FACULTAD DE ARQUITECTURA E INGENIERÍA MAESTRÍA DE DISEÑO MECÁNICO

"Selección de material alternativo para la Punta de eje trasero de Automóviles Chevrolet SPARK, utilizando métodos multicriterio y simulación de esfuerzos-deformación para optimizar el material"

Autores:

Ing. Javier Martínez G. PhD Ing. Henry Toledo

Quito, Marzo 2019

INTRODUCCIÓN

Problemática:

La punta de eje trasera para Automóviles SPARK, se importa, esta no se manufactura en Ecuador:

Países de los que se importan:

- Korea
- Taiwan
- Japon
- China

INTRODUCCIÓN

Justificación

A fin de apoyar en las políticas internas del país como es el Plan Nacional del Buen Vivir, el cual su objetivo es el aumento de la matriz productiva

(Carrillo V. J., 2017)

Esta autoparte se importan; teniendo un costo de importación de aproximado de \$135 192,26.

(Importaciones -Servicio Nacional de Aduana del Ecuador, 2018) El aporte que tiene el parque automotor dentro de la economía nacional, con actividades como: compra y venta de vehículos, autopartes, talleres de mantenimiento, entidades financieras.

(Carrillo D. , 2009)

Se establece el estudio:

Seleccionar un material óptimo para la Punta de eje trasero de Automóviles Chevrolet SPARK, utilizando métodos multicriterio y simulación de esfuerzos-deformación para optimizar el material

INTRODUCCIÓN

Objetivo:

Seleccionar un material óptimo para la Punta de eje trasero de Automóviles Chevrolet SPARK, utilizando métodos multicriterio y simulación de esfuerzos-deformación para optimizar el material.

- Caracterización: identificar el material base
- Análisis MCDM: buscar un material óptimo de entre varias opciones
- Simulación: cotejar material base vs mejor opción(MCDM)

ESQUEMA DE ESTUDIO

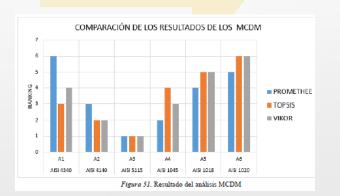
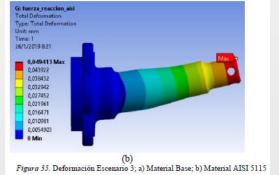

- Determinación de la composición química.
- Ensayo Dureza.
- Determinación Resistencia a la Tracción

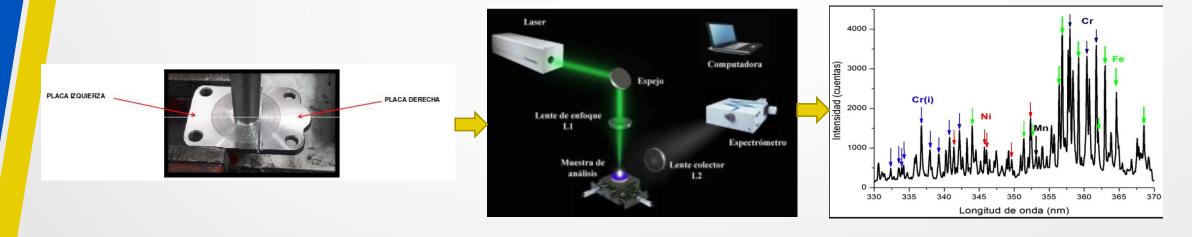
Figura 4. Ensayo de Dureza Brinell

MCDM


- Entropía.
- CRITIC.
- Ordenación Simple.
- Promethee.
- Topsis.
- Vikor.

• Deformación.

Material Base


- Esfuerzos Von-Mises.
- Factor de Seguridad

METODOLOGÍA CARACTERIZACIÓN DEL MATERIAL BASE

• Determinación de la composición química

Norma: ASTM E415

Informe

Estudios relacionados:

 Contreras (2012). Identificación de aceros por espectroscopia de rompimiento inducido por láser (LIBS) y análisis de componentes principales.

CARACTERIZACIÓN DEL MATERIAL BASE

• Ensayo de Dureza

Norma: ASTM E18

CARACTERIZACIÓN DEL MATERIAL BASE

• Ensayo de Dureza

Norma: ASTM E18

$$HB = 0.102 * \frac{2*F}{\pi * D * (D - \sqrt{D^2 - d^2})}$$

Donde:

F: Carga nominal del ensayo de dureza Brinell.

D: Diámetro de la esfera de la maquina de Dureza Brinell.

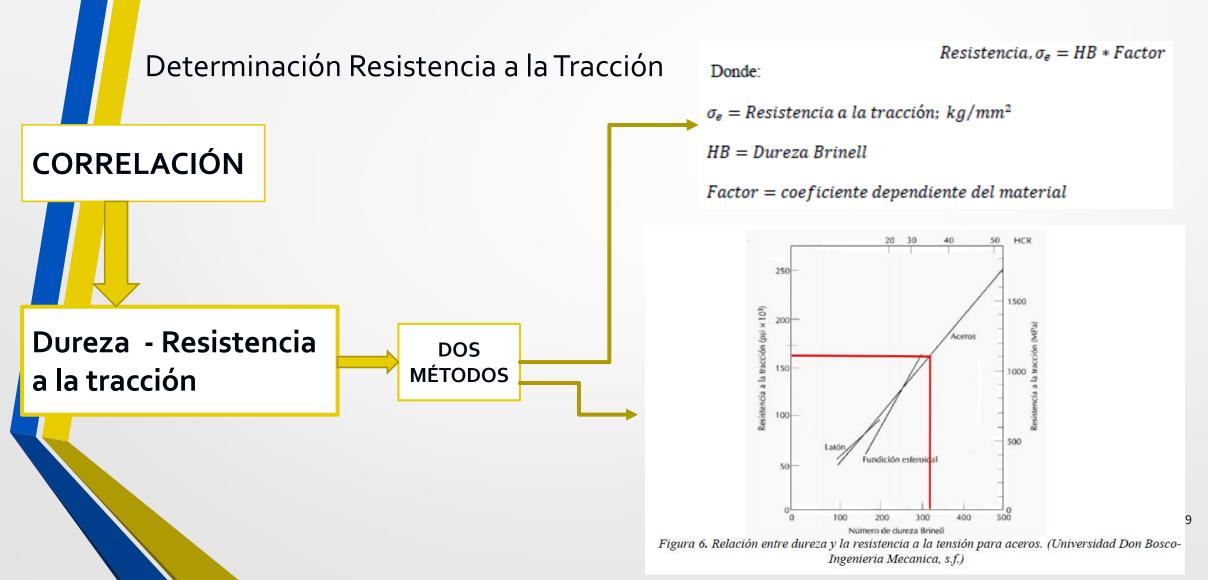

d: Diámetro de la huella dejada por el identador en el ensayo.

Tabla 10.

Dureza Brinell.

Número de muestra	Diámetro de huella (d) mm	Diámetro esfera (D) mm	Carga nominal N
Primera	0,84	2,5	1839
Segunda	0,86	2,5	1839
Tercera	0,84	2,5	1839
Cuarta	0,85	2,5	1839

CARACTERIZACIÓN DEL MATERIAL BASE

$$w_j = s_j * \sum (1 - r_{jk})$$

 $w_j = peso o ponderación del criterio j$

 $s_j = desviación típica del criterio j$

 $r_{jk} = coeficiente$ de correlación entre los criterios j y k

ENTROPÍA

$$E_j = K * \sum_i ((a_{ij}) * \log a_{ij})$$

Donde:

$$k = \frac{1}{\log m}$$
 y

m = es el número de opciones.

Descripción	Orden	Puntuación	Ponderación
Dureza (HB)	3	5	0,1785
Precio	4	4	0,1428
Resistencia a la tracción	2	6	0,2142
Porcentaje de Carbono	1	7	0,25
Resistencia última	5	3	0,1071
Resistencia a la fluencia	6	2	0,0714
Límite a la fatiga	7	1	0,0357
SUMA		28	1

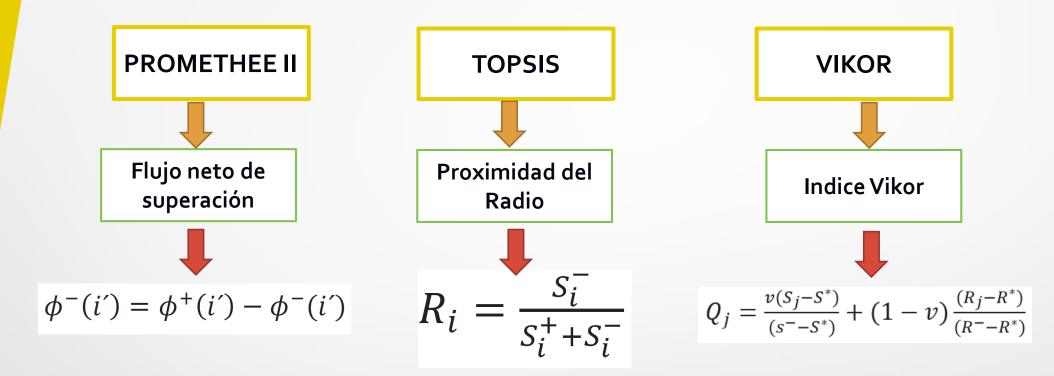
- Rodger Salazar. Javier Martinez-Gómez, (2019)
- Chérrez-Troya (2018)
- Hidalgo (2018)

Análisis MCDM

Análisis de métodos multicriterio

Anojkumar (2014): analiza las mismas variables y en su estudio ocupa TOPSIS, VIKOR PROMETHEE II.

Caliskan (2013): Realiza un estudio de un eje sometido a esfuerzos y el problema de elección de material lo hace por medio de los métodos TOPSIS, VIKOR PROMETHEE II.


PROMETHEE II

TOPSIS

VIKOR

Análisis MCDM

Análisis de métodos multicriterio

Estudios relacionados:

• Chérrez-Troya (2018), un material que posee una elevada dureza Brinell y que se analice mediante el método VIKOR, hace que el material con elevada dureza sea una candidato óptimo para ser escogido como alternativa

Simulación: Material Base vs Mejor opción

Parámetros de Simulación:

Tabla 5.

Tabla 6.

Características del material AISI 5115.

Denominación	Valor	Unidades
Densidad	7830	Kg/m ³
Resistencia a la tracción	1078,73	MPa
Módulo de Young	201	GPa
Coeficiente de Poisson	0,275	

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

Simulación: Material Base vs Mejor opción

METODOLOGÍA

Parámetros de Simulación:

Tabla 7.

Fuerza aplicada

Parám	Parámetros de simulación.					
	Denominación	Obstáculo	Fuerza lateral	Fuerza de reacción		
	Soporte Fijo	Aplica	Aplica	Aplica		
	Soporte sin Fricción	Aplica	Aplica	Aplica		
	Fuerza Remota	9842,4 N	3110 N	No Aplica		

No Aplica

2914 N


No Aplica

Tabla 8. *Ubicación del punto remoto desde el centroide de la Punta de Eje Trasera.*

Eje	Coordenada	Unidad
X	-3,03E-08	mm
У	-190,5	mm
Z	39782	mm

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

Simulación: Material Base vs Mejor opción

Simulación:

Material Base vs Mejor opción

Parámetros de Simulación:

Tabla	9.			
-------	----	--	--	--

Programación del mallado

Denominación	Característica		
Display Style	Use Geomettry		
	Defaults		
Physics Preference	Mechanical		

Advanced				
Number of CPUs for Parallel	8			
Part Meshing				
Straight Sided Elements	No			
Number of Retries	0			
Rigid Body Behavior	Dimensionally Reduced			
Triangle Surface Mesher	Program Controlled			
Topology Checking	No			
Pinch Tolerance	Please Define			
Generate Pinch on Refresh	No			
Statistic	cs			
Nodes	148317			
Elements	102234			

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

Simulación: METODOLOGÍA Material Base vs Mejor opción

material Bas	e vs iviejoi
Element Order	Program Controlled
Element Size	Default
Sizing	ŗ
Use Adaptive Sizing	Yes
Resolution	6
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Slow
Span Angle Center	Medium
Initial Size Seed	Assembly
Bounding Box Diagonal	152,61 mm
Average Surface Area	333,4 mm ²
Minimum Edge Length	1,4142 mm
Quality	y
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	Orthogonal Quality
Min	2,2182e-003
Max	0,99236
Average	0,75345
Standard Deviation	0,14331
Inflatio	n
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0,272
Maximum Layers	5
Growth Rate	1,2
Inflation Algorithm	Pre
View Advanced Options	No

Parámetros de Simulación:

Edición de Windows

Windows 10 Pro

© 2018 Microsoft Corporation. Todos los derechos reservados.

Sistema

Fabricante: Wi-Black Corp
Modelo: Satellite S55-B

Procesador: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 2.40 GHz

Memoria instalada (RAM): 12,0 GB

Tipo de sistema: Sistema operativo de 64 bits, procesador x64

Lápiz y entrada táctil: La entrada táctil o manuscrita no está disponible para esta pantalla

Figura 22. Características el equipo utilizado

RESULTADOS

Caracterización del material base

Determinación de composición química del material:

Ensayo basado en la norma ASTM E415

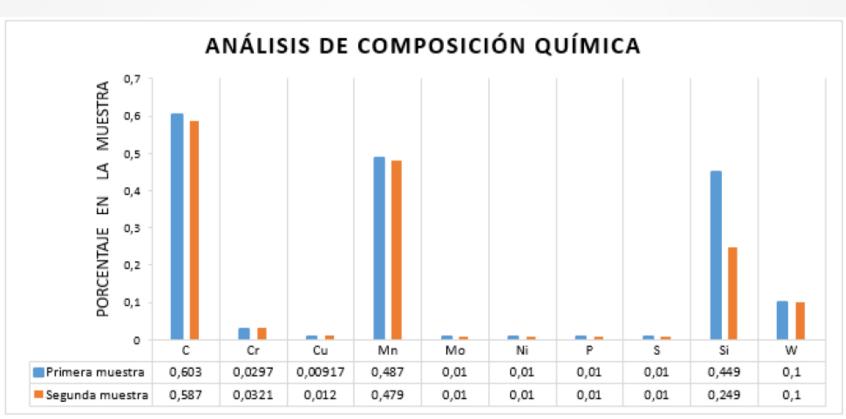


Figura 25. Composición Química material base

- Jaimes (2006), las propiedades de un material pueden modificarse, al variar su composición química.
- Alpizar (2004), un material es acero cuando posee % C entre 0,15 a 1,76%
- Giraldo (2012), indica que el carbono brinda alta tenacidad y alta resistencia al desgaste.
- Cetina (2011) los porcentajes C, incrementan la resistencia mecánica

Caracterización del material base

Ensayo de Dureza:

Ensayo basado en la norma ASTM E18

Figura 26. Resultados del ensayo de Dureza Brinell HB

Estudios relacionados:

• Hassan (2018), para la caracterización del material base se debe realizar pruebas de dureza las cuales se realizaron con el objetivo de descubrir las propiedades de dureza Brinell.

Caracterización del material base

Ensayo de Tracción:

- Gasko (2011) indica que es factible predecir las propiedades mecánicas de los aceros mediante los valores medidos de dureza, también nos indica que es posible predecir la resistencia del acero con una precisión de ± 10%.
- Pavlina (2018), la resistencia a la tracción de un acero con una dureza de 300 HB es 102 kg/mm2.
- Otegui (2011), indica que se puede relacionar la dureza con la resistencia a la tracción ya que el material base es un acero al carbono.



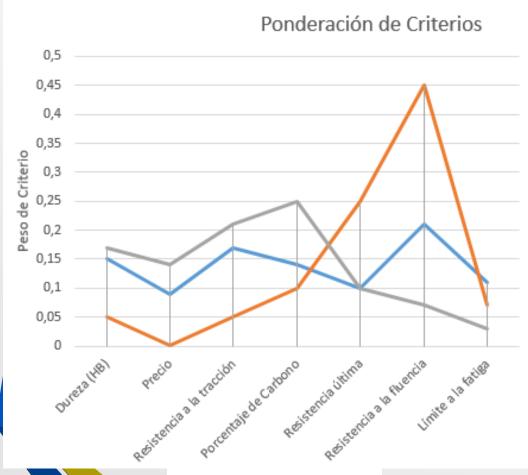
Figura 27. Resistencia a la Tracción

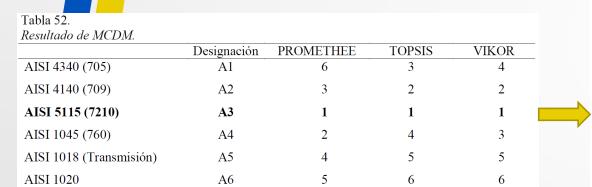
Tabla 56.
Comparación de Resistencia a la tracción con otros autores

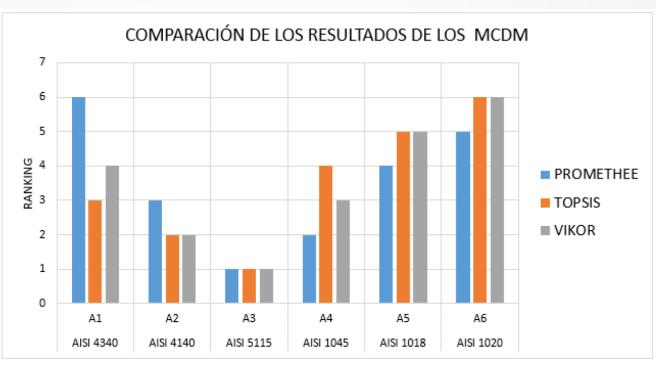
Estudio	Dureza Brinell	Resistencia a la tracción	
	НВ	kg/mm2	
Estudio actual	322,77	115,04	
Otegui (2011)	322,77	102,03	
Pavlina (2018)	322,77	113,55	

ANALISIS MULTICRITERIO MCDM

Ponderación de Pesos:




Tabla 25.


Resultados de la Ponderación de los criterios.

Descripción	Método	Método	Método ordenación
Descripcion	CRITIC	Entropía	simple
Dureza (HB)	0,15	0,05	0,17
Precio	0,09	0,00036	0,14
Resistencia a la tracción	0,17	0,05	0,21
Porcentaje de Carbono	0,14	0,10	0,25
Resistencia última	0,10	0,25	0,10
Resistencia a la fluencia	0,21	0,45	0,07
Límite a la fatiga	0,11	0,07	0,03

ANALISIS MULTICRITERIO MCDM

Comparación del análisis multicriterio:

Figura 31. Resultado del análisis MCDM

- Chérrez-Troya (2018), los MCDM tienen la tarea de clasificar un número finito de alternativas de decisión, cada una se describe explícitamente en términos de diferentes criterios de decisión que deben tenerse en cuenta simultáneamente.
- Gómez (2016), al ocupar el método TOPSIS el índice que influye para que un material sea el ganador es el que posee mayor distancia alternativa negativa.

SIMULACIÓN

Escenario 1

Tabla 53. Resultados de Simulación Escenario 1.

Obstáculo				
Material	Deformación (mm)	Esfuerzo Máximo (Mpa)	F.S.	
Material Base	0,16254	217,5	3,1724	
AISI 5115	0,1669	218,5	3,6384	

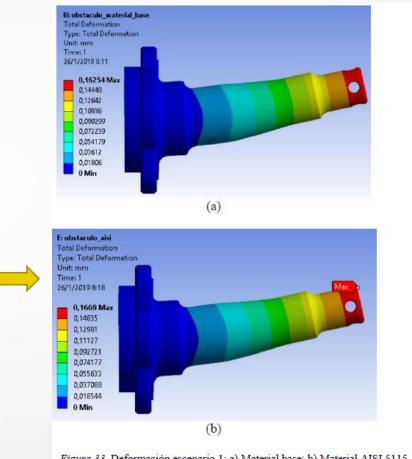
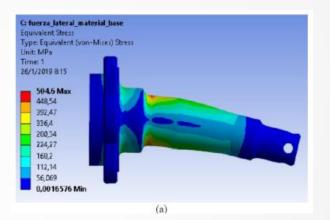


Figura 33. Deformación escenario 1; a) Material base; b) Material AISI 5115

Estudios relacionados:

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

24


SIMULACIÓN

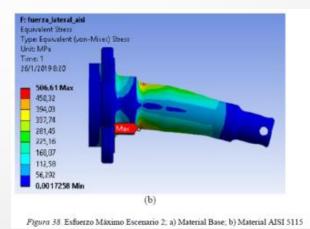

Escenario 2

Tabla 54.

Resultados de Simulación Escenario 2.

Fuerza Lateral				
Material	Deformación (mm)	Esfuerzo Máximo (Mpa)	F.S.	
Material Base	0,39872	504,6	1,3674	
AISI 5115	0,40914	506,61	1,5692	

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

SIMULACIÓN

Escenario 3

Tabla 55.

Resultados de Simulación Escenario 3.

Fuerza Reacción				
Material	Deformación (mm)	Esfuerzo Máximo (Mpa)	F.S.	
Material Base	0,048128	64,401	10,714	
AISI 5115	0,049413	64,691	12,289	

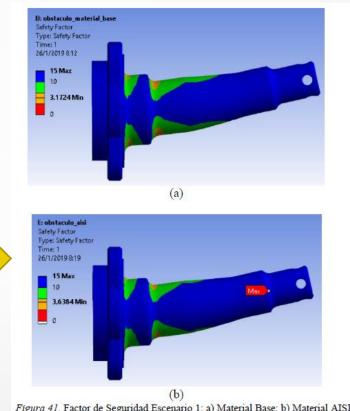


Figura 41. Factor de Seguridad Escenario 1; a) Material Base; b) Material AISI 5115

- Somvanshi & Keche (2015), que tratan sobre la sustitución de la brida de material de acero al carbono con una brida de acero inoxidable.
- Fu (2012), en el cual analiza un eje motriz, en donde hay un desplazamiento máximo en el centro de la caja del eje motriz y el valor de desplazamiento es 0,713 mm

Relación Resistencia a la tracción-Dureza

- Pavlina (2018), la resistencia a la tracción de un acero con una dureza de 300 HB es 102 kg/mm2.
- Gasko (2011) indica que es evidente la posibilidad de predecir las propiedades mecánicas de los aceros mediante los valores medidos de dureza, también nos indica que es posible predecir la resistencia del acero con una precisión de ± 10%.
- Otegui (2011), la resistencia se puede obtener con la siguiente ecuación; Resistencia, σe = 3,10*HB (MPa)

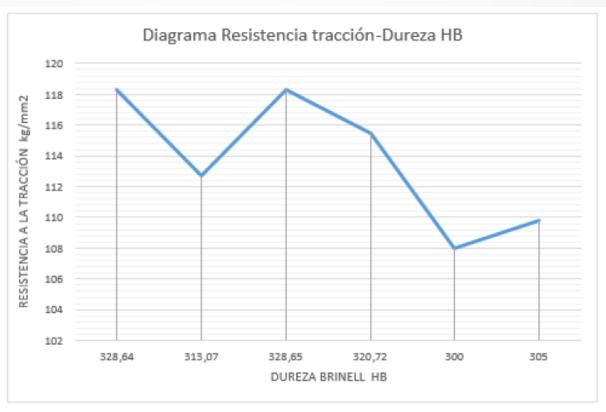


Figura 46. Relación Resistencia a la tracción-Dureza.

Relación Resistencia a la tracción-Dureza

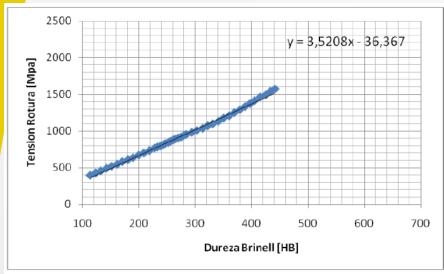


Figura 47. Resistencia a la tracción vs Dureza Brinell. (Otegui, 2011).

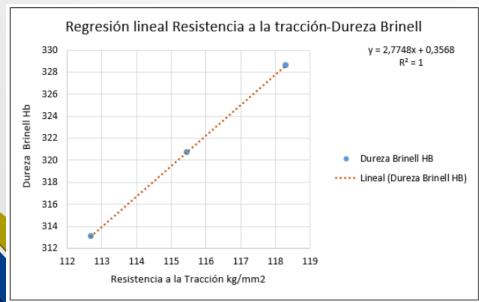


Figura 49. Regresión lineal de Resistencia a la tracción-Dureza HB

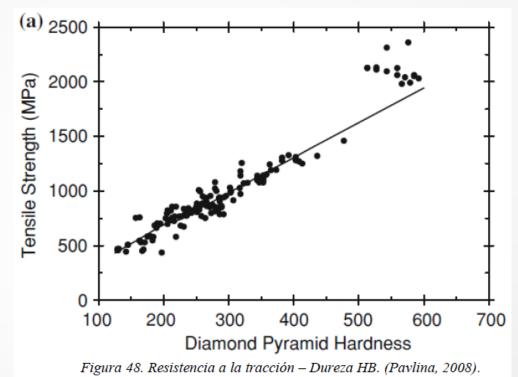


Tabla 56.
Comparación de Resistencia a la tracción con otros autores

Estudio	Dureza Brinell	Resistencia a la tracción	
	НВ	kg/mm2	
Estudio actual	322,77	115,04	
Otegui (2011)	322,77	102,03	
Pavlina (2018)	322,77	113,55	

CONCLUSIONES

 De la caracterización del material base se estableció que se trata de un acero al carbono

 El MCDM, indica un material optimo para que reemplace al material base el AISI 5115 y los MCDM son herramientas importantes y acertadas a la hora de tomar una decisión.

 De los tres escenarios analizados, el escenario 2 es en donde está sometida a un mayor esfuerzo, ya que se tiene con respecto al obstáculo una diferencia de 288,6
 MPa y con respecto a la fuerza de reacción una diferencia de 441,9 MPa.

CONCLUSIONES

• Al igual que el esfuerzo máximo, la deformación en el escenario 2 posee un mayor valor en comparación con el resto de los escenarios y la diferencia con el material base es menor al 3%.

Se puede indicar que el material elegido es el óptimo para ser una alternativa ideal.

RECOMENDACIONES

• Al momento de caracterizar un material, primero se debe realizar un análisis de composición química.

Identificar los criterios necesarios para el MCDM.

• Replicar este análisis en otras autopartes que se estén importando al país.

REFERENCIAS

- El-Faroug, M. O., Fuwu, Y., & Luo, M. (2016). Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline. *ENERGIES*, 2-24.
- Hernandez, M., Menchaca, L., & Mendoza, A. (2014). Fuel economy and emissions of light-duty vehicles fueled with ethanole gasoline blends in a Mexican City. *Renewable Energy*, 72, 236-242.
- AENOR. (2018). AENOR: Norma UNE-EN 10020:2001. Obtenido de http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=No024235&PDF=Si#. Wx9MEUgvzDc
- Aguirre Ibarra, G. M., & Vaca Burgos, L. A. (2017). Estudio de las propiedades fisioquímicas de la gasolina extra aditiva con alcoholes, en la refinería Esmeraldas. Quito, Pichincha, Ecuador: Universidad Central del Ecuador Master Thesis.
- Albarrán Ligero, J. (2017). Aplicación al diseño de engranajes de ejes paralelos con Catia v5, Fundamentos del KBE (Knowledge Based Engineering).
- Alpìzar, E. T. (2004). Apuntes acerca del Tratamiento Térmico y la Clasificación General de los Aceros. Universidad de Matanzas, Facultad de Ingeniería Químicas y Mecánica, Cuba.
- Anojkumar, L., Ilangkumaran, M., & Sasirekha, V. (2014). Comparative analysis of MCDM methods for pipe material selection in sugar industry. Expert Systems with Applications, 41(6), 2964-2980.

