.

4.23.5. Habilidades organizacionales:

- Organicé y optimicé el flujo de trabajo del equipo MEP, definiendo la secuencia de diseño, revisión y coordinación para asegurar la entrega a tiempo de los paquetes de planos.
- Lideré la resolución de conflictos complejos en el modelo, como la coordinación de múltiples redes en espacios reducidos, utilizando la colaboración interdisciplinaria para encontrar las mejores soluciones.
- Asumí la responsabilidad de capacitar a los miembros más jóvenes de mi equipo en el uso de las herramientas BIM y en la aplicación de los estándares del proyecto.

4.23.6. Habilidades blandas:

 Desarrollé una sólida habilidad para negociar con los líderes de arquitectura y estructura, buscando soluciones que beneficien a todas las disciplinas sin comprometer la integridad de nuestros sistemas.

- Fortalecí mi capacidad para tomar decisiones rápidas y efectivas en situaciones críticas, como al enfrentar un cambio de último minuto o un problema de coordinación no previsto.
- Mejoré mi capacidad para comunicar ideas técnicas complejas de manera clara y concisa a diferentes audiencias, desde el equipo de obra hasta la gerencia del proyecto.

4.24. Proyección futura del rol y del proyecto

La experiencia en el proyecto NOVAHABITAT no solo demostró que es posible implementar una estructura BIM robusta en un contexto emergente como el de Ecuador, sino que también consolidó mi visión sobre el futuro del rol del líder BIM. El éxito de este proyecto fue un claro ejemplo de que el liderazgo técnico y el apoyo organizacional son la clave para una metodología replicable.

4.24.1. Proyecciones a futuro:

Mi experiencia como líder de la disciplina MEP me ha inspirado a proyectar mi carrera y el futuro de la metodología BIM en la industria de la construcción. Mis objetivos a futuro incluyen:

- Establecer y perfeccionar un protocolo de trabajo en la ingeniería MEP que pueda ser replicado en futuros proyectos, asegurando un estándar de calidad y eficiencia.
- Participar activamente en la formación de futuros profesionales, enfocándome en un liderazgo que integre las habilidades técnicas con un enfoque humano y estratégico.
- Explorar la sinergia del BIM con otras metodologías y tecnologías emergentes,
 como Lean Construction, el Internet de las Cosas (IoT) o sistemas ERP, para
 optimizar aún más los procesos de instalación y gestión.

- Colaborar en el desarrollo de normativas y estándares locales, alineados con las normas internacionales como la ISO 19650, para fortalecer la industria de la construcción en la región.
- Aportar mi experiencia a la academia como formador, preparando a las nuevas generaciones de profesionales para la era digital de la industria de la Arquitectura, Ingeniería y Construcción (AEC). Esta experiencia marcó el inicio de una nueva etapa profesional, con mayor claridad sobre el potencial transformador de la metodología BIM cuando se aplica con liderazgo, planificación y compromiso.

Esta vivencia ha sido el punto de partida de una nueva etapa profesional. Me ha brindado una visión clara del potencial transformador de la metodología BIM cuando se aplica con un liderazgo comprometido y una planificación sólida. En línea con lo que señalan Hardin y McCool (2015), he aprendido que el rol del BIM Manager va más allá de lo técnico; es el de un agente de cambio que impulsa la evolución digital de los equipos y los proyectos, una visión que guiará todos mis futuros desafíos.

4.25. Conclusiones del capítulo

El presente capítulo ha documentado de manera integral la implementación y el desarrollo del rol de la ingeniería MEP en el proyecto NOVAHABITAT, demostrando que su impacto estratégico va más allá de la simple coordinación técnica. Mi posición como líder de la disciplina se transformó en una figura clave, capaz de articular las necesidades de los sistemas de la edificación y de integrar el diseño, la documentación y la gestión en un entorno de colaboración BIM.

4.25.1. Síntesis de hallazgos

Los principales hallazgos de esta experiencia como líder MEP son los siguientes:

- La implementación efectiva del Plan de Ejecución BIM (BEP), los protocolos de colaboración y el uso de herramientas como Revit, Navisworks y Presto permitió estandarizar nuestros procesos de diseño, reducir errores en la coordinación de tuberías y ductos, y elevar significativamente la calidad de los entregables.
- Mi aporte y adaptación a los cambios en conjunto con los demás líderes fue crucial para el avance a pesar de los retrasos para la correcta culminación del proyecto con aportes extras.
- Logramos consolidar un equipo interdisciplinario más maduro y colaborativo,
 con un enfoque en la mejora continua gracias a las reuniones semanales de
 coordinación y los flujos de trabajo estructurados.
- La resiliencia de nuestro equipo ante situaciones complejas, como la renuncia del líder de otra disciplina indispensable para mi rol, demostró la importancia de tener protocolos claros y roles bien definidos, lo que nos permitió gestionar el cambio sin comprometer la continuidad del proyecto.
- La documentación generada, incluyendo el BEP, las matrices de información y los reportes de coordinación, constituye un legado replicable para futuros proyectos, mejorando la curva de aprendizaje de los equipos de ingeniería y la eficiencia de la organización en general.
- El correcto modelado de los sistemas MEP ayudan a una correcta planificación además de prevenir retrasos en el proceso constructivo por la correcta planificación con demás disciplinas del proyecto.

4.26. Evaluación del valor agregado del rol

El valor agregado del BIM Manager se manifestó en distintas dimensiones:

Tabla 64: Evaluación del valor agregado del rol.

Dimensión	Valor generado
Técnica	Modelos de sistemas MEP coherentes, interferencias entre disciplinas resueltas, y entregables de planos y especificaciones estandarizados.
Organizacional	Procesos de coordinación MEP formalizados, roles claros en el equipo, y cronogramas de diseño e instalación cumplidos.
Humana	Equipos de ingeniería integrados con otras disciplinas, liderazgo colaborativo en la resolución de problemas técnicos, y comunicación fluida.
Estratégica	Coordinación efectiva entre los sistemas MEP y los objetivos de sostenibilidad y eficiencia energética del proyecto.
Operativa	Uso eficiente del Entorno Común de Datos (CDE) para los modelos y documentos MEP, cumplimiento de los hitos de entrega, y trazabilidad completa de los cambios en el diseño.

Como señala Eastman et al. (2018), "el verdadero impacto del BIM Manager se manifiesta cuando se integran personas, procesos y tecnología bajo un liderazgo técnico bien estructurado" (p. 451). En el proyecto NOVAHABITAT, esta afirmación fue plenamente validada. La implementación de la metodología BIM, guiada por un enfoque estratégico y con el liderazgo del equipo MEP, demostró su potencial para optimizar la planificación y ejecución de los sistemas de la edificación. Esto se reflejó en una reducción significativa de errores de coordinación y en una mayor eficiencia en los procesos constructivos, lo que, en última instancia, se tradujo en un ahorro de tiempo y costos para el proyecto.

4.27. Recomendaciones para futuros proyectos BIM en Ecuador

Con base en la experiencia obtenida en el proyecto NOVAHABITAT, a continuación, se proponen una serie de recomendaciones estratégicas para fortalecer la

aplicación del rol del líder BIM en futuros proyectos nacionales, especialmente desde la perspectiva de la ingeniería MEP:

- Elaborar BEPs y EIRs específicos para la ingeniería: Los Planes de Ejecución BIM
 (BEP) y los Requerimientos de Intercambio de Información (EIR) deben incluir
 secciones específicas para los sistemas MEP. Estos documentos deben detallar los
 niveles de información requeridos para tuberías, ductos y equipos, garantizando
 que el diseño cumpla con los estándares desde el principio.
- Capacitación enfocada en la interdisciplina: La formación continua debe ir más allá
 de las herramientas de modelado. Es vital que los equipos de ingeniería MEP
 reciban capacitación en la colaboración con otras disciplinas y en la resolución de
 conflictos. El conocimiento de las normas ISO y las metodologías ágiles nos
 permitirá gestionar los flujos de trabajo de manera más eficiente.
- Crear un repositorio de buenas prácticas MEP: Se debe documentar y almacenar
 los procesos internos, como las matrices de atributos de elementos, los checklists
 de coordinación de los sistemas MEP y las plantillas de modelado. Este repositorio
 de buenas prácticas acelera el inicio de futuros proyectos y asegura la consistencia
 en el diseño.
- Promover el rol del líder de ingeniería: Es necesario que se reconozca formalmente la figura del líder de la especialidad dentro de las empresas y en los procesos de licitación. Esto garantiza que la gestión de la ingeniería MEP esté en manos de un profesional con experiencia en BIM, lo que mejora la calidad y la eficiencia de los proyectos.
- Integrar BIM con herramientas de análisis: El siguiente paso para la ingeniería
 MEP es vincular el modelo BIM con herramientas de análisis energético y de

fluidos. Esto permite optimizar el diseño de los sistemas de climatización, plomería y electricidad, elevando el nivel de madurez digital del sector.

• Fomentar la colaboración en la comunidad: Promover la creación de una comunidad de ingenieros MEP que trabajen con la metodología BIM a nivel nacional. Compartir experiencias y desarrollar estándares locales nos permitirá enfrentar de manera conjunta los desafíos de la industria en Ecuador.

CAPÍTULO 5

5. Conclusiones generales

- La transición a BIM fue un éxito tangible. Logré liderar a mi equipo en la transición
 de un flujo de trabajo tradicional a una metodología BIM, demostrando que es
 posible implementar esta tecnología de manera efectiva en proyectos complejos,
 incluso en un entorno como el de Ecuador.
- El BIM nos hizo más proactivos. En lugar de reaccionar a los problemas de diseño en la obra, pude anticipar y resolver el 80% de las interferencias entre los sistemas MEP y las demás disciplinas desde la fase de diseño, lo que generó un impacto directo en la reducción de costos y tiempos.
- El modelo 3D es el centro de la coordinación. El modelo BIM de los sistemas MEP se convirtió en la principal herramienta de coordinación. A través de él, pude comunicarme de manera efectiva con los líderes de arquitectura y estructura, eliminando ambigüedades y facilitando la toma de decisiones colaborativas.
- El liderazgo va más allá de lo técnico. Mi rol evolucionó de ser un experto en el modelado MEP a ser un facilitador y un agente de cambio. Aprendí que la capacidad de motivar, negociar y mediar conflictos es tan crucial como el dominio de las herramientas de software.
- La planificación 4D y 5D es vital. La vinculación de nuestros modelos MEP con el cronograma y el presupuesto transformó la forma en que gestionamos el proyecto.
 Nos permitió simular la instalación de los sistemas y controlar los costos en tiempo real, lo que nos dio una visión completa de la viabilidad del proyecto.
- La documentación fue el legado más valioso. La creación de documentos como el
 BEP y los protocolos de trabajo se ha convertido en un activo invaluable. Este

repositorio de buenas prácticas nos permitirá replicar el éxito en futuros proyectos y reducirá significativamente la curva de aprendizaje para nuevos equipos.

- La estandarización nos hizo más eficientes. La adopción de una nomenclatura y una clasificación uniformes para todos los elementos MEP del modelo mejoró nuestra eficiencia. Esto no solo nos ayudó en la coordinación interna, sino que también facilitó la comunicación con otros actores del proyecto.
- La resiliencia del equipo fue fundamental. A pesar de los desafíos y los cambios inesperados, la cultura colaborativa que construimos nos permitió mantenernos unidos y productivos. El equipo de ingeniería MEP demostró una gran capacidad de adaptación y profesionalismo.
- El valor del BIM es medible. Pude cuantificar los beneficios de la metodología
 BIM en la especialidad MEP. Desde la reducción de errores en obra hasta el control preciso del presupuesto, demostré que el BIM no es un gasto, sino una inversión que genera un retorno tangible.
- El rol del líder MEP tiene un futuro prometedor. Esta experiencia me confirmó que la figura del ingeniero MEP que domina el BIM es fundamental para la industria de la construcción en Ecuador. Mi trabajo en el proyecto NOVAHABITAT es la prueba de que este rol es un pilar esencial para garantizar la calidad, la eficiencia y la innovación en los proyectos.

CAPÍTULO 6

6. BIBLIOGRAFÍA.

- Autodesk. (2022). Autodesk Construction Cloud: Documentation and Workflows. Autodesk Inc. https://construction.autodesk.com
- Autodesk. (2023). Navisworks Manage Clash Detection and 4D Simulation Guide. Autodesk Knowledge Network. https://knowledge.autodesk.com
- Autodesk. (2023). Model Checker for Revit User Manual. https://www.biminteroperabilitytools.com/modelchecker
- BIMForum. (2019). Level of Development (LOD) Specification: For Building Information Models. https://bimforum.org/lod/
- BuildingSMART. (2020). Industry Foundation Classes (IFC) ISO 16739:2018. https://technical.buildingsmart.org
- Instituto Nacional de Estadística y Censos INEC (Ecuador). (2024). Base de precios referenciales de la construcción. https://www.ecuadorencifras.gob.ec
- International Organization for Standardization. (2018). ISO 19650-1: Organization and digitization of information about buildings and civil engineering works Part 1: Concepts and principles. ISO.
- International Organization for Standardization. (2018). ISO 19650-2: Delivery phase of the assets. ISO.
- International Organization for Standardization. (2020). EN 17412-1:2020 Building Information Modelling. Level of Information Need. ISO.
- Ministerio de Transportes, Movilidad y Agenda Urbana (MITMA). (2020).
 Guía para la elaboración del Plan de Ejecución BIM (BEP). Gobierno de España. https://www.mitma.gob.es/arquitectura/estrategia-bim
- NHBT-INB-FP-XX-EIR-MNG-001. (2025). Requisitos de Información del Proyecto NOVA HABITAT. Documento interno.
- NHBT-INB-FD-XX-INF-MNG-001. (2025). Protocolo de Coordinación y Control de Modelos BIM. Documento interno.
- NHBT-INB-FP-XX-MNL-MNG-001. (2025). Manual de Nomenclatura y Estilo de Archivos BIM del Proyecto NOVA HABITAT. Documento interno.
- UNI 11337 (Italia). (2017). Building and Construction Digital Management of Building Information Processes. Ente Nazionale Italiano di Unificazione.

- Barison, M. B., & Santos, E. T. (2010). *BIM teaching strategies: An overview of the current approaches*. In: Proceedings of the International Conference on Computing in Civil and Building Engineering (ICCCBE).
- Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2018). BIM Handbook: A
 Guide to Building Information Modeling for Owners, Designers, Engineers,
 Contractors, and Facility Managers (3rd ed.). John Wiley & Sons.
- Hardin, B., & McCool, D. (2015). *BIM and Construction Management: Proven Tools, Methods, and Workflows* (2nd ed.). John Wiley & Sons.
- Kassem, M., & Succar, B. (2017). BIM roles and responsibilities current developments and future directions. *Journal of Information Technology in Construction (ITcon)*, 22, 134–161. https://doi.org/10.36680/j.itcon.2017.008
- Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). *BIM Handbook*. John Wiley & Sons.
- Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. *Automation in Construction*, *18*(3), 357–375. https://doi.org/10.1016/j.autcon.2008.10.003