

UNIVERSIDAD INTERNACIONAL SEK

FACULTAD DE ARQUITECTURA E INGENIERÍA CIVIL

Trabajo de Titulación Previo a la Obtención del Título de MAGISTER EN GERENCIA DE PROYECTOS BIM

Gestión BIM del Proyecto Conjunto Habitacional ILA: BIM Manager

Willian Joel Navarro Cagua

Quito, abril 2024

DECLARACIÓN JURAMENTADA

Yo, Willian Joel Navarro Cagua, con cédula de identidad 1723554430, declaro bajo juramento que el trabajo aquí desarrollado es de mi autoría, que no ha sido previamente presentado para ningún grado a calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, cedo mis derechos de propiedad intelectual que correspondan relacionados a este trabajo, a la UNIVERSIDAD INTERNACIONAL SEK, según lo establecido por la Ley de Propiedad Intelectual, por su reglamento y por la normativa institucional vigente.

D. M. Quito, marzo 2024

C.I: 1723554430

Willian Navarro Cagua

BIM Manager

Correo electrónico: willian.navarro@uisek.edu.ec

DECLARACIÓN DEL DIRECTOR DE TESIS

Declaro haber dirigido este trabajo a través de reuniones periódicas con el estudiante, orientando sus conocimientos y competencias para un eficiente desarrollo del tema escogido y dando cumplimiento a todas las disposiciones vigentes que regulan los Trabajos de Titulación.

PABLO VASQUEZ

Master Dirección de proyectos BIM

LOS PROFESORES INFORMANTES:

Arq. Manuel del Villar

Arq. Violeta Rangel

Después de revisar el trabajo presentado lo han calificado como apto para su defensa						
oral ante el tribunal examinador.						

Arq. Violeta Rangel

Arq. Manuel del Villar

Quito, 4 de mayo del 2024

1. DECLARACIÓN DE AUTORÍA DEL ESTUDIANTE

Declaro que este trabajo es original, de mi autoría, que se han citado las fuentes correspondientes y que en su ejecución se respetaron las disposiciones legales que protegen los derechos de autor vigentes.

Willian Navarro

C.I.: 1723554430

Dedicatoria

Este trabajo va dedicado a mis padres, a mis hermanos y familiares que me han apoyado en esta etapa para alcanzar una meta más en mi vida académica.

Agradecimiento

Agradezco a Dios, a mi madre por ser mi apoyo fundamental, a mi padre por estar siempre pendiente de mí, a mis hermanos por su compañía y motivación, a mi familia por siempre demostrarme su cariño y respaldo.

Resumen

La industria de la construcción está cambiando debido a la adopción de la metodología BIM. En este documento se analiza cómo la implementación de BIM en proyectos VIP puede beneficiar tanto a los desarrolladores como a los beneficiarios finales. Se destaca la forma en que BIM influye positivamente en el proceso de diseño, construcción y gestión de viviendas al permitir la creación de modelos digitales detallados, la maximización de recursos, la gestión eficiente de costes y presupuestos, la mejora de la colaboración entre varios actores del proyecto y la facilitación. de la gestión integral del proyecto.

Para mejorar la calidad del proceso constructivo se establecen objetivos generales y específicos, con el fin de asegurar una fuente de información transparente y coherente, y desarrollar un modelo BIM que integre todas las disciplinas del proyecto de forma coordinada. Este estudio detalla el proceso de concepción y desarrollo del Conjunto Residencial ILA, destacando su abordaje integral desde la fase de diseño inicial hasta la evaluación de su viabilidad para convertirse en un proyecto VIP.

Se describen en detalle las diferentes etapas del proyecto, sus antecedentes y descripción para resaltar su compromiso con la equidad y la accesibilidad económica al ofrecer viviendas de calidad a precios asequibles y razonables para la población objetivo.

Palabras Clave

Gerente BIM, Entorno común de datos, Plan de ejecución BIM, IFC

Abstract

The construction industry is changing due to the adoption of BIM. This document discusses how the implementation of BIM in VIP projects can benefit both developers and end beneficiaries, also, highlights how BIM positively influences the design, construction and management process by enabling the creation of detailed digital models, maximizing resources, efficiently managing costs and budgets, improving collaboration between various project stakeholders and facilitating. comprehensive project management.

To improve the quality of the construction process, general and specific objectives are established to ensure a transparent and consistent source of information and to develop a BIM model that integrates all project disciplines in a coordinated manner. This study details the conception and development process of the ILA project, highlighting its integral approach from the initial design phase to the evaluation of its feasibility to become a VIP project.

The different stages of the project, its background and description are described in detail to highlight its commitment to equity and affordability by offering quality housing at affordable and reasonable prices for the target population.

Keywords

BIM Manager, Common data environment, BIM execution plan, IFC

Tabla de Contenidos

Tabla de contenido

1	. (Capítulo 1: Objetivos Académicos	. 15
	1.1.	Introducción	. 15
	1.2.	Objetivos Generales del Trabajo Académico	. 17
	1.3.	Objetivos Específicos del Trabajo Académico	. 17
2	. (Capítulo 2: Conjunto Residencial ILA	. 18
	2.1.	Introducción	. 18
	2.2.	Antecedentes	. 19
	2.3.	Descripción del Proyecto	.20
	2.	3.1. Geometría del terreno	.22
	2.	3.2. Programa Arquitectónico	.23
3	. (Capítulo 3: EIR	.25
	3.1.	Introducción	.25
	3.2.	Situación del Proyecto	.25
	3.3.	EIR Conjunto Residencial ILA	.25
4	. (Capítulo 4: BEP	.28
5	. (Capítulo 5: Detalle del Rol: BIM Manager	. 29
	5.1.	Definición del rol	. 29
	5.2.	Objetivos Rol BIM Manager	. 29
	5.	2.1. Objetivo General	.29

	5.2.	2. Objetivos Específicos	29
	5.3.	Responsabilidades del BIM Manager	30
	5.4.	Procesos del BIM Manager	31
	5.4.	1. Elaboración del BEP	31
	5.4.	2. Selección del equipo de trabajo	32
	5.4.	3. Entorno Común de Datos	32
	5.4.	4. Flujos de trabajo	33
	5.4.	5. Gestión de comunicación	39
	5.5.	Retos como BIM Manager	40
	5.6.	Simulación Constructiva	40
	5.7.	Análisis de resultados	42
6	. Ca	apítulo 6: Análisis de Riesgos	44
	6.1.	Análisis de riesgos en la etapa de Diseño	45
	6.2.	Etapa de Construcción	50
7	. Ca	apítulo 7: Conclusiones	56
	7.1.	Conclusiones generales	56
	7.2.	Conclusiones del Rol BIM Manager	57
8	. Re	eferencias Bibliográficas	59
9	. Aı	nexos	60
	9.1.	Anexo A: Protocolo – Rol Coordinador BIM	60
	9.2.	Anexo B: Manual de Estilos – Rol Coordinador BIM	60
	9.3.	Anexo C: Matriz de Interferencias – Rol Coordinador BIM	60

9.1.	Anexo E: Modelo Federado – Rol Coordinador BIM	60
9.2.	Anexo F: Modelo 3D – Rol Líder Arquitectura	60
9.3.	Anexo G: Planos profesionales – Rol Líder Arquitectura	60
9.4.	Anexo H: Presupuesto – Rol Líder Arquitectura	60
9.5.	Anexo I: Recorrido Virtual – Rol Líder Arquitectura	61
9.6.	Anexo J: Renders – Rol Líder Arquitectura	61

Lista de Tablas

Tabla 1. Información del proyecto	21
Tabla 2. Cuadro de áreas comunales	23
Tabla 3. Cuadro de áreas. Departamentos	24
Tabla 4. Indormación del proyecto EIR.	25
Tabla 5. Roles BIM	26
Tabla 6. Objetivos BIM	26
Tabla 7. Nivel de detalle BIM	26
Tabla 8. Entregables	27
Tabla 9. Firmas de responsabilidad	27
Tabla 10 Presupuesto elaborado bajo la metodología BIM	43
Tabla 11 Comparativa del Presupuesto	43
Tabla 12 Matriz de riesgos de la fase de diseño	46
Tabla 13 Matriz de Riesgos de la fase de diseño	47
Tabla 14 Simulación de Montecarlo Duraciones en fase de diseño	47
Tabla 15 Resultados de la simulación de Montecarlo Duraciones	48
Tabla 16 Simulación de Montecarlo Costos en fase de diseño	49
Tabla 17 Resultados de la simulación de Montecarlo Costos	50
Tabla 18 Matriz de Riesgos de la fase de Construcción	51
Tabla 19 Matriz de Riesgos de la fase de Construcción	52
Tabla 20 Simulación de Montecarlo Duraciones en fase de Construcción	53
Tabla 21 Resultados de la simulación de Montecarlo Costos	53
Tabla 22 Simulación de Montecarlo Costos en fase de Construcción	54
Tabla 23 Resultados de la simulación de Montecarlo Costos	55

Lista de Figuras

Ilustración 1. IRM del terreno	21
Ilustración 2. Ubicación	22
Ilustración 3 Flujo Usos BIM	33
Ilustración 4 Flujo Información Centralizada	34
Ilustración 5 Flujo Modelado 3D	35
Ilustración 6 Flujo Coordinación	36
Ilustración 7 Flujo de Simulación Constructiva	37
Ilustración 8 Flujo de Presupuesto	38
Ilustración 9 Flujo de documentación 2D	39
Ilustración 10 Estructura de desglose de tareas EDT	40
Ilustración 11 Enlazar los conjuntos con las tareas correspondientes	41
Ilustración 12 Secuencia constructiva de la estructura	42
Ilustración 13 Análisis de Montecarlo Función de Probabilidad	48
Ilustración 14 Análisis de Montecarlo Función de Probabilidad	49
Ilustración 15 Análisis de Montecarlo Función de Probabilidad	53
Ilustración 16 Análisis de Montecarlo Función de Probabilidad	5/1

2. Capítulo 1: Objetivos Académicos

2.1. Introducción

El Gobierno ecuatoriano creó un crédito para la compra de viviendas de interés social en el 2015, el aumento del salario básico y las necesidades de la gente han llevado al cambio de este crédito cada año (PMJArquitectos, 2023). El objetivo de este préstamo es simplificar el proceso de acceso a viviendas adecuadas, con un tipo de interés bajo y un coste mensual inferior respecto a los préstamos hipotecarios normales.

Para llevar a cabo este propósito, se establecen una serie de medidas y criterios específicos. En primer lugar, asigna responsabilidades clave a dos entidades gubernamentales: el Ministerio de Economía y Finanzas y el Ministerio de Desarrollo Urbano y Vivienda (Miduvi).

Se define un rango de precios para las viviendas de interés público, que van desde \$103.050 hasta \$105.340 en 2024, donde el costo por m2 no deberá superar los \$1145,40, considerando tanto los costos de construcción como los impuestos asociados. Estas viviendas pretenden ser la primera residencia de familias de ingresos medios que tienen acceso al sistema financiero y pueden, con la ayuda estatal, cubrir las necesidades de pago.

El proceso de diseño, construcción y gestión de este tipo de viviendas se puede mejorar mediante el uso de la metodología BIM. En la fase de diseño, BIM permite la creación de modelos digitales de viviendas muy detallados, facilitando una visualización tridimensional realista y la detección temprana de posibles conflictos entre diferentes sistemas, como la estructura, las instalaciones eléctricas y sanitarias, y el diseño arquitectónico. Esto ayuda a reducir los costos y el tiempo de construcción al minimizar los errores durante la etapa de diseño.

Durante la fase de construcción, BIM permite optimizar el uso de recursos como materiales, mano de obra, tiempo, planificación y logística. Los modelos BIM pueden ser utilizados para simular y analizar el proceso de construcción, identificando posibles cuellos de botella y optimizando la secuencia de actividades. Esto ayuda a reducir costos y desperdicios, lo cual es especialmente importante en proyectos donde los recursos son limitados, además de ayudar a mejorar la seguridad en el lugar de trabajo previniendo accidentes y minimizando riesgos.

Además, BIM facilita la gestión de costos y presupuestos permitiendo mejorar una óptima estimación de los costos de construcción y un seguimiento más preciso de los gastos durante todo el proyecto. Garantizar que se cumplan los objetivos financieros establecidos ayuda a mantener el proyecto dentro del presupuesto asignado.

En términos de colaboración, BIM fomenta la cooperación entre todos los actores involucrados en el proyecto, incluidos arquitectos, ingenieros, contratistas y autoridades gubernamentales. La comunicación y la coordinación se pueden mejorar compartiendo información en tiempo real y utilizando un modelo centralizado.

Por otro lado, BIM no solo se restringe a trabajar en la fase de diseño y construcción, BIM también se puede utilizar para la gestión del ciclo de vida de las viviendas. El modelado BIM puede contener información detallada sobre los componentes y sistemas de las viviendas, lo que garantizará su durabilidad y habitabilidad a largo plazo.

Esto beneficia tanto a los promotores y constructores como a los beneficiarios finales de las viviendas VIP.

2.2. Objetivos Generales del Trabajo Académico

Emplear la metodología BIM para diseñar, analizar y documentar de manera integral y colaborativa todos los aspectos del proyecto residencial ILA.

El modelo conceptual incluirá elementos preliminares como distribución espacial, configuración de unidades de vivienda, áreas comunes y consideraciones de accesibilidad. Se realizará un análisis de viabilidad técnica y económica para determinar si el diseño propuesto se adapta a las viviendas de interés público. Las herramientas se utilizarán para realizar cambios en el diseño que consideren la eficiencia y la reducción de costos.

2.3. Objetivos Específicos del Trabajo Académico

- Aumentar y asegurar la calidad del proceso de construcción.
- Asegurar la entrega de una fuente de información transparente, trazable y coherente.
- Hacer más óptimos los procesos de construcción.
- Realizar y administrar modelos digitales para las especialidades de arquitectura, estructura y MEP para proyecto.
- Optimizar la transferencia de información entre fases, potenciando el uso de los modelos.
- Desarrollar un modelo BIM que integre la distribución como punto de partida para el diseño integral del proyecto.
- Utilizar la metodología BIM para generar documentos y planos en formato BIM que podrán ser empleados en la construcción.
- Realizar auditorías de modelos digitales de acuerdo con los flujos de trabajo establecidos según la norma ISO 19650.
- Evaluación y análisis para verificar la viabilidad del proyecto VIP

3. Capítulo 2: Conjunto Residencial ILA

3.1. Introducción

La evolución continua en el campo de la construcción y el diseño arquitectónico ha generado la aparición de nuevas técnicas que cambian la forma en que pensamos, planificamos y llevamos a cabo proyectos inmobiliarios. El Conjunto Residencial Ila pretende ser un ejemplo de la aplicación de la metodología BIM en la creación y gestión integral de proyectos arquitectónicos.

Gracias al enfoque BIM, la forma de concebir, diseñar y ejecutar los proyectos de construcción ha cambiado significativamente, lo que proporciona un marco que integra toda la información relacionada con un edificio a lo largo de su ciclo de vida. Este trabajo explora cómo se mejora la planificación, diseño, construcción y gestión de esta innovadora promoción inmobiliaria mediante el uso de la técnica BIM.

Se discutirán los efectos de la implementación de la metodología BIM en el Conjunto Residencial Ila, enfatizando sus beneficios en la eficiencia operativa, la calidad del diseño, la colaboración interdisciplinaria y la toma de decisiones informadas.

Este trabajo analiza y documenta la implementación exitosa de la metodología BIM en el Conjunto Residencial Ila y proporciona una visión detallada de cómo este enfoque innovador ha afectado la creación y gestión de entornos residenciales modernos. Este estudio ampliará el conocimiento sobre cómo usar el BIM en proyectos inmobiliarios. También proporcionará valiosas lecciones aprendidas y perspectivas para futuras implementaciones en el sector de la construcción.

3.2. Antecedentes

El proceso de concepción y desarrollo del Conjunto Residencial Ila parte de un lugar donde existe una demanda de vivienda que satisfaga las necesidades básicas pero que también promueva el desarrollo, el respeto a las normativas municipales y la adaptación al entorno. Se establece un enfoque integral desde la fase inicial de licitación de propuestas de diseño residencial con el objetivo de contribuir significativamente al desarrollo urbano y el bienestar de la comunidad, mientras se evalúa la viabilidad de convertir el proyecto en una iniciativa de vivienda de interés público.

La convocatoria a diseñadores y arquitectos para presentar propuestas de diseño fue el inicio del proceso. Se establecieron criterios específicos que iban más allá del diseño estético y priorizaron ideas que integraban eficiencia, accesibilidad y soluciones innovadoras que se alineaban con las necesidades actuales y futuras de los residentes potenciales. Se incluyeron las normas de construcción y seguridad. El cumplimiento de estas normas no era sólo un requisito legal, sino también una obligación moral para proteger el proyecto y la seguridad de sus habitantes.

La selección de propuestas se basó en la sensibilidad hacia el entorno urbano y la integración armoniosa con la comunidad circundante. El proyecto del Conjunto Residencial Ila fue pensado para ser una extensión natural del paisaje urbano, manteniendo la arquitectura existente y mejorando la calidad estética de la zona.

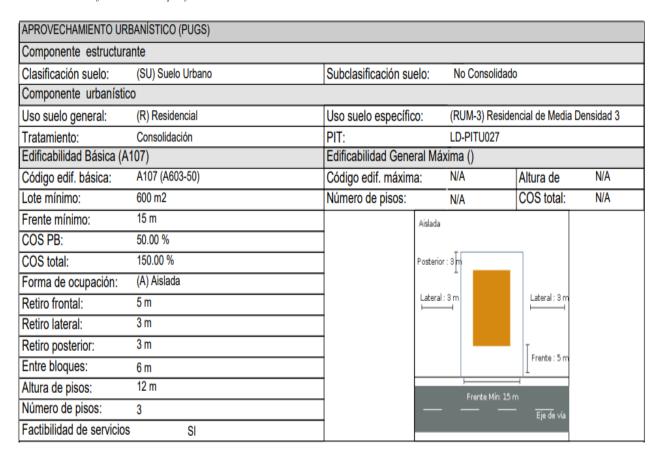
Sobre un terreno de 3700m2, se pretende construir un conjunto habitacional de aproximadamente 10 casas o 32 departamentos, con el fin de venderlas bajo la categorización VIP "Vivienda de interés público", con este objetivo, se empieza un proceso de diseño, que implica levantamiento topográfico, planificación, diseño y elaboración de presupuesto. Se entiende que el terreno tiene

una pendiente significativa, por lo que se deberá implementar muros de contención. Se plantean soluciones en diseño, disponiendo de bloques multifamiliares que tengan espacios que logren cumplir con las necesidades de los usuarios, las cuales se evidenciaron después de un estudio de mercado. Una vez terminado este proceso, se realiza un presupuesto con el que se puede concluir que por diversos factores el proyecto no podría entrar en categoría VIP

Con el uso de la metodología BIM se busca la evaluación de la viabilidad de convertir el proyecto en un proyecto VIP y determinar la posibilidad de ofrecer viviendas asequibles sin comprometer la calidad de la construcción al mismo tiempo de explorar estrategias para maximizar la accesibilidad económica sin sacrificar los estándares de confort y seguridad.

3.3. Descripción del Proyecto

El Conjunto Residencial IIa es un proyecto arquitectónico innovador que ha surgido como respuesta a la demanda creciente de viviendas que no solo brinden comodidad, sino que también contribuyen al desarrollo eficiente y se integren armoniosamente con su entorno urbano. El proyecto se ha distinguido desde sus inicios por su enfoque integral, que abarca desde la licitación de propuestas de diseño residencial hasta la evaluación de la viabilidad de convertirse en un proyecto VIP.


Cada etapa del desarrollo se ha llevado a cabo con el cumplimiento de las normas municipales para garantizar el cumplimiento legal y la seguridad y el bienestar de los futuros residentes. La arquitectura que se adapta al entorno urbano puede mejorar la calidad estética de la zona sin perder la conexión con la identidad local.

El análisis de la posibilidad de convertirse en vivienda de interés público (VIP) demuestra el compromiso del Conjunto Residencial Ila con la equidad y la accesibilidad económica. Con este análisis se pretende garantizar que el proyecto no solo sea un símbolo de

lujo, sino también una oportunidad para aquellos que buscan un hogar de alta calidad a un precio razonable, en la tabla 1, podemos encontrar una descripción del proyecto, sectorización, áreas y áreas de construcción, de igual manera la ilustración 1, complementa la información del proyecto con el Informe de Regulación Metropolitana (IRM).

Nombre del proyecto	"CONJUNTO HABITACIONAL ILA"
Breve descripción del proyecto	Cuatro bloques habitacionales multifamiliares: Bloque 1: 1 Subsuelo, 4 pisos, 9 departamentos Bloque 2 y 3: 4 pisos, 9 departamentos Bloque 4: 4 pisos, 5 departamentos Total 32 departamentos de 2 y 3 dormitorios Un bloque de sala comunal, con gimnasio y sala de estar. Jardines, áreas verdes, juegos infantiles, parqueadero para cada departamento y 4 parqueaderos de visitas
Dirección del proyecto	Quito, Sector Bellavista, Parroquia: Comité del Pueblo Barrio: Carretas, Av Panamericana norte
Área aproximada de construcción	4600 m2
Área por piso aproximada	273 m2
Área del terreno	3700 m2

Tabla 1. Información del proyecto

3.3.1. Geometría del terreno

Uno de los factores que condicionan el proyecto es la forma del terreno. El diseño de un subsuelo, cuatro bloques de departamentos y un bloque de sala comunal, un sistema estructural sencillo y posibilidad de jugar con volúmenes en el diseño arquitectónico sin comprometer los demás componentes fueron determinados por la posición esquinera, los linderos, la forma del terreno y el programa arquitectónico. El resultado son cinco volumetrías que se ajustan a la forma del terreno y la elección de una estructura metálica debido al tamaño reducido de los elementos y espacios.

El desnivel existente del terreno también fue un factor determinante. Como resultado, se estableció una entrada central al Conjunto Habitacional, diseñada con rampas que se adapten a la pendiente del terreno, así mismo, se implantaron plataformas que se adaptaron a los diferentes niveles del terreno donde se emplazarán los bloques habitacionales.

Finalmente, la ubicación esquinera resulta en un retiro frontal de gran impacto que afecta a los bloques frontales, que pudo compensarse parcialmente con voladizos desde el segundo nivel del proyecto, como se indica en la ilustración 2.

Ilustración 2. Ubicación

3.3.2. Programa Arquitectónico

El programa arquitectónico comprende tanto los espacios comunes como los departamentos de dos y tres dormitorios, descritos en la ilustración 3 y 4 respectivamente.

CUADRO DE ÁREAS - ÁREAS COMUNALES							
N°	NIVEL	DESCRIPCIÓN	CANTIDAD	M2 TOTAL			
1	NIVEL SUBSUELO	PARQUEADEROS CUBIERTO	8	199,88			
2	NIVEL SUBSUELO	PARQUEADEROS DESCUBIERTO	28	350			
3	NIVEL SUBSUELO	ÁREAS DE MÁQUINAS	1	12,23			
4	NIVEL SUBSUELO	BODEGAS	9	12,06			
5	NIVEL SUBSUELO	CIRCULACIÓN VERTICAL	1	9,31			
6	NIVEL PLANTA BAJA	BODEGAS	9	14,93			
7	NIVEL PLANTA BAJA	CIRCULACIÓN VERTICAL	1	9,91			
8	NIVEL PLANTA BAJA	CIRCULACIÓN HORIZONTAL	1	9,21			
9	NIVEL PLANTA ALTA 1	CIRCULACION VERTICAL	1	9,95			
10	NIVEL PLANTA ALTA 1	CIRCULACIÓN HORIZONTAL	1	10,57			
11	NIVEL PLANTA ALTA 1	JARDINERAS	1	3,14			
12	NIVEL PLANTA ALTA 2	NIVEL PLANTA ALTA 2 CIRCULACIÓN VERTICAL		9,95			
13	NIVEL PLANTA ALTA 2	CIRCULACIÓN HORIZONTAL	1	3,07			
14	NIVEL PLANTA ALTA 3	NIVEL PLANTA ALTA 3 CIRCULACION VERTICAL		9,47			
15	NIVEL PLANTA ALTA 3	CIRCULACIÓN HORIZONTAL	1	1,47			
16	NIVEL PLANTA ALTA 3	TERRAZA	1	71,76			
17	NIVEL PLANTA ALTA 3	JARIDNERAS	4	23,76			

Tabla 2. Cuadro de áreas comunales

	CUADRO DE ÁREAS - DEPARTAMENTOS															
N	NIVEL	DESCRIPCIÓN	CANTIDAD		DOR		RIOS					SALA	COMEDOR	COCINA	LAVANDERÍA	BALCÓN
					1	2	3		SOCIAL	COMPARTIDO	MASTER					
1	NIVEL PLANTA BAJA	DEPARTAMENTO 1	4	96,75			✓			✓	✓	✓	✓	✓	✓	
2	NIVEL PLANTA BAJA	DEPARTAMENTO 2	3	97,76			✓			√	√	1	√	√	√	
3	NIVEL PISO 1	DEPARTAMENTO 3	4	107,47			√		√	✓	√	1	√	√	√	BALCON EN SALA
4	NIVEL PISO 1	DEPARTAMENTO 4	3	102,91			√			√	√	1	√	√		BALCON EN SALA
5	NIVEL PISO 1	DEPARTAMENTO 5 DUPLEX PB	4	35,89		√			√	_		✓	_	√	_	BALCON EN
5	NIVEL PISO 2	DEPARTAMENTO 5 DUPLEX PA		35,89												COMEDOR
7	NIVEL PISO 2	DEPARTAMENTO 6	4	125,82			√	√	√	✓	√	√	√	√		BALCON EN SALA Y DORMITORIO
8	NIVEL PISO 2	DEPARTAMENTO 7	3	107,09			√			√	√	√	√	√	✓	BALCON EN SALA Y DORMITORIO
9	NIVEL PISO 3	DEPARTAMENTO 8	4	99,25			√			✓	√	✓	√	✓	✓	
10	NIVEL PISO 4	DEPARTAMENTO 9	3	81,96		√				✓	✓	✓	√	✓	✓	
	TOTAL DEP TOTAL	28 4														

Tabla 3. Cuadro de áreas. Departamentos

4. Capítulo 3: EIR

4.1. Introducción

El EIR, Exchange Information Requirements, es el documento donde se establecen las necesidades desde la perspectiva del cliente. En función de la magnitud del proyecto, estas necesidades pueden ser internas o externas, pero se establecen de manera formal y constituyen uno de los documentos más importantes del proceso de licitación.

El proyecto Conjunto Residencial Ila servirá como base académica para crear los contenidos de este documento y aplicar los conceptos de la metodología BIM en un escenario de simulación profesional.

4.2. Situación del Proyecto

Actualmente, la etapa de diseño del proyecto Conjunto Residencial Ila ha sido finalizada. Su objetivo es evaluar su potencial como un proyecto VIP antes de comenzar su construcción.

4.3. EIR Conjunto Residencial ILA

Información del Proyecto.

Promotor	Universidad Internacional Sek
Empresa/Grupo	ProjectaBIM (Grupo 2)
Nombre del proyecto	"CONJUNTO HABITACIONAL ILA"
Breve descripción del proyecto	El Conjunto Habitacional IIa, está ubicado en Quito, Ecuador, el cual consta de 4 bloques: 1 bloque de 3 pisos y un subsuelo; y 3 bloques de 3 pisos, y sala comunal. Un total de 32 departamentos de 2 y 3 dormitorios. Se implanta sobre un terreno de 3700 m2
Dirección del proyecto	Quito, Sector Bellavista, Parroquia: Comité del Pueblo Barrio: Carretas, Av Panamericana norte
Área aproximada de construcción	4600 m2
Área por piso aproximada	273 m2

Tabla 4. Indormación del proyecto EIR.

Roles y responsabilidades.

ROLES	RESPONSABLE	CORREO	CONTACTO
BIM Manager	Ing. William Navarro	willian.navarro@uisek.edu.ec	0984244800
Coordinador BIM	Arq. Nicole Mantilla	nicole.mantilla@uisek.edu.ec	0992597123
Líder Arquitectura	Arq. Nicole Mantilla	nicole.mantilla@uisek.edu.ec	0992597123
Líder Estructura	Ing Miguel Amagua	miguel.amagua@uisek.edu.ec	0987952616
Líder MEP	Ing. Luis Albia	luis.albia@uisek.edu.ec	0995774118

Tabla 5. Roles BIM

Objetivos BIM

Objetivo General							
Optimizar el diseño mediante metodología BIM para verificar si es viable el proyecto como vivienda de interés público VIP							
Objetivos Específicos	Usos BIM						
Aumentar y asegurar la calidad del proceso de construcción	Coordinación 3D y gestión de colisiones						
Asegurar la entrega de una fuente de información transparente, trazable y coherente	Estimación de cantidades y costos						
Hacer más efectivos los procesos de construcción	Planificación de obra						
Optimizar la transferencia de información entre fases, potenciando la usabilidad de los modelos	Información Centralizada CDE						

Tabla 6. Objetivos BIM

Nivel de detalle.

	LOD 300					
Arquitectura	Estructura	MEP				
El objeto se representa gráficamente dentro del modelo como un sistema específico, en el que el objeto tiene cantidades, dimensiones, formas, posición y orientación específicas. Los elementos geométricos también están vinculados a la información no gráfica.						
	USOS					
-Análisis: El modelo puede ser analizado para determinar el mejor sistema constructivo, materiales a utilizar, ubicación.						
Costos: El modelo puede ser utilizado para obtener cantidades y realizar presupuestos.						
Programación: El modelo puede indicar una fases.	secuencia constructiva, programa	ción de obra, planificación de				
Coordinación: El modelo puede coordinarse para encontrar interferencias, o problemas de funcionamiento.						

Tabla 7. Nivel de detalle BIM

Listado de Entregables.

Código y Nombre	Fase del	Responsable de la entrega	Formato de
Entregable	Proyecto		entrega
Plan de Ejecución BIM	Diseño	BIM Manager	.pdf

Modelos Arquitectura Estructuras MEP Hidrosanitario Eléctrico	Diseño	Líder de Especialidad	.rvt
Planos Arquitectura Estructuras MEP Hidrosanitario Eléctrico	Diseño	Líder de Especialidad	.rvt /pdf
Modelo de Coordinación y matriz de interferencias	Diseño	Coordinador BIM	navisworks (nwd)
Mediciones y Presupuesto de Obra (4D) Arquitectura Estructuras	Diseño	Lider de Especialidad	Presto
Planificación y programación de obra(5D)	Diseño	BIM Manager	(Presto o Naviswoks)

Tabla 8. Entregables

Firmas de Responsabilidad.

Miles	Mage autillex
BIM MANAGER	COORDINADOR BIM
ING. WILLIAM NAVARRO	ARQ. NICOLE MANTILLA

Mage autillax	A A A A A A A A A A A A A A A A A A A	Colum
LIDER ARQUITECTURA	LIDER ESTRUCTURA	LIDER MEP
ARQ. NICOLE MANTILLA	ING. MIGUEL AMAGUA	ING. LUIS ALBIA

Tabla 9. Firmas de responsabilidad

5. Capítulo 4: BEP

1. Introducción

El capítulo 3 estableció los requisitos de información de intercambio (EIR), y este capítulo describe estrategias y detalles operativos. El objetivo principal es satisfacer de manera específica los requisitos del cliente y asegurarse de que se cumplan los objetivos del proyecto Conjunto Residencial ILA.

Plan de ejecución BIM Conjunto Residencial ILA

BEP

Plan de Ejecución BIM

Diciembre 2023

VERSIÓN	FECHA	AUTOR	REVISOR	MOTIVO DE LA MODIFICACIÓN
1.0	01-11-2023	Willian Navarro Nicole Mantilla	Elmer Muñoz	Publicación Primera versión
		Miguel Amagua Luis Albia		

1. Contenido

2.	Plan de Ejecución BIM	1
3.	Abreviaturas, Acrónimos y Definiciones	1
4.	Alcance y Objetivos del Proyecto	2
	Objetivos General	2
	Objetivos del proyecto	3
5.	Información del Proyecto	4
	Agentes intervinientes	4
	Diagrama organizacional	5
	Roles, y responsabilidades	5
	Hitos relevantes	7
	Requerimientos BIM del cliente	8
	Documentos de referencia del proyecto	8
6.	Usos BIM	9
	Usos requeridos	9
	Usos excluidos	10
7.	Organización del Modelo	10
	Coordenadas	10
	División y estructura del modelo	10
	Niveles de desarrollo	11
8.	Entregables BIM	12
9.	Estrategia de Colaboración	12
	Entorno Común de Datos (CDE)	13
	AUTODESK CONSTRUCTION CLOUD	14
	Estructura de Carpetas.	15
	Permisos y accesos al CDE	16
	Codificación de archivos	17
	PROYECTO	18
	CREADOR	18

VOLUMEN O SISTEMA	18
NIVEL O LOCALIZACIÓN	18
TIPO DE DOCUMENTO	19
DISCIPLINA	19
NÚMERO	19
10. Estrategia de intercambio de información	20
Estrategias de Comunicación	20
11. Recursos	22
Recursos humanos	22
Recursos materiales	22
12. Control de Calidad	23
Revisión de modelos	23
Revisión del estado general del modelo:	23
Revisión de Información no Gráfica:	24
Detección de interferencias	24
13. Anexos	25

1. Plan de Ejecución BIM

Este Plan de Ejecución BIM define de manera preliminar los alcances y limitaciones que el modelo BIM del Conjunto residencial ILA deberá tener para lograr un eficiente proceso de Compatibilización BIM.

Este tiene como objetivo definir los procesos, flujos, estrategias, recursos, técnicas, entre otras que se aplicarán en el proyecto con el fin de certificar el cumplimiento de los requisitos BIM solicitados.

Esto incluye definir los procesos, los estándares, las responsabilidades y las tecnologías que se utilizarán para crear, gestionar y compartir la información del modelo BIM a lo largo de todo el ciclo de vida del proyecto.

El plan de ejecución BIM debe alinear los objetivos del proyecto con las capacidades del equipo y establecer los protocolos para la colaboración y coordinación entre los participantes del proyecto. Además, el BEP busca optimizar la eficiencia, reducir errores y permitir una toma de decisiones más informada mediante el uso del modelo BIM como una base de datos integrada de información del proyecto.

Al tener en cuenta estos objetivos, el plan de ejecución BIM ayuda a garantizar que el modelo BIM se utilice de manera efectiva para mejorar la planificación, el diseño, la construcción, la operación y el mantenimiento de las instalaciones, lo que no sólo puede beneficiar al proyecto actual, sino también a proyectos futuros al permitir la captura y reutilización de datos y conocimientos.

2. Abreviaturas, Acrónimos y Definiciones

BIM	Building Information Modeling, Metodología colaborativa basada en la creación y el uso de modelos 3D inteligentes para el diseño, construcción y la gestión de edificaciones e infraestructuras.
CAD	Diseño Asistido por Ordenador, Se refiere a la utilización de software especializado para la creación, modificación, análisis, y optimización de diseños técnicos en diversas industrias.
CDE	Entorno Común de Datos, plataforma centralizada que se utiliza para gestionar, controlar y compartir información relevante a lo largo del ciclo de vida de un proyecto.
ВЕР	Plan de Ejecución BIM, documento integral del proceso de modelado de información, se centra en la estrategia y los procedimientos para la implementación del BIM a lo largo de un proyecto.
EIR	BIM execution Information, documento que establece los requisitos del cliente y el enfoque especifico que deberá adoptarse durante el proyecto.
AIR	Asset Information Requirements, se refiere a los requisitos de información del cliente, estableciendo las medidas necesarias para la gestión y operación eficientes de un activo construido una vez se complete el proyecto.

Pág. 1

OIR	Object Information Requirements, conjunto de requisitos de información operativa que se centra en la recopilación y el uso de datos durante la fase operativa del ciclo de vida de un activo construido.	
PIR	Project Information Requirements, conjunto de necesidades de información específicas para un proyecto de construcción en particular.	
Modelo 3D	Representación tridimensional de objetos creados en un entorno digital	
Elemento BIM	Componente virtual que representa un aspecto específico del edificio en el modelo BIM	
LOD	Level of Development, sistema de especificación que define el grado de detalle y la fiabilidad de la información que se incluye en los modelos BIM en diferentes etapas de un proyecto.	
LOI	Leve lof Information, aborda la cantidad y calidad de la información no gráfica que se agrega en los elementos del modelo BIM	
Modelo Federado	Integración de diversos modelos individuales de diferentes disciplinas dentro de un entorno de colaboración en BIM	
Involucrado	Personas que tienen relación directa o indirecta con un proyecto.	
Ciclo de Vida	Distintas etapas y fases por las que pasa un proyecto, desde su concepción hasta la finalización y cierre	
Disciplina	Campo de estudio que enfoca un tema o área específica	

3. Alcance y Objetivos del Proyecto

El equipo de diseño creará un modelo tridimensional detallado del Conjunto Residencial ILA, que no solo represente su aspecto físico, sino también integre la información sobre sus componentes, materiales, estructura, y sistemas. Además de abarcar la colaboración entre las diversas disciplinas y equipos de trabajo, así como, la coordinación de los diferentes elementos de las edificaciones a través de modelos federados. Se realizará también un análisis de viabilidad, para determinar la idoneidad del diseño propuesto como una vivienda VIP, evaluando el cumplimiento de requisitos mínimos normativos y costos.

Se emplearán herramientas BIM para refinar el diseño y realizar optimizaciones que consideren aspectos de eficiencia espacial y reducción de costos, para verificar la viabilidad y asegurar la calidad del proyecto.

Objetivos General.

Diseñar un flujo de trabajo para la ejecución de un proyecto integrado que permita generar todos los elementos constructivos reales, utilizando una metodología BIM que optimice cada fase del proyecto

en comparación con enfoques convencionales. El proyecto actual se ha desarrollado empleando métodos tradicionales, con planos elaborados en AutoCAD y un presupuesto gestionado mediante Excel. Sin embargo, este enfoque ha determinado que el proyecto no es factible para ser clasificado como VIP, es decir, no cumple con los requisitos para ser considerado un proyecto de viviendas de interés público.

El objetivo principal al adoptar la metodología BIM es mejorar la eficiencia del desarrollo del proyecto, con el fin de evaluar si este puede alcanzar la categoría VIP. Se presta especial atención a la problemática relacionada con la topografía accidentada del terreno, lo que añade un desafío adicional al proceso. La implementación de BIM busca proporcionar una visión más integral y detallada del proyecto, superando las limitaciones de los métodos convencionales, y permitiendo una evaluación más precisa de la viabilidad y clasificación del proyecto.

Objetivos del proyecto.

- Crear modelos digitales precisos que representen la geometría y la información asociada de los elementos de construcción.
- Tomar decisiones de diseño mejor informadas de acuerdo a las necesidades de los involucrados.
- Fomentar el trabajo colaborativo entre equipos de diseño, ingeniería, construcción y otros involucrados para una comunicación eficiente.
- Coordinar los modelos de diversas disciplinas para prevenir conflictos y optimizar la ejecución del proyecto.
- Implementar herramientas de modelado y gestión BIM en el desarrollo del proyecto.
- Generar automáticamente documentación técnica, planos y listas de materiales a partir del modelo BIM, mejorando la precisión y la consistencia.
- Establecer un sistema sólido de gestión de datos para mantener la integridad y la consistencia de la información a lo largo del tiempo.
- Calcular el presupuesto de obra y la planificación 5D basados en el modelo.

Pág. 3

4. Información del Proyecto

DATOS	DESCRIPCIÓN
Promotor	Universidad Internacional SEK
Nombre oficial	"CONJUNTO HABITACIONAL ILA"
Código del Proyecto	ILA
Ubicación	Quito, Sector Bellavista, Parroquia: Comité del Pueblo Barrio: Carretas, Av. Panamericana norte
Descripción	El Conjunto Habitacional ILA, está ubicado en Quito, Ecuador, el cual consta de 4 bloques: 1 bloque de 3 pisos y un subsuelo; y 3 bloques de 3 pisos, una sala comunal, espacios verdes y juegos infantiles. Con un total de 32 departamentos de 2 y 3 dormitorios. Se implanta sobre un terreno de 3700 m2
Fecha oficial de comienzo	19-10-2023
Fecha oficial de finalización	11-03-2023
Área aproximada de construcción	4600 m2
Área por piso aproximada	273 m2

Tabla 1. Datos identificativos del proyecto

Agentes intervinientes

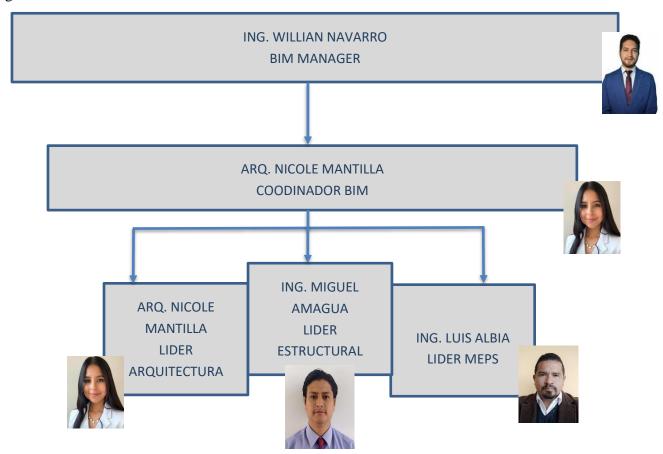

ORGANIZA CIÓN	REPRESENTA NTE	NOMBRI	C	E-MAIL	TELÉFON O
Universidad Internacional SEK	Responsable BIM	Lic. Elmer Muñoz		elmer.munoz@u isek.edu.ec	
ProjectaBIM	BIM Manager	Ing. Navarro	Willian	willian.navarro @uisek.edu.ec	0984244800
ProjectaBIM	Coordinador BIM	Arq. Mantilla	Nicole	nicole.mantilla @uisek.edu.ec	0992597123
ProjectaBIM	Líder Arquitectura	Arq. Mantilla	Nicole	nicole.mantilla @uisek.edu.ec	0992597123
ProjectaBIM	Líder Estructuras	Ing. Amagua	Miguel		
ProjectaBIM	Líder MEP	Ing. Luis A	lbia		

Tabla 2. Datos identificativos de los agentes

Diagrama organizacional

Para la ejecución del Proyecto Conjunto Residencial ILA, el equipo de ProjectaBIM, se ha confirmado por 4 profesionales, con experiencia en las disciplinas involucradas, organizados de la siguiente manera:

Roles, y responsabilidades

NOMB RE	ROL	EXPERIENCIA	PROFESI ON	RESPONSABILIDADES
Ing. William Navarr o	BIM MANAGER	Revit Autodesk Construction Cloud Navisworks Presto	Ing. Civil	Liderar la implementación exitosa de la metodología BIM, optimizar la eficiencia y calidad del proyecto, superando las limitaciones de los métodos tradicionales y asegurando una transición efectiva hacia la metodología BIM.
Arq. Nicole Mantill a	COORDINA DOR BIM	Revit Autodesk Construction Cloud	Arquitecta	Supervisar la implementación exitosa de la metodología BIM, coordinar la colaboración entre disciplinas, gestionar y asegurar la

		Navisworks Presto		coherencia de los modelos y datos BIM, resolver conflictos y problemas de coordinación, facilitar la comunicación entre los participantes del proyecto, y garantizar el cumplimiento de estándares y protocolos BIM establecidos
Arq. Nicole Mantill a	LIDER ARQUITECT URA	Revit Autodesk Construction Cloud Navisworks Presto	Arquitecta	Dirigir la implementación de la metodología BIM en el ámbito arquitectónico, asegurar la coherencia y calidad de los modelos arquitectónicos, resolver desafíos específicos de diseño y coordinar la entrega de modelos arquitectónicos detallados. Optimizar la eficiencia y calidad del diseño arquitectónico a través de la implementación de BIM.
Ing. Miguel Amagu a	LIDER ESTRUCTUR AS	Revit Autodesk Construction Cloud Navisworks Presto	Ing. Civil	Dirigir la aplicación de la metodología BIM en el ámbito estructural, supervisar el modelado y desarrollo de la información BIM relacionada con las estructuras, garantizar la coherencia y calidad de los modelos estructurales, liderar la adopción efectiva de herramientas BIM especializadas en ingeniería estructural, optimizar la eficiencia y calidad de la ingeniería estructural a través de la implementación de BIM.
Ing. Luis Albia	LIDER MEPS			Dirigir la implementación de la metodología BIM en el ámbito de sistemas mecánicos, eléctricos y de fontanería, supervisar el modelado y desarrollo de la información BIM, garantizar la coherencia y calidad de los modelos MEP, resolver desafíos técnicos relacionados con sistemas MEP y coordinar la entrega de modelos detallados de sistemas MEP, optimizar la eficiencia y calidad de la planificación y diseño de sistemas MEP a través de la implementación de BIM.

Hitos relevantes

NIO	IIIPOG	EODMATO	DECITA	DECITA DIN
N°	HITOS	FORMATO	FECHA INICIO	FECHA FIN
1	Topografía	DWG	30-10-2023	5-11-2023
2	EIR	PDF	09-11-2023	16-11-2023
3	PRE BEP	PDF	16-11-2023	23-11-2023
4	BEP	PDF	23-11-2023	30-11-2023
5	Plantilla Arquitectónica	RFA	09-11-2023	19-01-2024
6	Modelo Arquitectónico	RVT	11-11-2023	19-01-2024
7	Planos Arquitectónicos	PDF	23-11-2023	19-01-2024
8	Plantilla Estructural	RFA	20-11-2023	26-01-2024
9	Modelo Estructural	RVT	22-11-2023	26-01-2024
10	Planos Estructurales	PDF	02-12-2023	26-01-2024
11	Plantilla MEP	RFA	01-12-2023	23-02-2023
12	Modelo MEP	RVT	03-12-2023	23-02-2023
13	Planos MEP	PDF	12-12-2023	23-02-2023
14	Coordinación de interferencias	NWC	01-12-2023	15-03-2023
15	Presupuesto PRESTO	.presto	20-12-2023	30-01-2024
16	Simulación constructiva	.nwf	27-12-2023	03-02-2024

Tabla 3. Hitos relevantes

_	_				
_	T	4		_1_1	_1: 4 _
	RAMI	IAPIMIANTAC		α	CHANTA
J.	1XCU	uerimientos	DITAL	ucı	CHICHLE

Nº	OBJETIVO BIM	USOS BIM RELACIONADOS
1	Mejorar el intercambio de información para la toma de decisiones y análisis de diseño. Optimizar la transferencia de información entre fases, potenciando la usabilidad de los modelos	Información Centralizada CDE
2	Mejorar la coordinación integrando el uso de los modelos BIM en los procesos de coordinación interdisciplinar, así como la comunicación entre los agentes implicados. Aumentar y asegurar la calidad del proceso de construcción. Realizar la coordinación interdisciplinar entre modelos BIM de cada	, , , , , , , , , , , , , , , , , , ,
3	Hacer más efectivos los procesos de construcción mediante un análisis de las condiciones temporales del global y de la obra de cada una de las fases, de su duración y de los caminos críticos de ejecución.	Planificación de obra (4D)
4	Tener un conocimiento del coste global y de las diferentes alternativas. Asegurar la entrega de una fuente de información transparente, trazable y coherente que componen las partidas del presupuesto directamente extraídas del modelo.	•
5	Obtener los planos a partir de los modelos BIM que sirva para aportar a la documentación gráfica necesaria para cubrir el alcance del proyecto. Centralizar la producción de información "D en los modelos BIM.	Obtención documentación 2D (Planos)

Tabla 4. Objetivos BIM

Documentos de referencia del proyecto

DC	DOCUMENTOS DE REFERENCIA DEL PROYECTO				
1	Guía de modelado de arquitectura de es.BIM				
2	Manual de Nomenclatura Building Smart				
3	Guía de uso de modelos parala gestión de costes es.BIM				
4	ISO 19650 Gestión de la información				

Tabla 6. Documentos de referencia del proyecto

6. Usos BIM

Usos requeridos

7.70		157761 6767	DEGE CARGA	
No	USO BIM	APLICACIÓN	RESPONSA	FASE DEL
			BLE	PROYECTO
#1	Información Centralizada CDE	Gestionar y compartir los datos y la información relacionada al proyecto de construcción para facilitar la colaboración y la gestión de información de un proyecto basado en BIM, mediante una estructura de carpetas que garantice la colaboración entre los involucrados.	BIM Manager	Diseño
#2	Coordinación 3D y gestión de colisiones	Integración y verificación entre disciplinas para identificar posibles interferencias, choques o incompatibilidades, así como, la generación de informes detallados sobre los problemas encontrados.	Coordinador BIM	Diseño
#3	Planificación de obra (4D)	Integración de la representación tridimensional de los modelos de información de construcción con la programación de la construcción en el tiempo.	BIM Manager	Planificación
#4	obtención de mediciones (5D)	Vinculación de los elementos de los modelos BIM con datos de costos y simulación de la ejecución del proyecto para obtener estimaciones precisas y oportunas	Líder de Especialidad	Planificación
	Obtención documentación 2D (Planos)	Generación de representaciones gráficas detalladas y documentación técnica a partir de los modelos 3D	Líder de Especialidad	Diseño

Tabla 7. Usos BIM requeridos

Usos excluidos

Quedan fuera del marco del contrato los siguientes usos BIM:

Nº	NOMBRE	
11.1	G . 11.11.1 1 C	

- #1 Sostenibilidad y eficiencia energética.
- #2 Gestión de activos, operación y mantenimiento.
- #3 Validación de normativa

Tabla 8. Usos BIM excluidos

7. Organización del Modelo

Coordenadas

Se publicará el sistema de coordenadas globales y locales del contrato.

• Sistema global: WGS84, Zona 17 Sur

NORTE: 9988808.7334 ESTE: 504029.1390 ALTURA: 2749.000

Se incorporará siguiente información para gestionar adecuadamente los modelos:

- En función del software de diseño empleado, se deberá trabajar con coordenadas globales. No obstante, con el fin de asegurar la coordinación de los modelos, los equipos de trabajo deben garantizar el posicionamiento preciso de los elementos en un espacio común.
- Es necesario crear los modelos a escala 1:1, utilizando el metro (m) como unidad del proyecto.

División y estructura del modelo

FASE	DISCIPLINA	SUBDISCIPLIN A (si aplica)	UBICACIÓN	CONTENIDO
Diseño	Topografía		Implantación general	Topografía del sitio y plataformas donde se implantará el proyecto BIM.
Diseño	Arquitectura		Bloque 1	Contiene información
Diseño	Arquitectura		Bloque 2	detallada de todos los aspectos arquitectónicos
Diseño	Arquitectura		Bloque 3	y espaciales del
Diseño	Arquitectura		Bloque 4	proyecto.
Diseño	Arquitectura		Sala Comunal	-
Diseño	Estructura		Bloque 1	

Diseño	Estructura		Bloque 2	Contiene información	
Diseño	Estructura		Bloque 3	geométrica y detallada del sistema estructural.	
Diseño	Estructura		Bloque 4		
Diseño	Estructura		Sala Comunal	-	
Diseño	MEP	Hidrosanitario/ Eléctrico	Bloque 1	Contiene una representación detallada	
Diseño	MEP	Hidrosanitario/ Eléctrico	Bloque 2	y coordinada de los sistemas hidrosanitarios	
Diseño	MEP	Hidrosanitario/ Eléctrico	Bloque 3	y eléctricos.	
Diseño	MEP	Hidrosanitario/ Eléctrico	Bloque 4	-	
Diseño	MEP	Hidrosanitario/ Eléctrico	Sala Comunal	-	

Tabla 9. División de modelos

Niveles de desarrollo

LOD 300								
Arquitectura	Estructura	MEP						
El objeto se representa gráficamente dentro del modelo como un sistema específico, en el que el objeto tiene cantidades, dimensiones, formas, posición y orientación específicas. Los elementos geométricos también están vinculados a la información no gráfica.								
	USOS							
Análisis: El modelo puede ser analizado para determinar el mejor sistema constructivo, materiales a utilizar, ubicación.								
Costos: El modelo puede ser utilizado para obtener cantidades y realizar presupuestos.								
Programación: El modelo puede indicar una secuencia constructiva, programación de obra, planificación de fases.								
Coordinación: El modelo pued	e coordinarse para encontra funcionamiento.	r interferencias, o problemas de						

Tabla 10. Nivel de desarrollo

8. Entregables BIM

A continuación, se detallan los entregables BIM, los cuales serán especificados en el Listado de Entregables anexo a este documento.

Código y Nombre	Fase del	Responsable	Formato de
Entregable	Proyecto	de la entrega	entrega
Plan de Ejecución BIM	Diseño	BIM Manager	.pdf
Modelos	Diseño	Líder de Especialidad	.rvt
Planos	Diseño	Líder de Especialidad	.rvt
Modelos auditados interdisciplinar	Diseño	Líder de Especialidad	.rvt
Estado general del modelo (Certificado)	Diseño	Líder de Especialidad	html
Modelo de Coordinación y matriz de interferencias	Diseño	Coordinador BIM	navisworks (nwd)
Mediciones y Presupuesto de Obra (4D) • Arquitectura • Estructuras	Diseño	Líder de Especialidad	Presto
Planificación y programación de obra(5D)	Diseño	BIM Manager	(Presto)

Tabla 11. Entregables

9. Estrategia de Colaboración

La Estrategia de Colaboración BIM se refiere a un conjunto de principios, procesos y prácticas diseñados para fomentar una colaboración efectiva entre los diversos participantes en un proyecto de construcción que utilizan la metodología BIM (Building Information Modeling). La implementación exitosa de la colaboración BIM busca mejorar la eficiencia, reducir errores y fomentar una comunicación fluida entre los equipos involucrados.

- Roles y Responsabilidades Claros: Definir claramente los roles y responsabilidades de cada participante en el proyecto para garantizar una comprensión precisa de las contribuciones y expectativas de cada parte.
- Protocolos de Comunicación: Establecer protocolos de comunicación efectivos para facilitar el intercambio regular de información y la resolución de problemas de manera rápida y eficiente.
- Estándares BIM Compartidos: Adoptar y aplicar estándares BIM reconocidos que promuevan la interoperabilidad y la coherencia en el intercambio de datos y modelos entre los distintos equipos.
- Plataformas Colaborativas: Seleccionar y utilizar plataformas colaborativas que permitan a los equipos trabajar de manera conjunta en un entorno centralizado y compartido, facilitando la gestión de información y la colaboración en tiempo real.
- Flujos de Trabajo Integrados: Desarrollar flujos de trabajo integrados que conecten las diversas fases del proyecto, desde el diseño hasta la construcción y la gestión de activos.
- Gestión de Cambios Efectiva: Implementar un sistema eficaz de gestión de cambios que permita realizar ajustes necesarios en el proyecto y garantice la actualización correspondiente de los modelos y la documentación.
- Participación Temprana de las Partes Interesadas: Involucrar a todas las partes interesadas relevantes desde las primeras etapas del proyecto para garantizar una comprensión completa de los objetivos y requisitos del proyecto.
- Gestión de la Información: Establecer sistemas efectivos de gestión de información que faciliten el acceso y la recuperación eficiente de datos cruciales durante todo el ciclo de vida del proyecto.
- Evaluación Continua y Mejora: Realizar evaluaciones periódicas del rendimiento de la colaboración BIM, identificar áreas de mejora y ajustar la estrategia según sea necesario.

Entorno Común de Datos (CDE)

Un Entorno Común de Datos se refiere a un sistema colaborativo y centralizado donde se almacena, gestiona y comparte la información relacionada con un proyecto de construcción o infraestructura en el contexto de la metodología BIM.

En un CDE, los participantes en un proyecto, pueden acceder a un conjunto compartido de datos e información en tiempo real. Algunas características clave de un Entorno Común de Datos incluyen:

Centralización de la Información: La información relevante para el proyecto se almacena en un único lugar, lo que facilita el acceso y la gestión eficiente de datos.

Acceso Controlado: Se establecen mecanismos de control de acceso para garantizar que los usuarios solo puedan ver o modificar la información autorizada según su rol y responsabilidades en el proyecto.

Versionamiento: Se mantiene un control estricto sobre las versiones de los modelos y la documentación para evitar confusiones y garantizar que todos los participantes estén trabajando con la información más actualizada.

Colaboración en Tiempo Real: Los participantes pueden colaborar de manera simultánea, compartiendo información actualizada, comentarios y cambios en el modelo en tiempo real, lo que mejora la comunicación y la eficiencia.

Integración con Herramientas BIM: Se integra con software y herramientas BIM para facilitar la importación y exportación de modelos y datos, manteniendo la coherencia y la integridad de la información.

Seguridad de la Información: Se implementan medidas de seguridad para proteger la información confidencial y garantizar la integridad de los datos.

El intercambio de información y la entrega oficial de datos, así como el archivo de la información necesaria para el desarrollo del contrato, se llevarán a cabo a través del Entorno Común de Datos (CDE) proporcionado Autodesk Construction Cloud, a menos que el responsable de la UISEK indique expresamente lo contrario.

Autodesk Construction Cloud

Autodesk Construction Cloud (ACC) es una plataforma de construcción basada en la nube que ofrece herramientas y soluciones para mejorar la colaboración, la eficiencia y la gestión de proyectos en la industria de la construcción. Autodesk Construction Cloud es desarrollado por Autodesk, una empresa conocida por sus productos de software de diseño, ingeniería y construcción.

Las principales características y servicios de Autodesk Construction Cloud suelen incluir:

Entorno Común de Datos (CDE): Proporciona un espacio centralizado en la nube para almacenar y gestionar la información del proyecto, facilitando la colaboración entre los diversos participantes.

Modelado de Información para la Construcción (BIM): Facilita la creación y el intercambio de modelos 3D, mejorando la visualización y coordinación de diseños.

Gestión de Documentos: Permite la creación, revisión y distribución eficiente de documentos relacionados con la construcción, como planos, especificaciones y contratos.

Herramientas de Colaboración: Facilita la comunicación y colaboración entre los miembros del equipo mediante funciones como comentarios, notificaciones y flujos de trabajo automatizados.

Gestión de Proyectos: Ofrece herramientas para planificación, programación y seguimiento del progreso del proyecto, lo que contribuye a la gestión eficiente de los recursos y el tiempo.

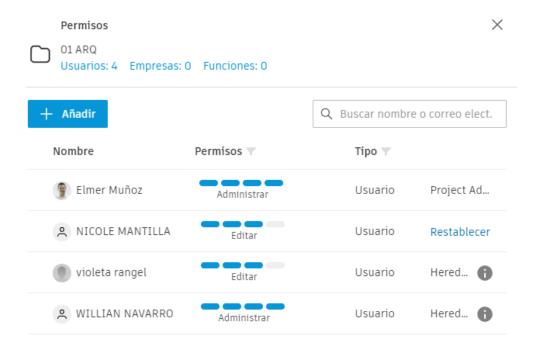
Control de Versiones: Permite un seguimiento preciso de las versiones de los modelos y documentos, evitando problemas de desactualización.

Integración con Herramientas BIM y de Construcción: Se integra con software BIM y otras herramientas utilizadas en la industria de la construcción para garantizar una fluidez en el intercambio de datos.

En este archivo, la información del proyecto, que incluye modelos y documentos, será guardada. Esto posibilitará a Projecta BIM realizar el intercambio y seguimiento de dicha información durante la duración del contrato y su posterior transferencia al Entorno Común de Datos (CDE).

Estructura de Carpetas.
✓ ☐ Grupo 2_ProyectaBIM
> 🗀 01 WIP
> O2 COMPARTIDO
> 🗀 03 PUBLICADO
> 04 ARCHIVADO
WIP
✓ ☐ Grupo 2_ProyectaBIM
✓ □ 01 WIP
> 00 DOCUMENTOS
> 🗀 01 ARQ
> \(\bigcap 02 \text{ EST}\)
> 🗀 03 MEP

Compartido


Archivado

~	04 ARCHIVADO
	O1 ARQ
	○ 02 EST
	C → 03 MEP

Permisos y accesos al CDE

Los accesos a los contenedores de información serán asignados por el BIM Manager, el mismo que deberá verificar que de acuerdo a cada ROL, cada integrante este asignado a su estructura de carpetas correspondiente. Los permisos tienen diferentes niveles de acceso.

Administrar: Este permiso permite tener los controles administrativos, crear y modificar la estructura de carpetas del CDE. Por lo general es BIM manager quien lo va a gestionar y debe tener este permiso.

Editar: Este permiso admite crear y modificar carpetas dentro del CDE. Este permiso se les da a los lideres de cada especialidad, y a coordinación para realizar el flujo de trabajo del intercambio de información mediante los transmital.

Ver: Este permiso es simplemente para visualización, no se puede crear ni editar el contenido de las carpetas, este permiso se da a los agentes del proyecto de la parte contratante, o a los involucrados del equipo de trabajo para temas en común que deban mantenerse informados.

Codificación de archivos

La codificación de archivos que se emplea en el repositorio seguirá la nomenclatura de archivos establecida en el Manual de Nomenclatura de Documentos de la BuildingSMART (BuildingSMART, 2021)

La especificación de los campos se llevará a cabo siguiendo los siguientes criterios:

- Cada campo se representa mediante un conjunto de caracteres alfanuméricos (A-Z, 0-9), asegurándose de que el primer carácter de cada palabra sea siempre una letra mayúscula. (BuildingSMART, 2021)
- No se emplearán símbolos de puntuación, acentos, espacios en blanco ni caracteres especiales. (BuildingSMART, 2021)
- Los campos estarán diferenciados entre sí mediante un guion bajo "_"

PROYECTO

Corresponde al código asignado al proyecto y se aplicará de manera uniforme a lo largo de su desarrollo. Este campo es la abreviatura de la identificación del proyecto.

CREADOR

El apartado de Creador señala la entidad u organización responsable de la creación del documento. Este campo tiene como finalidad facilitar la identificación clara de la autoría del contenido en el documento. Para este proyecto se utilizará la abreviatura PBIM.

VOLUMEN O SISTEMA

En este proyecto utilizaremos la distribución por sistema de acuerdo a la tabla que se indica a continuación:

VOLUMEN O SISTEMA		
G01	Sistema General	
A01	Sistema de Arquitectura	
E01	Sistema de Estructuras	
IS01	Sistema de Instalaciones Sanitarias	
IE01	Sistema de Instalaciones Eléctricas	

NIVEL O LOCALIZACIÓN

El apartado de Nivel o Ubicación señala la posición de la información dentro de un Volumen o Sistema específico. Este campo resulta esencial para ajustar la precisión de la información a la ubicación física real de los activos y a su gestión. En este proyecto, se empleará para identificar el bloque correspondiente:

B01: Bloque 1

B02: Bloque 2

B03: Bloque 3

B04: Bloque 4

B05: Bloque 5

TIPO DE DOCUMENTO

La categoría de Tipo de Documento determina la naturaleza del documento, ya sea un modelo de información, un plano, un acta, una memoria, u otros. Esto abarca entregables y cualquier documento complementario que pueda generarse a lo largo de todo el ciclo de vida del activo y que requiera ser archivado.

Tipo de Documento				
M3D MODELO 3D				
S4D	SIMULACIÓN 4D			
PM	PROTOCOLO MODELADO			
PLL	PLANTILLA			
IAU	INFORME DE AUDITORIA			
ICD INFORME DE CONTROL DISCIPLI				
MINT	MATRIZ DE INTERFERENCIAS			
INF	INFORME			
MFE MODELO FEDERADO				

DISCIPLINA

La categoría de Disciplina señala la esfera, materia o tarea a la cual se vincula el documento (por ejemplo, arquitectura, estructuras, etc.).

Disciplina				
ARQ Arquitectura				
EST	Estructuras			
HS Instalaciones Hidrosanitarias				
IE	Instalaciones Eléctricas			
COOR	Coordinación			

NÚMERO

El apartado de Número es un ordinal empleado para la numeración de secciones, sirviendo como elemento distintivo cuando los demás campos poseen valores similares.

10. Estrategia de intercambio de información

La Estrategia de Intercambio de Información BIM se refiere al enfoque planificado y estructurado para gestionar el intercambio de datos y modelos de información en un proyecto de construcción utilizando la metodología BIM (Building Information Modeling). Esta estrategia establece los procedimientos, estándares y protocolos que se seguirán para garantizar una colaboración efectiva entre los distintos participantes del proyecto.

Algunos aspectos clave de una estrategia de intercambio de información BIM pueden incluir:

Protocolos de Colaboración: Definición de protocolos claros que regulen cómo se compartirá la información entre los diferentes equipos y participantes del proyecto.

Estándares BIM: Adopción de estándares BIM reconocidos para asegurar la coherencia y la interoperabilidad en el intercambio de datos, como los establecidos por organizaciones como BuildingSMART.

Formatos de Archivo: Especificación de los formatos de archivo BIM que se utilizarán para el intercambio de modelos y datos, como IFC (Industry Foundation Classes) u otros formatos compatibles.

Niveles de Desarrollo BIM (LOD): Definición clara de los niveles de desarrollo BIM que se aplicarán en diferentes etapas del proyecto, indicando el grado de detalle y precisión requeridos en los modelos.

Plataformas y Herramientas: Selección de plataformas y herramientas tecnológicas que facilitarán el intercambio eficiente de información, asegurando la compatibilidad entre los sistemas utilizados por los distintos participantes.

Flujos de Trabajo Colaborativos: Establecimiento de flujos de trabajo que promuevan la colaboración efectiva entre arquitectos, ingenieros, contratistas y otros profesionales involucrados.

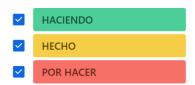
Gestión de Versiones: Implementación de sistemas para gestionar y controlar las versiones de modelos y datos compartidos, asegurando que todos los participantes trabajen con la información más reciente.

Seguridad y Confidencialidad: Consideración de medidas de seguridad y políticas de confidencialidad para proteger la información sensible durante el intercambio.

Estrategias de Comunicación

Para este proyecto se establecieron las diferentes plataformas de comunicación:

1. Trello: Plataforma mediante la cual se presentará el avance del proyecto en tiempo real, en donde cada uno de los miembros del equipo pueden visualizar el estado del proyecto.


Colores de las tarjetas para cada ROL:

BIM Manager

Etiquetas según el estado del proyecto.

- 2. Autodesk Construcción Cloud: En esta plataforma la comunicación se realiza mediante incidencias de los modelos para comunicar los diferentes problemas o errores que puedan presentar, esta se la realizará a lo largo de todo el proyecto.
- 3. Zoom: Para las reuniones se realizará de forma virtual para los distintos temas a tratar de acuerdo al siguiente cuadro.

TIPO REUNIÓN	DE OBJETIVO	CANAL	FRECUENCIA	PARTICIPANTE S
Coordinación	Verificar el avance del proyecto	Zoom	Semanal	Coordinadora y líderes de especialidad.
Gestión BIM	Verificar e avance de lo entregables		Semanal	BIM Manager y Coordinadora
Informativa	Dar a conoce los estándares y lineamientos del proyecto		Proyecto	Todo el equipo
Gestión de Camb	ios			

Tabla 12. Organización de reuniones

11. Recursos

Recursos humanos

ROL	ENTIDAD/EMPRESA	NOMBRE	CONTACTO
BIM MANAGER	PROJECTA BIM	WILLIAN NAVARRO	0984244800
COORDINADOR BIM	PROJECTA BIM	NICOLE MANTILLA	0992597123
LIDER ARQUITECTURA	PROJECTA BIM	NICOLE MANTILLA	0992597123
LIDER ESTRUCTURAL	PROJECTA BIM	MIGUEL AMAGUA	0987952616
LIDER MEPS	PROJECTA BIM	LUIS ALBIA	0995774118

Tabla 13. Roles

Recursos materiales

NOMBRE DEL SOFTWARE	VERSIÓ N	AÑO DE ACTUALIZA CIÓN	FORMATOS DE INTEROPERABI LIDAD	
REVIT	2023	2023	.rvt	
NAVISWORK	2023	2023	.nwd, .nwf	
S	2023	2023	.presto	
PRESTO			-	

Tabla 14. Software

USO BIM	HARDWARE	ESPECIFICACIÓN
BIM MANAGER	ALIENWARE M15	Pantalla QHD de 240 Hz de 15,6 ", Intel Core i7-11800H, 32 GB de RAM DDR4, SSD de 1 TB, NVIDIA GeForce RTX 3080 GDDR6 de 8 GB, Windows 11 Home2023
COORDINAD OR	ALIENWARE M15	Pantalla QHD de 240 Hz de 15,6 ", Intel Core i7-11800H, 32 GB de RAM DDR4, SSD de 1 TB, NVIDIA GeForce RTX 3080 GDDR6 de 8 GB, Windows 11 Home2023

LIDER DE LENOVO LEGION ESPECIALIDA D Core™ i7-9750H 2.6GHz (9NA GENERACION) 1TB HDD 512GB SSD SOLIDO 16GB RAM 15.6" (1920x1080) 144Hz WIN10 6GB VIDEO DEDICADO NVIDIA® GTX 1660Ti 6144M

Tabla 14. Hardware

12. Control de Calidad

Revisión de modelos

El control de calidad en la revisión de modelos BIM es un proceso fundamental para garantizar la precisión, consistencia y cumplimiento de estándares en los modelos de información utilizados en el proyecto. Aquí se describen algunos aspectos clave de la revisión de modelos BIM en el contexto del control de calidad:

Revisión del estado general del modelo:

Verificar que el modelo cumpla con los estándares y este modelado de forma correcta, para esto utilizaremos una herramienta complementaria de Revit llamada Model Checker, la cual nos permite auditar los modelos de acuerdo una serie de parámetros definidos como por ejemplo duplicidad de elementos, georreferenciación, tamaño del archivo, errores, modelo purgado, versión del software, numero de grupos, subproyectos, vínculos, etc.

Verificar la precisión de la geometría de los elementos modelados en comparación con los documentos de diseño y las especificaciones del proyecto. Evaluar la alineación, las dimensiones y las relaciones espaciales para garantizar la exactitud geométrica.

Coordinación Disciplinar:

Examinar la coordinación entre modelos de diferentes disciplinas para identificar y resolver posibles conflictos y discrepancias. Asegurar la colaboración efectiva entre los equipos de diseño y construcción a través de la integración de modelos.

Cumplimiento de Estándares BIM:

Verificar que los modelos sigan los estándares BIM establecidos, protocolos y directrices del proyecto.

Consistencia de Datos:

Evaluar la consistencia y la precisión de los datos dentro del modelo, incluyendo propiedades de los elementos y metadatos asociados.

Revisión de Información no Gráfica:

Examinar la información no gráfica incorporada en el modelo, como datos de programación, costos y otras propiedades asociadas, para asegurar su coherencia y exactitud.

Calidad de la Documentación Generada:

Evaluar la calidad de la documentación generada a partir de los modelos, como planos y listas de materiales, para garantizar su exactitud y coherencia con el modelo.

Revisión de Niveles de Desarrollo BIM (LOD):

Verificar que los modelos cumplan con los niveles de desarrollo BIM especificados para cada fase del proyecto.

Gestión de Cambios:

Evaluar cómo se gestionan y documentan los cambios en los modelos, asegurando que se mantenga un historial claro de las modificaciones.

Detección de interferencias

En este proyecto se utilizará la herramienta Navisworks para la detección de interferencias, es una parte esencial del control de calidad en el contexto de modelos BIM (Building Information Modeling). Este proceso se centra en identificar y resolver conflictos o colisiones potenciales entre los elementos del modelo, evitando problemas durante la construcción y mejorando la eficiencia del proyecto. Aquí se describen los aspectos clave relacionados con la detección de interferencias:

Identificación de Conflictos:

Analizar los modelos para identificar áreas donde los elementos pueden intersecarse o colisionar. Estos conflictos pueden incluir problemas entre elementos estructurales, sistemas MEP (mecánicos, eléctricos, hidrosanitarios) u otros componentes.

Colaboración entre Disciplinas:

Facilitar la colaboración entre diferentes disciplinas, como arquitectura, ingeniería estructural, ingeniería MEP, etc., para abordar las interferencias que puedan surgir entre sus respectivos modelos.

Herramientas de Detección Automatizada:

Utilizar herramientas BIM especializadas que permitan la detección automática de interferencias. Estas herramientas pueden analizar los modelos y resaltar las áreas donde se identifican posibles conflictos.

Análisis Tridimensional:

Realizar análisis tridimensionales detallados para evaluar las relaciones espaciales entre los elementos del modelo. Esto incluye la revisión de distancias, alineaciones y ubicaciones relativas.

Revisión de Interfaces Críticas:

Enfocarse en áreas críticas del proyecto donde la interferencia podría tener un impacto significativo en la construcción, el rendimiento o la operación del edificio.

Registro de Conflictos Detectados:

Mantener un registro detallado de todos los conflictos detectados, documentando la naturaleza del conflicto y las acciones tomadas para resolverlo.

Validación de Soluciones Propuestas:

Validar las soluciones propuestas para resolver las interferencias, asegurándose de que las modificaciones no generen nuevos problemas y sean consistentes con los objetivos del proyecto.

Integración con Flujos de Trabajo BIM:

Integrar la detección de interferencias en los flujos de trabajo BIM para garantizar una revisión continua a medida que evoluciona el modelo a lo largo de las diferentes fases del proyecto.

Informe y Comunicación Efectiva:

Generar informes detallados sobre las interferencias detectadas y comunicar eficazmente las soluciones propuestas a todas las partes interesadas.

13. Anexos

Los anexos que se presentaran junto con el BEP son los siguientes:

- Diseño de la Estructura de carpetas.
- Nomenclatura de archivos.
- Plantillas disciplinares.
- Mapas de procesos.
- Matriz de interferencias.
- Libro de estilos.
- Protocolo de modelado.

6. Capítulo 5: Detalle del Rol: BIM Manager

6.1. Definición del rol

El BIM manager es el profesional encargado de responder los requerimientos del cliente en términos de BIM de acuerdo a lo establecido en el EIR (Exchange information requirement), es el responsable de establecer los procesos, recursos, técnicas que se aplicaran en el proyecto para cumplir los requisitos BIM solicitado a lo largo de todo el ciclo de vida del proyecto. El BIM manager debe alinear los objetivos del proyecto con las capacidades del equipo y establecer los protocolos para la colaboración y coordinación entre los participantes del proyecto.

6.2. Objetivos Rol BIM Manager

6.2.1. Objetivo General

El objetivo del BIM Manager en el proyecto del Conjunto Residencial Ila es liderar y supervisar la implementación exitosa de la metodología BIM, asegurándose de que esta tecnología se integre efectivamente en todas las fases del proyecto. Realizar una gestión de información eficiente y asegurarse de que el uso de BIM cumpla con los objetivos y necesidades del cliente establecidos en el EIR. Es el responsable de que se cumpla con los tiempos y fechas establecidas, así como también con los estándares y calidad de los entregables.

6.2.2. Objetivos Específicos

- Preparar un PRE BEP (PRE- BIM Execution Plan) documento con el cual se realiza la negociación para cumplir los requerimientos del cliente EIR.
- Elaborar el BEP (BIM Execution Plan), documento donde se detalla cómo se van a cumplir con los objetivos del proyecto solicitados en el EIR, las metodologías, recursos, cronograma, estrategias, que se van a implementar en la ejecución del proyecto.

- Establecer las versiones y los softwares a ser utilizadas para el proyecto, de acuerdo a cada uso BIM, seleccionando las herramientas que mejor se adapten a la estructura del proyecto.
- Mantener reuniones con el coordinador para revisar el estado del proyecto, establecer directrices, actualizar los hitos y entregables pendientes.
- Garantizar el debido control de calidad en los procesos para le elaboración de los entregables del proyecto.
- Permitir que todos los integrantes del proyecto cuenten con los permisos y acceso a la información en el entorno común de datos.
- Realizar el presupuesto junto al líder de cada disciplina acordada en el EIR, mediante un flujo BIM

6.3. Responsabilidades del BIM Manager

Entre las principales funciones y responsabilidades del BIM manager se encuentran:

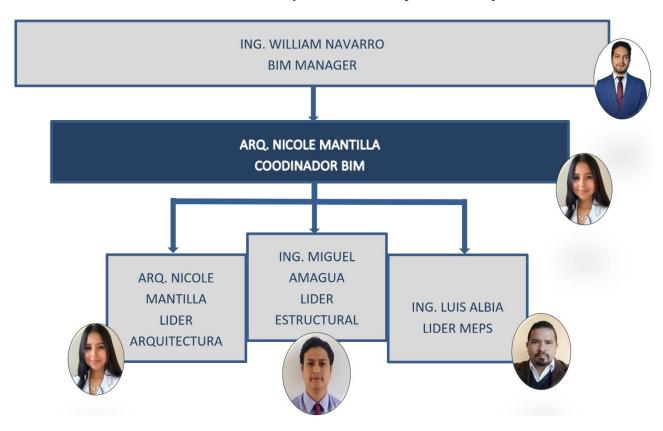
- Establecer y coordinar la definición, implementación y cumplimiento del plan de ejecución
 BIM (BEP).
- Garantizar el uso y cumplimiento de los estándares establecidos de acuerdo al contrato.
- Informar al Coordinador del Propietario y al Contacto BIM de las entregas según los hitos establecidos para el proyecto.
- Aplicar y supervisar los flujos de trabajo en el proyecto.
- Responsable de la implementación tecnología y los procesos que permitan la correcta integración de toda la información del modelo entre especialidades.
- Facilitar la correcta clasificación de los documentos y elementos del modelo.
- Definir los permisos y accesos a la información del CDE de cada miembro del equipo de acuerdo a su rol.

- Definir el Entorno Colaborativo (CDE) y la estructura de carpetas de acuerdo a los requisitos de información del cliente (EIRs).
- Definir las estrategias de comunicación entre miembros del equipo.
- Hacer el seguimiento de los hitos del proyecto e informar del progreso y estado de avance.
- Seleccionar, conformar y liderar el equipo de trabajo.
- Seguimiento al cumplimiento de hitos de entrega.
- Establecer los niveles de detalle y de información (LOD) para cada entregable de acuerdo a los requerimientos del cliente.
- Definir la nomenclatura y estandarización de los archivos dentro del CDE.
- Definir las plataformas tecnológicas a utilizar para cada entregable del proyecto.

6.4. Procesos del BIM Manager

6.4.1. Elaboración del BEP

El plan de ejecución BIM es el documento primordial al momento de la ejecución de un proyecto BIM ya que define las normas y bases del proyecto. El BIM Manager lidera la correcta elaboración e implantación de este documento asegurándose principalmente de la completa comprensión de este por parte del cliente.


Es el entregable principal del gerente BIM ya que en su contenido explica la metodología de trabajo, los procesos, las características técnicas, los roles BIM, las responsabilidades y los entregables que responden a los requisitos de información establecidos.

Este documento se ha ido actualizando con la aprobación de las partes interesadas, a medida que el proyecto ha avanzado, de esta manera se ha logrado un BEP definitivo a medida del proyecto y los requisitos del cliente, que en definitiva es el objetivo buscado.

Por lo cual para revisar más información sobre el BEP nos remitiremos al Capítulo 4, en el cual están todos los apartados que componen el plan de ejecución BIM.

6.4.2. Selección del equipo de trabajo

El equipo de trabajo está conformado de acuerdo a las necesidades del proyecto, se conforma por el BIM Manager como responsable del mismo, un coordinador BIM y lideres por cada especialidad. Se debe realizar una socialización del proyecto, principalmente de los entregables y plazos de ejecución, para que todos los involucrados se encuentren informados y enrutados a cumplir con los objetivos.

6.4.3. Entorno Común de Datos

Establecer la estructura de carpetas para trabajar dentro de un CDE bajo la normativa ISO19650 Gestión de la información, el objetivo es que los participantes del proyecto trabajen de manera colaborativa para generar información BIM a lo largo del ciclo de vida del proyecto. Facilitar el flujo de información, como también los procesos revisión, modificación y aprobación de los entregables de las diferentes disciplinas.

El BIM Manager es el responsable de administrar los accesos y permisos a las carpetas del CDE, de acuerdo a los roles y fase del proyecto en la que se encuentre el proyecto, debe verificar que todos los integrantes tengan acceso a la información para tener flujo de trabajo colaborativo entre disciplinas.

6.4.4. Flujos de trabajo

El desarrollo de los flujos de trabajo requeridos para este proyecto en particular es una de las responsabilidades del BIM Manager. Estos procesos se dividirán en cuatro componentes principales: información de referencia, proceso, información de intercambio y entregables.

Con el objetivo de proporcionar a los participantes del proyecto un manual detallado que describa los procesos a seguir en cualquier etapa del proyecto, para este proceso se han establecido los flujos de trabajo de acuerdo a los usos BIM que vamos a utilizar en el proyecto como son los siguientes:

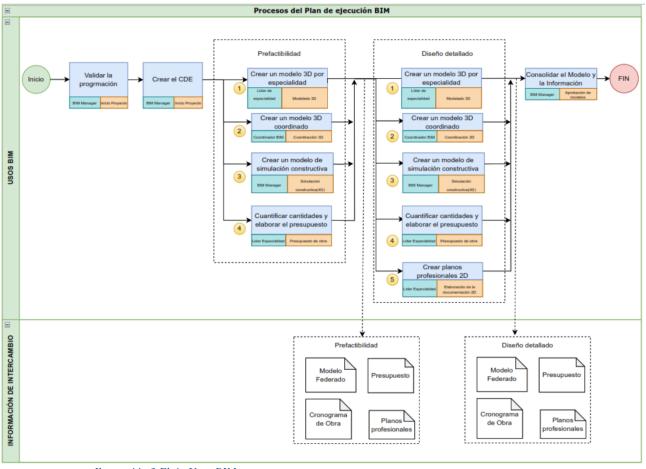


Ilustración 3 Flujo Usos BIM

Como podemos observar en la ilustración 3, en el flujo se detallan todos los usos BIM que se aplicaran en este proyecto, a continuación, se detalla los flujos para cada apartado.

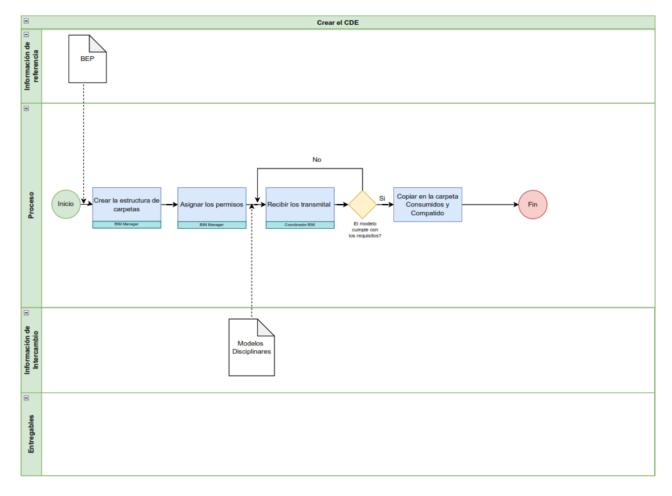


Ilustración 4 Flujo Información Centralizada

Este flujo representa el entorno de trabajo colaborativo y de intercambio de información dentro del entorno común de datos, con el fin de que todos tengan acceso a los datos actualizados en tiempo real.

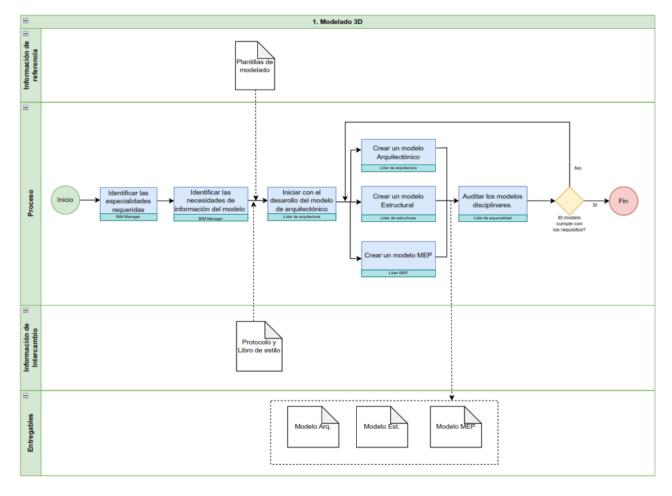


Ilustración 5 Flujo Modelado 3D

Para el uso BIM de modelado como indica la figura 5, se requiere especificar las especialidades requeridas y el nivel de información gráfica y no gráfica requeridos. Debemos empezar por el modelo arquitectónico que es la base para las demás disciplinas. Luego de haber realizado los modelos se debe realizar una auditoria para descartar que existan interferencias disciplinares.

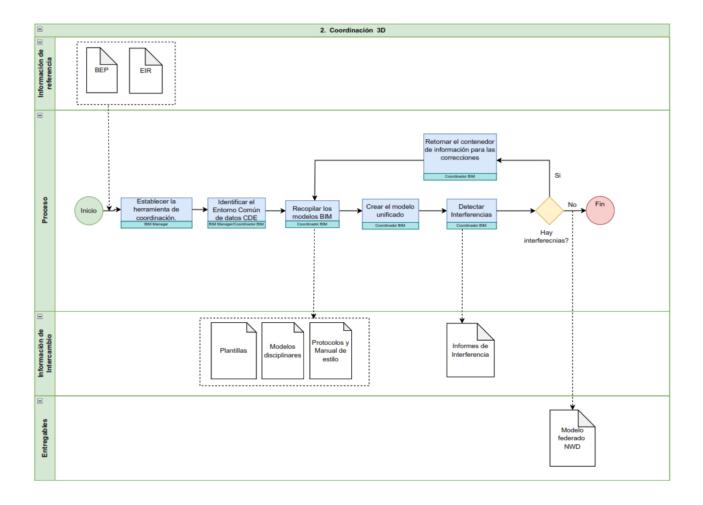


Ilustración 6 Flujo Coordinación

El uso BIM de coordinación establece como información de referencia el BEP y EIR, el flujo inicia con seleccionar la herramienta de coordinación, en nuestro caso se trabajará con Navisworks. Se realiza la estructura de carpetas del entorno común de datos y se establece el flujo de intercambio de información de los modelos, plantillas, protocolos y manual de estilo. Una vez recibidos los modelos se realiza la auditoria de los modelos para certificar que los modelos están aptos para coordinación. Se crea los archivos NWC para exportar los modelos de Revit a Navisworks, se crean conjuntos de selección, diseño de pruebas de acuerdo a la matriz de interferencia en la cual se establecen las prioridades y orden de resolución. Una vez ejecutadas las pruebas se realiza los informes y se asigna a las especialidades correspondiente los cambios a realizar. Una vez que no haya interferencias se termina el flujo y obtenemos un modelo federado NWD.

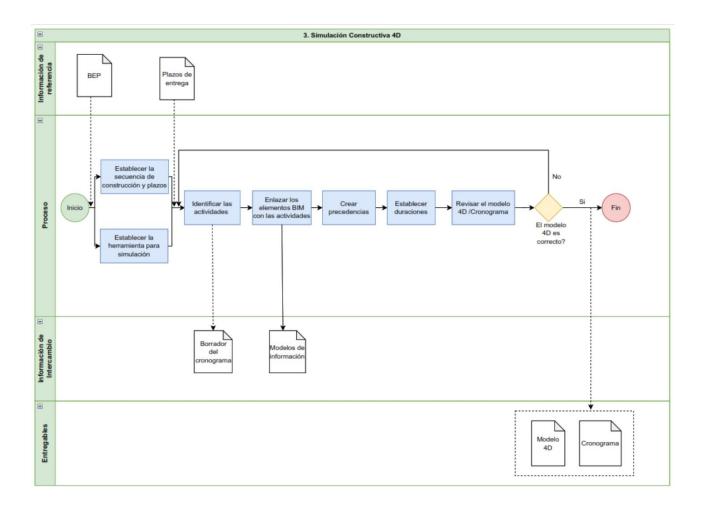
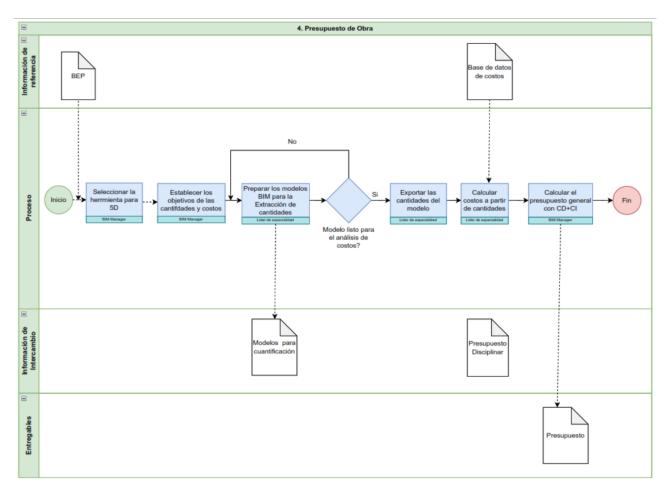



Ilustración 7 Flujo de Simulación Constructiva

Para realizar la simulación constructiva en función del flujo de la ilustración 7, como primer punto debemos seleccionar la herramienta con la cual vamos a trabajar, para este proyecto utilizaremos para la simulación la interoperabilidad entre Project y Navisworks. A continuación, detallamos la secuencia constructiva y las actividades que se deben realizar en cada una de las fases. Enlazamos los elementos del modelo BIM a las actividades. Se establece las duraciones y precedencias. Se ejecuta la simulación y se revisa que este correcta en el orden y secuencia

constructiva. Se valida y se aprueba el modelo 4D y el cronograma.

Ilustración 8 Flujo de Presupuesto

Como detalla la ilustración 8, para cumplir con el uso BIM Presupuesto de obra, de acuerdo a lo establecido en el BEP utilizaremos la herramienta Presto, mediante el cual se realizara el presupuesto por cada especialidad, a continuación preparamos los modelos para la extracción de cantidades, una vez estén validados exportamos las cantidades del modelo, ordenamos de acuerdo a los capítulos y partidas solicitadas, vinculamos a una base de datos de análisis de precios unitarios, obteniendo el presupuesto por especialidad del cual es responsable cada líder, posterior es responsabilidad del BIM Manager integrar los presupuestos y establecer los costos indirectos para obtener como resultado final el presupuesto general de la obra.

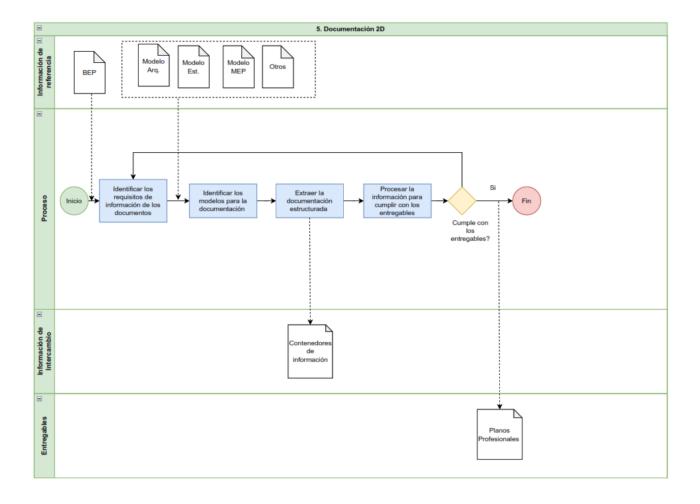


Ilustración 9 Flujo de documentación 2D

De acuerdo a la ilustración 9, el flujo de documentación 2D debe cumplir de acuerdo a los requisitos establecidos en el BEP, como entradas tenemos los modelos que han sido coordinados y liberados para realizar la documentación, se establece los formatos y plantillas para la exportación.

6.4.5. Gestión de comunicación

Definir las estrategias y medios de comunicación entre los diferentes participantes del proyecto. La comunicación se ha lleva a través de unas diferentes canales, se estableció para las interferencias o errores que se puedan encontrar en el modelo el principal canal de comunicación es mediante Incidencias de Autodesk Construction Cloud. Para comunicar el estado general y de avance del proyecto se estableció Trello para que todos tengan disponibilidad las 24 horas del estado del proyecto. Se usará la plataforma WhatsApp como un método de mensajería informal y directa. Para

las reuniones informativas, de coordinación o de avance se realizarán mediante la plataforma Zoom, y tendrá un control mediante las actas de reuniones en donde se establece el tema a tratar, los participantes, quien convoca y las decisiones tomadas.

6.5. Retos como BIM Manager

Uno de los principales retos como gerente BIM es la gestión del talento humano y de las comunicaciones, como en todo proyecto siempre hay desacuerdos, los cuales hacen que la presión por terminar los entregables generen discusiones, mediar y conversar con las partes involucradas hasta llegar a un acuerdo para el beneficio del desarrollo del proyecto es una de las mejores experiencias de un BIM Manager.

6.6. Simulación Constructiva

Una de las responsabilidades adicionales a el Rol de BIM Manager, es general la simulación constructiva, la cual se decidió hacer en Navisworks por la integración de los modelos de arquitectura, estructuras e hidrosanitario. Para lo cual se procedió con la elaboración de la estructura de desglose de los trabajos EDT(ilustración 10), indicando las duraciones de cada tarea en Microsoft Project. Posterior se establecen las precedencias y se exporta como orígenes de datos a Navisworks.

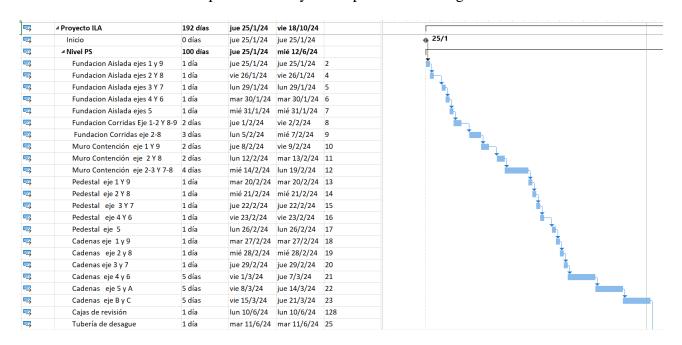


Ilustración 10 Estructura de desglose de tareas EDT

A continuación, se exportan los conjuntos de las tareas, y se enlaza cada actividad con sus respectivos elementos en el modelo. En este proyecto se consideró trabajar con dos cuadrillas una de derecha a izquierda, y la otra de izquierda a derecha.

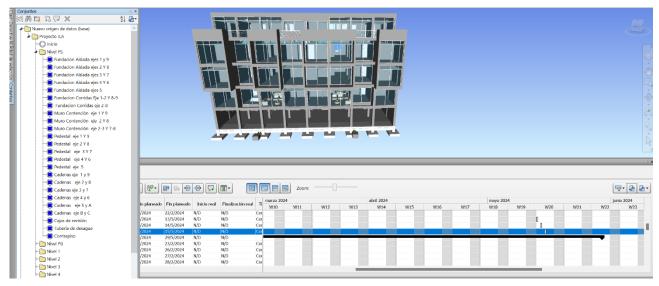


Ilustración 11 Enlazar los conjuntos con las tareas correspondientes

Una vez enlazados los elementos del modelo a cada tarea, se realiza la primera corrida de la simulación, revisamos que esté de acuerdo a la secuencia constructiva, si esto no se cumple entramos en un proceso iterativo de corregir la secuencia de acuerdo al TimeLiner y el orden de ejecución de cada tarea. Finalizadas los ajustes y modificado el orden de las actividades se culmina

con la exportación del video de la simulación.

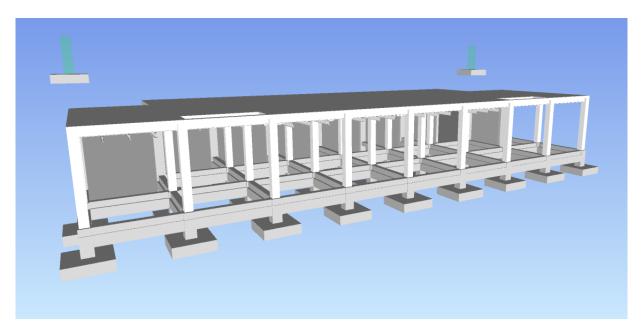


Ilustración 12 Secuencia constructiva de la estructura.

6.7. Análisis de resultados.

Como objetivo de este trabajo de titulación es realizar una comparativa entre el presupuesto referencial realizado por el método tradicional, y el presupuesto obtenido aplicando la metodología BIM. Para verificar si cumplimos con el rango de vivienda de interés publica VIP que debe estar dentro del rango de precios desde \$103.050 hasta \$105.340 en 2024, donde el costo por m2 no deberá superar los \$1145,40.

El presupuesto referencial del proyecto es de \$5,642,355.20, luego de realizar la extracción de datos de los modelos y realizar el presupuesto tenemos el siguiente resumen indicado en la tabla 10.

Presupuesto BIM		
BQ1	COSTO DE CONSTRUCCIÓN	
Presupuesto ARQ BQ1	\$245,779.45	
Presupuesto EST BQ1	\$461,817.53	
Presupuesto HE BQ1	\$24,648.83	
Presupuesto HS BQ1	\$17,750.73	
	\$749,996.54	
Área de BQ1 (M2)	1,208.94	

\$/m2		\$620.38
General		
BLOQUE	AREA (M2)	COSTO
BQ1	1208.94	\$749,996.54
BQ2	975.4	\$605,114.09
BQ3	975.4	\$605,114.09
BQ4	975.4	\$605,114.09
BL_ SALA COMUNAL	126.81	\$96,397.86
COSTO BLOQUES		\$2,661,736.66
Presupuesto del Proyecto		
Costo Bloques		\$2,661,736.66
Costo de muro		\$118,653.52
Costo Red AP Y ALCANTARILLADO		\$150,000.00
Costo Eléctrico exterior		\$160,000.00
Costo Cerramiento		\$100,000.00
Costo Mobiliario Exterior		\$25,000.00
Costo Mejoramiento de suelo		\$228,000.00
Costo Obras civiles exteriores		\$200,000.00
Costo del terreno (3722.65m2)		\$302,000.00
COSTO TOTAL DEL PROYECTO)	\$3,945,390.18

Tabla 10 Presupuesto elaborado bajo la metodología BIM

Observamos que tenemos un ahorro de \$1,696,965.02 con respecto al presupuesto inicial, lo que representa un 30% de optimización aplicando la metodología BIM con respecto al método tradicional.

COSTO DE CONSTRUCCIÓN INICIAL	\$5,642,355.20
COSTO DE CONSTRUCCIÓN CON BIM	\$3,945,390.18
AHORRO	\$1,696,965.02
AHORRO EN PORCENTAJE	30.08%

Tabla 11 Comparativa del Presupuesto

Por lo que tenemos un costo por departamento de \$105,233.88 debajo del umbral superior que es de \$105.340. Por lo que concluimos que entramos dentro del rango de una vivienda de interés público cumpliendo con el objetivo.

7. Capítulo 6: Análisis de Riesgos

Riesgos son incertidumbres que, si ocurriesen, afectarían los objetivos del proyecto de manera negativa (amenazas) o positiva (oportunidades). Ejemplos incluyen la posibilidad de que las metas de productividad planificadas no se alcancen, que tipos de cambio o interés fluctúen, la posibilidad de que las expectativas del cliente se entiendan mal o que un contratista cumpla más temprano que lo provisto. Estas incertidumbres deben gestionarse de

manera proactiva por el proceso de gestionar riesgos. (Hillson, 2004)

Para una gestión de riesgo eficaz, se necesita identificar, relacionar los riesgos con los entregables del EDT, realizar un análisis cualitativo y cuantitativo y ver los impactos que estos pueden ocasionar ya sea en la duración o el costo de nuestro proyecto, para lo cual hemos realizado una matriz de riesgo que consta de los siguientes procesos.

- Entregable afectado
- La causa del riesgo
- El riesgo
- El efecto del riesgo
- Disparador del riesgo

Con esto procedemos a realizar un análisis cualitativo y cuantitativo para determinar la probabilidad y el impacto que genera un riesgo sobre ese entregable, y poder tomar las mejores estrategias y acciones de respuesta frente al suceso del riesgo.

Otro método que no ayuda para analizar y tomar mejores decisiones en nuestro proyecto es el método de simulación de Montecarlo que produce números aleatorios con base en la ley de probabilidad teórica para estimar el comportamiento de las variables y así determinar la distribución de probabilidades que más se aproximen a lo real. Se puede llegar a varias simulaciones de

Montecarlo para obtener una mejor aproximación. Cuando los resultados producidos se hayan vuelto estables significa que ya no deben realizar nuevas simulaciones. (Beltrán & Cueva, 2021)

Esta técnica nos permite realizar el análisis de diferentes escenarios, lo que permite una toma de decisiones de acuerdo a una serie de posibilidades, analizando la probabilidad de un evento ocurra de acuerdo a las medidas tomadas, lo hace tomando el evento más optimista, el esperado y el menos optimista.

La simulación de Montecarlo nos ayuda a medir cuantitativamente los riesgos que puedan suceder durante el proyecto, ya que al medir y cuantificar las posibles amenazas es más fácil mitigar o evitar su impacto.

7.1. Análisis de riesgos en la etapa de Diseño

En la fase de diseño del "Proyecto ILA", se identificaron los riesgos que afectan a los entregables del EDT, realizamos el análisis con la matriz de riesgos para identificar el impacto que estos pueden llegar a producir en tiempo y costo.

Entregable	Causa del Riesgo	Riesgo	Efecto del Riesgo	Disparador del Riesgo
EIR Contrato BIM	Falta de claridad en	Desviación en objetivos del		Cambio en las especificaciones del
	requisitos del cliente	proyecto	Alteración del alcance	cliente
PreBEP	Inexactitud en definición de roles y responsabilidades	Confusión en responsabilidades	Retraso en planificación	Cambios en equipo de proyecto
BEP Plan de ejecución BIM	Planificación deficiente de actividades BIM	Incumplimiento de plazos	Retraso en entregas	Cambios en programa de trabajo
Modelo de Arquitectura LOD300	Falta de precisión en detalles	Inconsistencias en diseño	Ajustes en modelo	Cambios en especificaciones de diseño
Modelo de Estructuras LOD300	Errores en diseño estructural	Problemas de construcción	Reparaciones y cambios en el modelo	Falta de coordinación en equipo
Modelo de Hidrosanitarias LOD300	Problemas en diseño hidrosanitario	Falta de funcionalidad	Replanteo de instalaciones	Cambios en normativas
Modelo Instalaciones Electricas LOD200	Falta de detalle en modelo eléctrico	Problemas en instalaciones	Retraso en entrega	Cambios en especificaciones técnicas
Modelos auditados interdisciplinares	Falta de comunicación entre equipos	Errores de interpretación	Desajustes en modelos coordinados	Cambios en requisitos del cliente
Estado general de los modelos	Falta de actualización de modelos	Pérdida de información	Volver a modelar	Cambios en diseño

Matriz de interferencias	Falta de detección de conflictos	Problemas en coordinación	Retrabajo	Cambios en diseño
Modelo Coordinado (federado)	Falta de coordinación entre modelos	Interferencias no detectadas	Ajustes en instalaciones	Cambios en planos
Mediciones de cantidades	Inexactitudes en mediciones	Desviaciones en presupuesto	Problemas financieros	Cambios en diseño
Elaboración de Presupuesto 4D	Inexactitud en estimación de costos	Desviaciones en presupuesto	Problemas financieros	Cambios en diseño
Programación de obra	Inexactitud en planificación temporal	Retrasos en obra	Problemas financieros	Cambios en diseño
Simulación Constructiva 5D	Falta de precisión en simulación	Desviaciones en costos/tiempos	Problemas financieros	Cambios en diseño

Tabla 12 Matriz de riesgos de la fase de diseño

Luego de identificar los riesgos, causa y efecto se realiza un análisis cualitativo y cuantitativo mediante el cual determinamos el valor esperado de acuerdo a la probabilidad de ocurrencia y su impacto.

Amenaza/Op ortunidad	Probabilidad Cualitativa	Impacto Cualitativo	Objetivo Impactado	Probabilidad Cuantitativa (%)	Impacto (USD)	Impacto (días)	Valor esperado (USD)	Valor esperado (días)
Amenaza	Medio	Alto	Alcance	20%	\$1,000.00	6	\$200.00	1
Amenaza	Alto	Medio	Tiempo	40%	\$500.00	3	\$200.00	1
Amenaza	Alto	Alto	Tiempo	70%	\$2,000.00	7	\$1,400.00	5
Amenaza	Medio	Medio	Calidad	30%	\$12,000.00	15	\$3,600.00	5
Amenaza	Alto	Alto	Calidad	65%	\$15,000.00	15	\$9,750.00	10
Amenaza	Medio	Medio	Calidad	45%	\$12,000.00	15	\$5,400.00	7
Amenaza	Alto	Medio	Calidad	45%	\$8,000.00	10	\$3,600.00	5
Amenaza	Medio	Medio	Calidad	50%	\$4,000.00	8	\$2,000.00	4
Amenaza	Medio	Medio	Calidad	50%	\$3,000.00	7	\$1,500.00	4
Amenaza	Alto	Alto	Calidad	70%	\$3,500.00	12	\$2,450.00	8
Amenaza	Alto	Alto	Calidad	60%	\$10,000.00	10	\$6,000.00	6
Amenaza	Alto	Alto	Costos	70%	\$2,500.00	5	\$1,750.00	4
Amenaza	Alto	Alto	Costos	75%	\$2,000.00	5	\$1,500.00	4

Amenaza	Alto	Alto	Tiempo	80%	\$2,500.00	7	\$2,000.00	6
Amenaza	Alto	Alto	Costos/Tiempo	75%	\$4,000.00	10	\$3,000.00	8

Tabla 13 Matriz de Riesgos de la fase de diseño

Una vez realizado la matriz de riesgos determinamos nuestro valor de contingencia para la fase de diseño que es de \$44.350.

Análisis de Montecarlo Duraciones

		DURACION							
ENTREGABLES / PAQUETES DE TRABAJO / ACTIVIDADES	OPTIMISTA	MAS DESEABLE	PESIMISTA	MODELO	CRITICA	DURACION ESPERADA	VARIANZA	SIGMA	SSI
EIR Contrato BIM	1	2	4	uniforme	1	2.50	0.75	0.87	10%
PreBEP	5	8	10	triangular	1	7.67	1.06	1.03	12%
BEP Plan de ejecución BIM	2	2	4	triangular	1	2.50	0.29	0.54	6%
Modelo de Arquitectura LOD300	20	25	30	beta					
Modelo de Estructuras LOD300	15	20	23	triangular					
Modelo de Hidrosanitarias LOD300	12	15	18	triangular					
Modelo Instalaciones Electricas LOD200	5	10	12	beta					
Modelos auditados interdisciplinares	4	5	6	uniforme					
Estado general de los modelos	8	10	13	uniforme					
Matriz de interferencias	3	5	7	triangular					
Modelo Coordinado (federado)	25	30	34	beta	1	29.83	2.25	1.50	18%
Mediciones de cantidades	4	5	8	triangular	1	5.67	0.72	0.85	10%
Elaboración de Presupuesto 4D	6	8	15	triangular	1	9.67	3.72	1.93	23%
Programación de obra	12	15	20	beta	1	15.33	1.78	1.33	16%
Simulación Constructiva 5D	5	6	7	beta	1	6.00	0.11	0.33	4%

Tabla 14 Simulación de Montecarlo Duraciones en fase de diseño

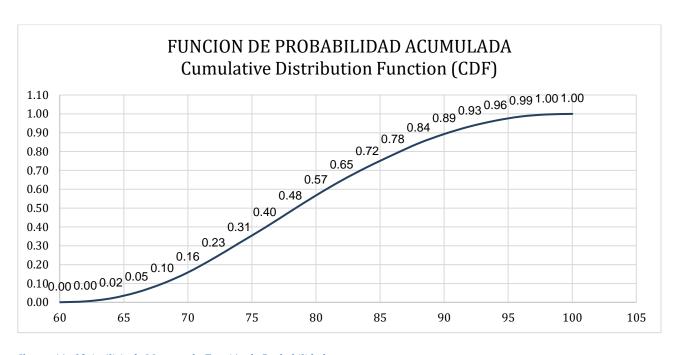


Ilustración 13 Análisis de Montecarlo Función de Probabilidad

Días	PDF(x)	CDF(x)
60	0.00	0.00
62	0.00	0.00
64	0.02	0.02
66	0.03	0.05
68	0.05	0.10
70	0.06	0.16
72	0.07	0.23
74	0.08	0.32
76	0.09	0.40
78	0.09	0.49
80	0.08	0.57
82	0.08	0.65
84	0.07	0.72
86	0.06	0.78
88	0.06	0.85
90	0.05	0.89
92	0.04	0.93
94	0.03	0.96
96	0.02	0.98
98	0.01	0.99
100	0.01	1.00

Tabla 15 Resultados de la simulación de Montecarlo Duraciones

De acuerdo al análisis de Montecarlo para las duraciones en etapa de diseño se obtiene que para los 78 días planificados tendríamos un cumplimiento del 49%, y podemos concluir que para

tener una certeza del 95% el proyecto se debe realizar en 94 días, una diferencia de 16 días con respecto a la planificación inicial.

Análisis Montecarlo Costos

		COSTOS					
ENTREGABLES / PAQUETES DE TRABAJO / ACTIVIDADES	OPTIMISTA	MAS DESEABLE	PESIMISTA	MODELO	COSTO ESPERADO	VARIANZA	SIGMA
EIR Contrato BIM	800	1,000	1,300	beta	1,017	6,944	83
PreBEP	1,000	1,500	1,700	beta	1,450	13,611	117
BEP Plan de ejecución BIM	3,000	3,200	4,500	triangular	3,567	110,556	332
Modelo de Arquitectura LOD300	7,500	10,000	11,000	triangular	9,500	541,667	736
Modelo de Estructuras LOD300	6,800	8,000	9,000	uniforme	7,900	403,333	635
Modelo de Hidrosanitarias LOD300	5,900	6,000	7,200	uniforme	6,550	140,833	375
Modelo Instalaciones Eléctricas LOD200	3,500	4,000	5,000	uniforme	4,250	187,500	433
Modelos auditados interdisciplinares	1,000	2,000	2,300	uniforme	1,650	140,833	375
Estado general de los modelos	1,700	2,000	2,200	uniforme	1,950	20,833	144
Matriz de interferencias	2,300	2,500	2,700	triangular	2,500	6,667	82
Modelo Coordinado (federado)	10,200	12,300	13,500	uniforme	11,850	907,500	953
Mediciones de cantidades	800	1,500	2,000	triangular	1,433	60,556	246
Elaboración de Presupuesto 4D	2,400	3,000	3,200	beta	2,933	17,778	133
Programación de obra	1,800	2,500	2,600	beta	2,400	17,778	133
Simulación Constructiva 5D	900	1,200	2,000	triangular	1,367	53,889	232

Tabla 16 Simulación de Montecarlo Costos en fase de diseño

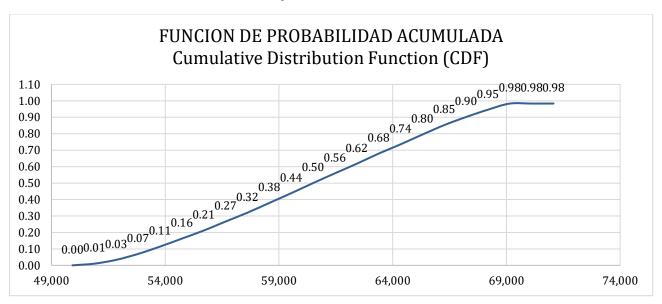


Ilustración 14 Análisis de Montecarlo Función de Probabilidad

\$	PDF(x)	CDF(x)
49,727	0.00	0.00
50,701	0.01	0.01
51,675	0.02	0.03
52,649	0.04	0.07
53,623	0.04	0.11
54,597	0.05	0.15
55,571	0.06	0.21
56,545	0.05	0.26
57,519	0.06	0.32
58,493	0.06	0.38
59,467	0.06	0.44
60,441	0.06	0.50
61,415	0.06	0.57
62,389	0.06	0.63
63,363	0.06	0.69
64,337	0.06	0.75
65,311	0.06	0.81
66,285	0.05	0.86
67,259	0.05	0.91
68,233	0.04	0.95
69,207	0.03	0.98
70,181	0.00	0.98
71,155	0.00	0.98

Tabla 17 Resultados de la simulación de Montecarlo Costos

En base a los datos de costos introducidos en la simulación de Montecarlo se obtuvieron los siguientes resultados, el costo esperado es de \$60.317 el cual tendría un cumplimiento del 50%, para obtener una confiabilidad del 95% que el proyecto se pueda cumplir el costo es de \$68.233.

7.2. Etapa de Construcción

En la fase de construcción del "Proyecto ILA", se identificaron los siguientes riesgos que afectan a los entregables del EDT, realizamos el análisis con la matriz de riesgos para identificar el impacto que estos pueden llegar a producir en tiempo y costo.

Entregable	Causa del Riesgo	Riesgo	Efecto del Riesgo	Disparador del Riesgo
Movimiento de tierras en plataforma	Errores en planificación de movimiento de tierras	Desnivel en terreno	Dificultad en construcción	Cambios en especificaciones de diseño
Movimiento de tierras en talud	Problemas de estabilidad del terreno	Deslizamientos de tierra	Retraso en obras	Cambios en condiciones climáticas
Excavaciones para cimentaciones	Falta de precisión en las excavaciones	Desviaciones en dimensiones de cimentación	Problemas de estructura	Cambios en especificaciones de diseño

Cimentaciones aisladas en hormigón armado	Deficiencias en calidad de materiales	Fallas en cimentaciones	Riesgo de colapso	Cambios en especificaciones de diseño
Columnas	Deficiencias en diseño estructural	Problemas de carga	Riesgo de colapso	Cambios en especificaciones de diseño
Losa de contrapiso y losas de entrepiso	Fallas en proceso de colado de losa	Grietas en losa	Riesgo de falla estructural	Cambios en especificaciones de diseño
Escaleras	Falta de diseño adecuado	Inseguridad en uso	Riesgo de accidentes	Cambios en especificaciones de diseño
Mampostería de bloque	Deficiencias en técnica de colocación	Debilidad estructural	Riesgo de colapso	Cambios en especificaciones de diseño
Enlucidos	Problemas de adherencia	Desprendimiento de revestimiento	Apariencia estética deteriorada	Cambios en especificaciones de diseño
Acabados en drywall	Deficiencias en instalación	Grietas y deformaciones	Deterioro estético	Cambios en especificaciones de diseño
Pintura interior	Problemas de adherencia	Descascaramiento de pintura	Aspecto visual deteriorado	Cambios en especificaciones de diseño
Pintura exterior	Deficiencias en preparación de superficie	Desprendimiento de pintura	Aspecto visual deteriorado	Cambios en especificaciones de diseño
Sistema hidráulico	Fallas en instalación de tuberías	Fugas y pérdidas de agua	Problemas de funcionamiento	Cambios en especificaciones de diseño
Sistema sanitario	Deficiencias en diseño de redes	Problemas de drenaje	Inundaciones y malos olores	Cambios en especificaciones de diseño
Sistema eléctrico	Errores en instalación de cables	Cortocircuitos y fallos	Interrupción del suministro eléctrico	Cambios en especificaciones de diseño

Tabla 18 Matriz de Riesgos de la fase de Construcción

Cuando estén identificados los riesgos, sus causas y efectos, se realiza un análisis cuantitativo y cualitativo para determinar el impacto que estos pueden ocasionar al proyecto.

Amenaza/Op ortunidad	Probabilidad Cualitativa	Impacto Cualitativo	Objetivo Impactad o	Probabilidad Cuantitativa (%)	Impacto (USD)	Impacto (días)	Valor esperado (USD)	Valor esperado (días)
Amenaza	Medio	Medio	Alcance	50%	\$40,000.00	30	\$20,000.00	15

Amenaza	Alto	Alto	Calidad	20%	\$60,000.00	45	\$12,000.00	9
Amenaza	Alto	Alto	Calidad	65%	\$30,000.00	40	\$19,500.00	26
Amenaza	Alto	Alto	Calidad	70%	\$70,000.00	50	\$49,000.00	35
Amenaza	Alto	Alto	Calidad	75%	\$85,000.00	55	\$63,750.00	41
Amenaza	Alto	Alto	Calidad	80%	\$90,000.00	60	\$72,000.00	48
Amenaza	Medio	Medio	Calidad	60%	\$55,000.00	35	\$33,000.00	21
Amenaza	Alto	Alto	Calidad	70%	\$65,000.00	45	\$45,500.00	32
Amenaza	Medio	Medio	Calidad	55%	\$30,000.00	20	\$16,500.00	11
Amenaza	Medio	Medio	Calidad	60%	\$35,000.00	25	\$21,000.00	15
Amenaza	Medio	Medio	Calidad	55%	\$30,000.00	20	\$16,500.00	11
Amenaza	Medio	Medio	Calidad	60%	\$35,000.00	25	\$21,000.00	15
Amenaza	Alto	Alto	Calidad	70%	\$75,000.00	50	\$52,500.00	35
Amenaza	Alto	Alto	Calidad	75%	\$80,000.00	55	\$60,000.00	41
Amenaza	Alto	Alto	Calidad	10%	\$90,000.00	60	\$9,000.00	6

Tabla 19 Matriz de Riesgos de la fase de Construcción

Culminada la matriz de riesgos determinamos nuestro valor de contingencia para la fase de construcción es de \$511.250.

Análisis de Montecarlo Duraciones

ENTREGABLES / PAQUETES DE TRABAJO / ACTIVIDADES	OPTIMISTA	MAS DESEABLE	PESIMISTA	MODELO	CRITICA	DURACION ESPERADA	VARIANZA	SIG MA	SSI
Movimiento de tierras en plataforma	28	30	45	beta	1	32.17	8.03	2.83	11%
Muro Anclado	40	45	60	beta	1	46.67	11.11	3.33	13%
Excavaciones para cimentaciones	9	10	15	triangular	1	11.33	1.72	1.31	5%
Cimentaciones aisladas en hormigón armado	20	25	30	triangular	1	25.00	4.17	2.04	8%
Columnas	22	25	28	uniforme	1	25.00	3.00	1.73	7%
Losa de contrapiso y losas de entrepiso	32	35	40	uniforme	1	36.00	5.33	2.31	9%
Escaleras	25	28	35	uniforme					
Mampostería de bloque	25	45	48	uniforme	1	36.50	44.08	6.64	26%
Enlucidos	30	35	42	uniforme	1	36.00	12.00	3.46	14%
Acabados	50	65	80	triangular					
Pintura interior	28	30	34	uniforme	1	31.00	3.00	1.73	7%
Pintura exterior	12	15	16	triangular					
Sistema hidráulico	30	35	40	beta					

Sistema sanitario	39	40	46	beta			
Sistema eléctrico	23	25	27	triangular			

Tabla 20 Simulación de Montecarlo Duraciones en fase de Construcción

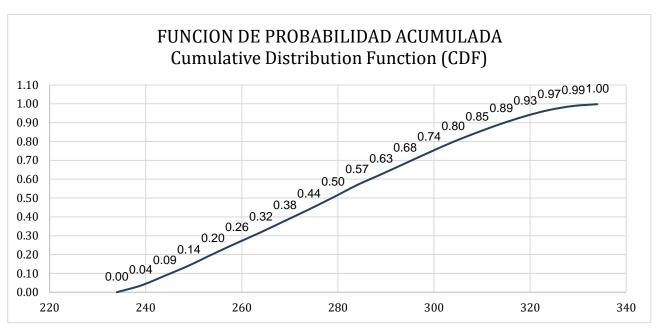


Ilustración 15 Análisis de Montecarlo Función de Probabilidad

bins	PDF(x)	CDF(x)
234	0.00	0.00
240	0.04	0.05
246	0.06	0.11
252	0.07	0.18
258	0.07	0.25
264	0.08	0.33
270	0.08	0.40
276	0.08	0.48
282	0.07	0.55
288	0.08	0.63
294	0.07	0.70
300	0.06	0.76
306	0.06	0.82
312	0.06	0.88
318	0.05	0.93
324	0.04	0.97
330	0.02	0.99
336	0.01	1.00
342	0.00	1.00
348	0.00	1.00
354	0.00	1.00

Tabla 21 Resultados de la simulación de Montecarlo Costos

Concluida la simulación nos da como resultado lo siguiente, con el plazo establecido de 280 días, obtendríamos un cumplimiento del 82%. Para tener certeza del 95% el proyecto tiene un plazo de 318 días, un periodo de contingencia de 38 días.

Análisis de Montecarlo Costos en fase de Construcción.

		COSTOS					
ENTREGABLES / PAQUETES DE TRABAJO / ACTIVIDADES	OPTIMISTA	MAS DESEABLE	PESIMISTA	MODELO	COSTO ESPERADO	VARIANZA	SIGMA
Movimiento de tierras en							
plataforma	350,000	363,178	425,000	beta	371,285	156,250,000	12,500
Muro Anclado	25,000	29,663	40,000	beta	30,609	6,250,000	2,500
Excavaciones para cimentaciones	2,000	2.464	Г 000	triangular	2 155	424 590	CEO.
	2,000	2,464	5,000	triangular	3,155	434,580	659
Cimentaciones aisladas en hormigón armado	48,200	59,336	75,600	triangular	61,045	31,647,022	5,626
Columnas	150,900	180,267	190,500	uniforme	170,700	130,680,000	11,432
Losa de contrapiso y losas							
de entrepiso	160,800	177,668	180,000	uniforme	170,400	30,720,000	5,543
Escaleras	3,500	4,570	7,200	uniforme	5,350	1,140,833	1,068
Mampostería de bloque	22,400	24,993	29,900	uniforme	26,150	4,687,500	2,165
Enlucidos	35,700	38,970	43,000	uniforme	39,350	4,440,833	2,107
Acabados	115,700	124,500	150,900	triangular	130,367	55,928,889	7,479
Pintura interior	10,200	12,300	15,300	uniforme	12,750	2,167,500	1,472
Pintura exterior	4,500	5,500	6,800	triangular	5,600	221,667	471
Sistema hidráulico	23,000	25,850	32,400	beta	26,467	2,454,444	1,567
Sistema sanitario	32,900	37,500	39,600	beta	37,083	1,246,944	1,117
Sistema eléctrico	23,200	24,649	25,600	triangular	24,483	243,440	493

Tabla 22 Simulación de Montecarlo Costos en fase de Construcción

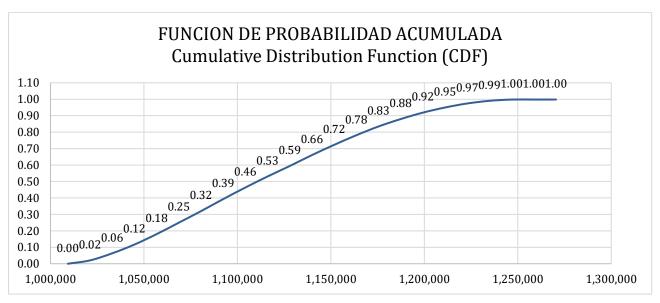


Ilustración 16 Análisis de Montecarlo Función de Probabilidad

bins	PDF(x)	CDF(x)
1,008,841	0.00	0.00
1,020,590	0.02	0.02
1,032,339	0.04	0.06
1,044,088	0.05	0.11
1,055,837	0.06	0.18
1,067,586	0.06	0.24
1,079,335	0.07	0.31
1,091,084	0.08	0.38
1,102,833	0.07	0.45
1,114,582	0.07	0.52
1,126,331	0.07	0.59
1,138,080	0.06	0.65
1,149,829	0.06	0.71
1,161,578	0.05	0.77
1,173,327	0.05	0.82
1,185,076	0.05	0.87
1,196,825	0.04	0.91
1,208,574	0.03	0.95
1,220,323	0.02	0.97
1,232,072	0.02	0.99
1,243,821	0.01	1.00
1,255,570	0.00	1.00
1,267,319	0.00	1.00

Tabla 23 Resultados de la simulación de Montecarlo Costos

Como resultados de la simulación podemos ver que con el presupuesto esperado de \$1,114.794 tenemos un porcentaje de cumplimiento del 52%, para tener una certeza del 95% de cumplimiento nuestro presupuesto es de \$1,208.574, para cada bloque de departamentos.

8. Capítulo 7: Conclusiones

8.1.Conclusiones generales

- La implementación de la metodología BIM en el Conjunto Residencial ILA ha marcado un significativo avance en la eficiencia del proceso de diseño. La creación de modelos digitales detallados ha facilitado la representación tridimensional realista y la detección anticipada de posibles conflictos entre diferentes sistemas, lo cual ha llevado a una reducción notable de errores y la necesidad de reajustes durante la fase de diseño.
- El enfoque BIM ha posibilitado una optimización en el uso de recursos mediante la simulación y análisis exhaustivo del proceso de construcción. Esto ha contribuido sustancialmente a la disminución de costos y desperdicios, especialmente en proyectos de Vivienda de Interés Público donde los recursos pueden ser limitados.
- La aplicación de BIM ha simplificado la colaboración y coordinación entre todos los involucrados en el proyecto. La capacidad de intercambiar información en tiempo real y trabajar en un modelo centralizado ha mejorado considerablemente la comunicación y la eficacia general del equipo.
- Los modelos BIM contienen una vasta información sobre los componentes y sistemas de las viviendas, facilitando su mantenimiento y operación a largo plazo para garantizar su durabilidad y habitabilidad futura.
- La metodología BIM ha asegurado el cumplimiento de los requisitos normativos y de seguridad establecidos por las autoridades municipales y gubernamentales. La capacidad para simular y analizar diversos escenarios ha garantizado la conformidad con las regulaciones locales, promoviendo la seguridad en el lugar de trabajo y la protección de los futuros residentes.

 Esta implementación de BIM resalta su potencial transformador en la industria de la construcción, destacando su capacidad para mejorar la calidad de vida de las comunidades mediante proyectos residenciales innovadores y sostenibles.

8.2. Conclusiones del Rol BIM Manager

- El BEP (Plan de ejecución BIM), es la base para el desarrollo de un proyecto con la metodología BIM, en donde se deben establecer claramente los objetivos, los usos BIM, las responsabilidades y entregables de cada uno de los miembros del equipo. Así como también definir las estrategias, flujos, guías y protocolos que deberán seguir para el cumplimiento del EIR.
- El BIM Manager es el principal responsable de la ejecución del proyecto por lo cual debe gestionar y monitorear que se realicen los entregables de acuerdo a los plazos y necesidades establecidos en el BEP. Definir los recursos y software necesarios que mejor se alineen con los objetivos del proyecto en las diferentes dimensiones BIM 3D, 4D y 5D.
- El uso de un CDE (Entorno común de datos) permite al BIM Manager tener un mejor control sobre el estado de los entregables en tiempo real, una adecuada gestión de cambios debido a la trazabilidad y versionamineto que este proporciona, así como permite la coordinación e interoperabilidad entre las diferentes disciplinas para evitar retrabajos por utilizar las versiones desactualizadas de la información.
- El éxito de BIM se da por el manejo ordenado de la información en un entorno colaborativo, en donde cada uno de los involucrados tiene claro los procedimientos que debe ejecutar para cada cumplir con cada uno de los entregables establecidos mediante un flujo de trabajo. Es por eso la importancia de que los flujos sean elaborados de una manera clara y concisa para la comprensión del equipo.

Una de las mayores ventajas de BIM en la fase de diseño es que nos ayuda a tomar
decisiones mejor informadas en base de un modelo de información digital. Así como
hacer comparativas entre diferentes alternativas como sistemas estructurales,
materiales, procedimientos, que en base a esos análisis se tomen disposiciones en
beneficio del proyecto.

9. Referencias Bibliográficas

- Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors (2nd ed.). Wiley.
- Succar, B. (2009). Building Information Modelling Framework: A Research and Delivery
 Foundation for Industry Stakeholders. Automation in Construction
- BuildingSMART. (2012). IFC Industry Foundation Classes. Recuperado de https://www.buildingsmart.org/standards/bsi-standards/ifc/
- Giel, B., Issa, R. R. A., & Olbina, S. (2014). The role of building information modeling in the design of sustainable buildings. Journal of Building Information Modeling, 11(1), 1–14.
- Kiziltas, S., & Akinci, B. (2010). Data modeling for product and process information integration. Automation in Construction, 19(4), 357–366.
 https://www.sciencedirect.com/science/article/abs/pii/S0926580509001939?via%3Dihub
- Beltrán, A., & Cueva, H. (2021). Evaluación privada de proyectos.
- Hillson, D. (2004). Cuando un riesgo no es riesgo?

10.Anexos

10.1. Anexo A: Protocolo – Rol Coordinador BIM

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 02-Protocolo y Manual de Esilos, "PBIM PROTOCOLO"

10.2. Anexo B: Manual de Estilos – Rol Coordinador BIM

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 02-Protocolo y Manual de Esilos, "PBIM MANUAL DE ESTILOS"

10.3. Anexo C: Matriz de Interferencias – Rol Coordinador BIM

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 05 Matriz de Interferencias "ILA PBIM MTR INT.xlsx"

Anexo D: Informe de Referencias - Rol Coordinador BIM

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 12-Informes de Interferencias y Resoluciones.

10.1. Anexo E: Modelo Federado – Rol Coordinador BIM

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 11-Modelos 3D, 05-Modelo Federado

"ILA PBIM C01 ZZZ M3D COOR 001.nwf"

10.2. Anexo F: Modelo 3D – Rol Líder Arquitectura

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 11-Modelos 3D, 01-Arq

10.3. Anexo G: Planos profesionales – Rol Líder Arquitectura

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 13-Planos Porofesionales, 01-Arq

10.4. Anexo H: Presupuesto – Rol Líder Arquitectura

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 06-Presupuestos, 01-Arq "ILA PBIM PARQ B1 LOD300.Presto"

10.5. Anexo I: Recorrido Virtual – Rol Líder Arquitectura

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 10-Render y recorrido virtual "ILA_PBIM_RECORRIDO_VIRTUAL"

10.6. Anexo J: Renders – Rol Líder Arquitectura

Ver en carpeta compatida en Google Drive. Grupo 2. 04-Anexos, 10-Render y recorrido virtual