Diseño, análisis y construcción de un múltiple de admisión para un vehículo de competencia de pista Chevrolet Forsa 1.3

Walter Vinicio Palacios Quiroz

Nota del autor
Walter Vinicio Palacios Quiroz, Facultad de Ingeniería Arquitectura e Ingeniería, Universidad Internacional SEK.
Director Ing. Julio Leguisamo, M.Sc.
Cualquier correspondencia concerniente a este trabajo puede dirigirse a:
wpalacios.mdm@uisek.edu.ec
Declaración Juramentada

Yo, Walter Vinicio Palacios Quiroz, con cédula de identidad 040139716-1, declaro bajo juramento que el trabajo aquí desarrollado es de mi autoría, que no ha sido previamente presentado para ningún grado a calificación profesional; y que se ha consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la UNIVERSIDAD INTERNACIONAL SEK, según lo establecido por la Ley de Propiedad Intelectual, por su reglamento y por la normativa institucional vigente.

WALTER VINICIO PALACIOS QUIROZ
C.I.: 040139716-1
Índice de contenidos

Índice de contenidos.. 3

Índice de tablas.. 7

Índice de figuras.. 9

Resumen... 13

Abstract.. 14

Introducción .. 15

Antecedentes... 15

Planteamiento del problema.. 18

Justificación ... 19

Trabajos previos.. 20

Generalidades del funcionamiento del motor de combustión interna.. 20

Torque y potencia en el motor de combustión interna... 20

Múltiple de admisión. ... 21

Ondas de presión para la carga del cilindro. .. 23

Diseño computacional... 25

Pruebas dinamométricas. ... 31

Método ... 33

Tipo de estudio... 33

Modalidad de investigación... 33
Metodología ... 33
Vehículo de pruebas .. 34
Cálculos para el diseño del múltiple .. 35
 Funcionamiento del auto en pista. ... 35
 Generalidades en el diseño del múltiple de admisión .. 36
Diseño asistido por computadora .. 39
 Modelado 3D. ... 39
 Parámetros a emplear como entrada de datos en la simulación CFX ... 39
Simulación 1D ... 41
Simulación CFD ANSYS .. 52
 Mallado. ... 52
 Procesamiento CFX-Pre ... 54
Validación simulación CFD y 1D ... 55
Construcción del múltiple de admisión .. 58
Pruebas dinamométricas .. 64

Resultados ... 68
 Parámetros iniciales ... 68
 Simulación OpenWAN .. 70
 Resultados obtenidos con el múltiple de admisión original .. 70
 Resultados obtenidos con el múltiple de admisión modificado ... 72
 Resultados simulación CFD .. 75
DISEÑO, ANÁLISIS Y CONSTRUCCIÓN DE UN MÚLTIPLE DE ADMISIÓN

Múltiple de admisión original. .. 75
Mallado. .. 76
CFX-Post.. 79
Múltiple original. .. 79
Múltiple de admisión modificado. ... 80
Validación de resultados obtenidos entre 1D y CFD.. 83
Pruebas dinamométricas ... 85
Múltiple original. .. 85
Múltiple diseñado... 87
Construcción del múltiple de admisión.. 89

Análisis y discusión de resultados.. 94
Análisis resultados obtenidos en OpenWAM ... 94
Simulación 3D .. 98
Análisis de la velocidad. ... 98
Análisis de la presión.. 102
Pruebas en el dinamómetro... 105
Comparación entre simulación 1D y resultados dinamómetro ... 108
Comparación de modificación del múltiple de admisión en relación con distintos componentes modificados en el motor y el automóvil. ... 112

Conclusiones .. 117
Recomendaciones .. 120

Referencias Bibliográficas .. 121

Anexos .. 126

Anexo 1. Especificaciones técnicas Chevrolet Forsa 1.3. ... 126
Anexo 2. Licencia estudiantil ANSYS. ... 127
Anexo 3. Propiedades material ASTM A 366. .. 128
Anexo 4. Propiedades material ASTM A 500. .. 129
Anexo 5. Ficha técnica dinamómetro. ... 130
Anexo 6. Pruebas en el dinamómetro múltiple original. .. 131
Anexo 7. Pruebas en el dinamómetro múltiple modificado ... 139
Anexo 8. Diámetro y longitud múltiple de admisión ... 147
Anexo 9. Simulaciones ANSYS ... 148
Anexo 10. Planos de construcción múltiple de admisión ... 155
Índice de tablas

Tabla 1: ... 18
Tabla 2: ... 34
Tabla 3: ... 42
Tabla 4: ... 42
Tabla 5: .. 43
Tabla 6: .. 43
Tabla 7: ... 46
Tabla 8: ... 48
Tabla 9: ... 49
Tabla 10: ... 49
Tabla 11: .. 53
Tabla 12: .. 54
Tabla 13: .. 69
Tabla 14: .. 69
Tabla 15: .. 70
Tabla 16: .. 71
Tabla 17: .. 72
Tabla 18: .. 73
Tabla 19: .. 74
Tabla 20: .. 74
Tabla 21: .. 83
Tabla 22: .. 84
Índice de figuras

Figura 1. Presión internas y externas del múltiple. Fuente: (Tang, y otros, 2016) 26

Figura 2. Comparación del torque del múltiple antiguo (F194) y el nuevo (F260). Fuente:
(Matiash, 2016) ... 27

Figura 3. Entorno programa Open WAM ... 28

Figura 4: Simulación CFD múltiple. Fuente: (Saravana, 2014) ... 30

Figura 5. Método de diseño, análisis y construcción de un múltiple de admisión 34

Figura 6. Adquisición del régimen de giro del auto en pista .. 36

Figura 7. Distribución del porcentaje de en mallado ... 40

Figura 8. Secciones para variación de valores de admisión .. 44

Figura 9. Valores de ingreso para las secciones del múltiple de admisión 45

Figura 10. Secciones en el múltiple de escape ... 47

Figura 11. Valores de ingreso para las secciones del múltiple de escape 47

Figura 12. Valores para la obtención de resultados ... 50

Figura 13. Variables para resultados en el cilindro ... 51

Figura 14. Archivos finales de la simulación 1D .. 51

Figura 15. Dibujo CAD del múltiple de admisión original .. 52

Figura 16. Mallado del múltiple ... 53

Figura 17. Condiciones de frontera para análisis ... 54

Figura 18. Selección flujo máscico en OpenWAM ... 56

Figura 19. Velocidad fluido colector de admisión ... 58

Figura 20. Tubería redonda de uso automotriz. Fuente: (FERROTOLL, 2018) 59

Figura 21. Cuerpo de aceleración independiente .. 59
DISEÑO, ANÁLISIS Y CONSTRUCCIÓN DE UN MÚLTIPLE DE ADMISIÓN

Figura 22 Corte mediante plasma .. 60
Figura 23. Corte de tubos utilizando una tronzadora.............................. 61
Figura 24. Proceso de suelda del colector de admisión.......................... 62
Figura 25. Componentes múltiple de admisión 63
Figura 26. Colector de admisión ya instalado en el motor 63
Figura 27. Pruebas de torque y potencia en el dinamómetro.................. 66
Figura 28. Registro telemetría ... 68
Figura 29. Diagrama torque y potencia múltiple original mediante 1D 71
Figura 30. Diagrama torque y potencia colector diseño 1 72
Figura 31. Variación del flujo másico de aire del múltiple original 73
Figura 32. Flujo másico múltiple diseñado ... 74
Figura 33. Diagrama torque y potencia colector diseño 2 75
Figura 34. Volumen interno múltiple de admisión original 76
Figura 35. Mallado para simulación múltiple original 76
Figura 36. Diseño 1 del múltiple de admisión .. 77
Figura 37. Mallado para simulación múltiple modificado 78
Figura 38. Diseño 2 colector de admisión .. 78
Figura 39. Mallado del diseño 2 ... 79
Figura 40. Velocidad del flujo en el múltiple original.............................. 80
Figura 41. Presión existente en el múltiple de admisión original 80
Figura 42. Velocidad del flujo en el múltiple diseñado 81
Figura 43. Presión existente en el múltiple modificado 81
Figura 44. Simulación flujo diseño 2 ... 82
Figura 45. Velocidad fluido múltiple de admisión ... 84
Figura 46. Curvas promedio de potencia y torque múltiple original obtenido del dinamómetro . 87
Figura 47. Curvas promedio de potencia y torque múltiple diseñado obtenido del dinamómetro 89
Figura 48. Características del material ... 89
Figura 49. Plancha base múltiple de admisión .. 90
Figura 50. Plancha base finalizada ... 91
Figura 51. Unión de tubos y plancha base .. 91
Figura 52. Múltiple de admisión diseñado .. 92
Figura 53. Múltiples de admisión motor G13B ... 92
Figura 54. Motor con múltiple de admisión instalado .. 93
Figura 55. Potencia múltiple original y modificado ... 96
Figura 56. Torque múltiple original y modificado .. 97
Figura 57. Análisis velocidad .. 99
Figura 58. Distribución de la velocidad en el colector de admisión. Fuente: (Wang y Zhang, 2015) ... 100
Figura 59. Velocidad aire de salida múltiple original ... 100
Figura 60. Velocidad aire de salida múltiple modificado .. 101
Figura 61. Análisis presión colector de admisión motor Honda CRB 600 103
Figura 62. Presiones existentes en los colectores .. 103
Figura 64. Diferencia de la potencia entre el múltiple original y diseñado 106
Figura 65. Torque múltiple original y diseñado medidos en el dinamómetro 108
Figura 66. Líneas de potencia múltiple original .. 109
Figura 67. Líneas de potencia múltiple diseñado... 109

Figura 68. Líneas de torque múltiple original... 111

Figura 69. Líneas de torque múltiple diseñado... 111

Figura 70. Diferencias de potencias al variar el múltiple de admisión en relación con el de escape ... 115

Figura 71. Diferencias de torque al variar el múltiple de admisión en relación con el de escape ... 116
Resumen

El deporte automovilístico demanda de modificaciones en los componentes de los vehículos para incrementar su rendimiento, la falta de componentes automotrices de producción nacional genera retrasos y gastos adicionales en la preparación de un auto de competencias. La siguiente investigación realiza el diseño, análisis y construcción de un múltiple de admisión para el vehículo Chevrolet Forsa 1.3. Inicialmente se obtiene el rango de revoluciones del motor mediante telemetría con el auto en pista con un promedio de 6007 rpm lo cual señala un régimen de giro alto en comparación a un vehículo de calle que normalmente es 4000 rpm, posteriormente se diseña un colector de admisión para analizar mediante software OpenWAM y obtener los primeros parámetros referenciales de torque y potencia que son 111.80 Nm a 4500 rpm y 68.39 kW a 6500 rpm para el múltiple original y para el múltiple diseñado 136.444 Nm a 6000 rpm y 75.03 kW a 6500 rpm. Con la utilización de herramientas computacionales CFD se analiza los aspectos estructurales y dinámicos del colector con el fin de definir la mejor opción para la construcción del nuevo múltiple de admisión, se mejoró las condiciones del fluido incrementando la velocidad de 6.09 m/s a 40 m/s. Para la validación de los resultados obtenidos se realiza varias pruebas en un dinamómetro utilizando el múltiple original y el modificado respectivamente. Los resultados de torque y potencia se reflejan en un incremento del 16.06% y 16.58% respectivamente sobre el colector original logrando así mejoras en el rendimiento del motor.

Palabras clave: CFD, OpenWAM, Múltiple de admisión modificado, auto de competencia, Dinamómetro.
Abstract

The sport automotive demand of modifications in the components of the vehicles to increase its yield, the lack of automotive components of national production generates delays and additional expenses in the preparation of a car of competitions. The following research carries out the design, analysis and construction of an intake manifold for the Chevrolet Forsa 1.3 vehicle. Initially the range of revolutions of the engine is obtained by means of telemetry with the car in track with an average of 6007 rpm, later a collector of admission is created to analyze by means of the software OpenWAM and to obtain the first reference parameters of torque and power that are 111.80 Nm and 68.39 kW for the original manifold and for the designed manifold 136.444 Nm and 75.03 kW. With the use of CFD computational tools, the structural and dynamic aspects of the manifold are analyzed in order to define the best option for the construction of the new intake manifold, the fluid conditions were improved, increasing the speed from 6.09 m / s to 40 m / s. To validate the results obtained, several tests are performed on a dynamometer using the original multiple and the modified one, respectively. The results of torque and power are reflected in an increase of 16.06% and 16.58% respectively on the original collector thus achieving improvements in the performance of the engine.

Keywords: CFD, OpenWAM, Modified admission manifold, competition car, Dynamometer.
Introducción

Antecedentes

En el Ecuador se realizan competencias automovilísticas que se encuentran reguladas por una entidad denominada Federación Ecuatoriana de Automovilismo y Kartismo Deportivo (FEDAK) donde la actividad automovilística le han agrupado en diferentes modalidades. El automovilismo de tipo circuitos ha venido incrementándose numerosamente y el vehículo de marca Chevrolet modelo Forsa 1.3cc es el que mayores participaciones tiene dentro de las competencias denominada TC 1600 que abarca a los vehículos cuyos motores se encuentren entre 1251cc y 1650cc. Los registros del Club de Automovilismo y Turismo de Imbabura (CATI) señala que en la competencia denominada Yahuarcocha 600 kilómetros es la competencia más exigente durante todo el año de actividad deportiva, registran la participación de autos en la categoría Turismo Especial (TE) que mantienen la misma reglamentación de la categoría TC 1600 de los cuales el 45% son de marca Chevrolet Forsa 1.3 (CATI, 2016). En la actividad automovilística realizada en el autódromo ubicado en la ciudad de Ibarra por el club federado Torque Motor Performance Group el 25 de marzo del año 2017, registra que, en la categoría 200A que mantiene la misma reglamentación de la categoría TC 1600 de los 9 vehículos participantes el 100% son Chevrolet Forsa (Group, 2017). El gran nivel competitivo que se da en esta categoría invita a seguir investigando sobre mejoras tanto mecánicas como aerodinámicas para tener un mejor rendimiento y puedan sobresalir en cada una de las competencias.

Las mejoras mecánicas en un vehículo de competición vienen a ser primordiales ya que con éstas se pretende ganar un mayor torque y potencia sin perder la fiabilidad de la máquina. Existen elementos internos y externos del motor que se pueden modificar y el múltiple de admisión es uno de ellos donde se puede mejorar el rendimiento del vehículo sin la necesidad de
incurrir a partes internas del motor que involucran un mayor costo de modificación. El colector de admisión puede ser modificado para lograr que el motor tenga mayor cantidad de aire y por tanto una mejora en la combustión lo que se verá reflejado en el mejoramiento del rendimiento del motor (Funes, 2008).

Los vehículos de competición en el país tienen modificaciones tanto mecánicas como aerodinámicas, los múltiples de admisión han sido modificados sin ningún parámetro de estudio de mejora o pérdida de potencia, con la modificación de éste componente el preparador o mecánico logra incrementar el rendimiento del vehículo como nos señala Peñafiel y Zabala en su estudio realizado acerca de la influencia en la potencia del motor del auto Chevrolet Optra mediante la reingeniería del múltiple de admisión donde logran mejorar el rendimiento del auto en un aumento de 4.4 HP (Peñafiel y Zavala, 2017).

El reglamento técnico que regulariza el deporte automovilístico de pista o circuito señala que el sistema de alimentación de aire es libre impidiendo algún componente que modifique la composición química del aire (FEDAK, 2017), por tal razón las modificaciones a los componentes que permiten el ingreso de aire al motor son de libre modificación.

El múltiple de admisión es el encargado de permitir el ingreso de aire a los ductos de la culata del motor y posteriormente el aire o la mezcla de aire combustible llegara a la cámara de combustión. Al ser un auto de producción en serie, el colector de admisión cumple ciertas condiciones de funcionamiento como son el control del rendimiento del motor manejando los puntos de torque y potencia en función de la velocidad de funcionamiento del motor (Saravanan, Gokhale y Karthikeyen, 2014). Existen diferentes tipos de múltiples de admisión para autos de carreras, cada uno de ellos tiene su propio desempeño según para el auto que haya sido diseñado.
La mayoría de los componentes de un motor que se utiliza en un vehículo de competencias son de procedencia extranjera, esto implica un costo elevado al momento de adquirirlos y también un tiempo prolongado de espera hasta que llegue al país como se puede evidenciar en páginas oficiales que venden elementos para vehículos de competencias (ANCLA, 2017). La mayoría de los componentes que se utilizan son importados como nos señala Salinas en su investigación donde menciona a algunos de los proveedores que trabajan con una reconocida empresa nacional que se dedica a la preparación de autos para competencias automovilísticas (Salinas y Sotomayor, 2015).

La posibilidad de fabricar un repuesto automotriz en el país viene a dar grandes beneficios no solo a la persona que adquiere dicho repuesto sino a más personas relacionadas directa e indirectamente mediante la creación de nuevas fuentes de trabajo como nos señala Muñoz en su investigación acerca de las importaciones de repuestos de vehículos, donde indica que “la mayoría de los propietarios de establecimientos pertenecientes al sector automotriz comercializan componentes automotrices importados presentando problemas económicos al sector automotriz por los altos costos de los repuestos” (Muñoz, 2016).

La proyección de ventas de un componente automotriz entrega nueva información acerca de lo que podría suceder con la integración de un nuevo producto al mercado y así tomar decisiones acerca de su elaboración o comercialización futura como nos señala Gálvez (2013). Existen varios métodos para el pronóstico de ventas y éstos varían según el tipo de producto, empresa, servicio, entre otros. Mediante el método de mínimos cuadrados se proyecta la cantidad de ventas durante los próximos 5 años y se puede apreciar en la tabla 1.
Tabla 1:
Proyección ventas repuestos

<table>
<thead>
<tr>
<th>Año</th>
<th>Productos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>39,4</td>
</tr>
<tr>
<td>2017</td>
<td>44,2</td>
</tr>
<tr>
<td>2018</td>
<td>49</td>
</tr>
<tr>
<td>2019</td>
<td>53,8</td>
</tr>
<tr>
<td>2020</td>
<td>58</td>
</tr>
</tbody>
</table>

Nota: Proyección de venta de repuestos para autos de competición de la empresa AutoserviciosPalacios

Planteamiento del problema

En la actualidad el múltiple de admisión de vehículos de competición son adquiridos en el exterior ya que en el Ecuador no existen empresas que fabiquen estos componentes, por tal razón, el costo y el tiempo de espera hasta que llegue el repuesto desde el exterior es elevado. Además, la adquisición de un componente fabricado en el exterior no asegura su correcta funcionalidad en vehículos que se encuentran comercializados en el país ya que las condiciones geográficas de funcionamiento pueden ser distintas en otros países.

Con la presente investigación se aspira establecer el diseño, análisis y fabricación del múltiple de admisión para el auto de competencias Chevrolet Forsa 1.3 logrando el aumento del rendimiento de torque y potencia sin perder la fiabilidad en el funcionamiento del motor. Por tanto, el nuevo diseño debe garantizar el funcionamiento correcto del motor al igual que el diseño original del múltiple de admisión. El nuevo diseño originalmente es aplicado para un solo tipo de vehículo que dentro de las competencias automovilísticas representa un gran porcentaje de participación, posteriormente se puede diseñar el componente para cualquier tipo de vehículo de competencia.
Justificación

En la actualidad las empresas y técnicos del área de potenciación de motores de combustión interna se limitan a adquirir los componentes en el exterior generando afectaciones a la economía nacional, ya que, al existir la fabricación de componentes nacionales para autos de competición los costos de éstos disminuirían considerablemente, además, se genera plazas de empleo para la producción de nuevos componentes.

El incremento de torque y potencia de un vehículo se obtiene de diferentes procedimientos o mejoramiento de componentes de sus sistemas, éste incremento no justifica el consumo de combustible adicional que se genera, sin embargo, en el ámbito automovilístico no es un referente el gasto de gasolina sino el rendimiento del auto en pista.

Las mejoras del rendimiento en un auto pueden ser de distintas maneras como nos menciona Funes (2008) en su libro de preparación de motores, mediante la modificación de la carrocería, la suspensión, motor, componentes internos y externos del motor. Según Acosta (2017); Ali, Kantchev, y Salah (2011); Cabrera (2015); Ceviz y Akin (2010); Díaz, Hurtado, Molina y Valarezo (2014); Hinojosa, Piña, Erazo, y Salazar (2014) han optado por un mejoramiento sobre el colector de admisión logrando un incremento del rendimiento mayor a cualquier otro componente modificable del motor tomando en cuenta recursos económicos, recursos tecnológicos y recursos industriales.

Este trabajo investigativo complementa las investigaciones ya realizadas, donde utilizaron una versión similar de auto como lo indica Arroyo (2017) diseñando un nuevo múltiple de escape para un vehículo forza, de igual forma el estudio realizado por Ibarra (2017) diseña un nuevo colector de escape pudiendo incrementar en los dos casos el rendimiento del motor, a esto se suma la presente investigación para mejorar aun mas el desempeño del vehículo en estudio.
Al determinar el diseño del múltiple de admisión que logre incrementar los parámetros originales de torque y potencia del vehículo Chevrolet Forsa 1.3 se obtiene procedimientos ya establecidos que se pueden utilizar en cualquier tipo de motor de combustión interna pudiendo así contribuir al área automotriz tanto profesionalmente como académicamente, mediante el estudio investigativo valiéndose de herramientas de simulación computacional como es CFD en parámetros 3D y 1D con el software OpenWAM en éste último, posteriormente validar los resultados mediante pruebas experimentales en el dinamómetro y así justificar el incremento de los valores de torque y potencia del motor.

Los pasos iniciales en el desarrollo de la investigación es determinar las condiciones de trabajo del componente a ser diseñado, la temperatura a la que trabaja, la velocidad de ingreso de aire a ciertas condiciones de funcionamiento, estos datos facilitan el óptimo diseño del componente logrando así obtener una confiabilidad en el nuevo desarrollo del colector de admisión.

Trabajos previos

Generalidades del funcionamiento del motor de combustión interna.

El motor de combustión interna es definido por David Gonzáles en su libro titulado Motores térmicos y sus sistemas auxiliares (Gonzalez, 2015) como una máquina térmica capaz de transformar la energía térmica almacenada en un fluido combustible en energía mecánica. Los combustibles de funcionamiento pueden ser varios, para la investigación se toma a la mezcla aire combustible con lo cual funciona el motor del vehículo de competencia.

Torque y potencia en el motor de combustión interna.

Los valores de torque y potencia en un motor son características para la identificación del desempeño o capacidad de desempeño tiene el automotor, en el artículo titulado “Diseño de un
banco de pruebas para caracterizar motores de combustión interna y eléctricos” de Mónico Bogotá y Casas (2016) señala que:

Mecánicamente, los parámetros de par y potencia son los más importantes, porque con ellos se puede saber a qué máximo operacional se puede llevar el motor, en función de las revoluciones por minuto, y del mismo modo determinar la aplicación. Cabe destacar que el par o torque es la fuerza que se genera en el eje del motor. Es un parámetro que definirá el trabajo que se pueda producir con el motor, por lo tanto, a mayor par, mayor capacidad de generación de trabajo en el motor. Del mismo modo, la potencia es el producto del par con el régimen de giro, por lo que, para obtener la máxima potencia del motor, será necesario que tanto el régimen de giro como el par estén en su punto máximo. (p. 195)

Múltiple de admisión.

Existen diferentes investigaciones donde se realiza el análisis del múltiple de admisión y la importancia para el desempeño del motor como Jiménez en su investigación señala que debido a su influencia directa en la eficiencia volumétrica y en las características del flujo de entrada al cilindro repercuten en la potencia, consumo de combustible y emisiones contaminantes (Jiménez y Solorio, 2007).

El mejoramiento de las curvas de torque y potencia vienen a generarse de diferentes modificaciones o mejoras tanto en los componentes como en los combustibles que el motor del vehículo puede tener o utilizar. Carlos Funes autor del libro Motores para Competición, Diseño y Preparación menciona que existen diferentes procedimientos o recursos para incrementar la potencia de un motor de combustión interna de cuatro tiempos, la primera forma de aumentar la potencia es realizar el aumento de la cilindrada lo cual indica lo siguiente: existen dos caminos,
agrandando el diámetro del cilindro o modificando el cigüeñal para darle mayor carrera. Pero no se contempla aumentar el número de cilindros por la complejidad que se genera. Como una segunda opción es el mejoramiento de la eficiencia volumétrica, donde existen algunas alternativas como las que nos presenta Funes (2008):

Contemplar el uso de un sistema de inyección electrónica de combustible para competicion; modificar el múltiple de admisión; trabajar en la tapa de cilindros, conductos, válvulas, casquillos, cámara de combustión; rediseñar el sistema de escape para lograr un mejor barrido de los gases producto de la combustión incluido el múltiple; trabajar en el filtro de aire tratando de que ofrezca la menor resistencia posible al paso de aire y por último recomienda utilizar una toma de aire dinámica (pp. 9, 10).

Existen investigaciones donde han optado por el mejoramiento de la eficiencia volumétrica como una solución para el mejoramiento de la potencia del motor sin incurrir a modificaciones costosas o mas complejas y se enfocan en el diseño de un multiple de admision que mejore las prestaciones del motor como nos dice Jagadishsingh (2016):

El torque y potencia de un motor tiene un efecto sobre el desempeño del motor. Éstos, a su vez, se ven muy afectados por el grado en el que se llena el cilindro y la forma geométrica del conducto de admisión. Un alto torque requiere un colector de admisión con geometría diferente a uno que solo genera un buen torque el momento de arranque de un vehiculo. La longitud media del colector de admisión y su diámetro medio generan un resultado de torque y potencia eficiente a velocidades bajas del motor pero comprometiendo el trabajo a altas revoluciones. El colector de admisión variable es una alternativa ideal para resolver este problema (p. 47).
La mejora del colector de admisión o multiple admisión han venido desarrollando diferentes investigadores teniendo como objetivo diseñar un colector de admisión que pueda relizar un buen trabajo manteniendo un elevado torque y potencia a diferentes velocidades del motor. El investigador Jagadishsingh B. W. (2016) en sus estudios menciona que:

Los colectores de admisión convencionales tienen geometría fija y por lo tanto no responden a la demanda de una amplia gama de velocidades del motor. A menor velocidad del motor, la longitud de admisión debe ser larga para la respiración adecuada del motor, mientras que a velocidades más altas la longitud de admisión debe ser corta. Se puede observar una ganancia considerable en el torque y la economía de combustible con un colector de longitud de admisión variable (p. 101).

De igual forma Ceviz en su investigación acerca de un nuevo diseño de un multiple de admisión para motores de combustion interna concluye que un colector de admisión variable es útil en vías urbanas y suburbanas como carreteras donde se realizan paradas frecuentes y existen condiciones de arranque desde una velocidad de cero (Ceviz y Akin, 2010), esto señala que para un auto de competencias automovilísticas no es muy eficiente ya que éstos motores funcionan a velocidades del motor muy altas.

Ondas de presión para la carga del cilindro.

En el funcionamiento del motor, el aire que se encuentra en el ambiente es direccionado a través del colector de admisión llega a la camara de combustión pasando por un ducto del multiple y terminando en la cabeza de la valvula de admisión. Según (Jiménez y Solorio, 2007) el cargado del cilindro con la utilización de las ondas de presión se realiza de la siguiente manera:
Cada vez que la válvula de admisión se abre, la reducción de presión en el cilindro produce una onda negativa de presión que viaja a través de la columna de aire (a la velocidad del sonido) desde la zona posterior de la válvula de admisión hacia el final de la parte abierta a la atmósfera del tubo de admisión. Inmediatamente, cuando este pulso de onda de presión alcanza la atmósfera, ocurre una expansión; es decir, el aire en la entrada del tubo de admisión repentinamente se vuelve menos denso y por lo tanto se crea una depresión. Instantáneamente, el aire circundante trata de llenar esta depresión. Como resultado, se produce una onda reflectada de presión positiva debido a la inercia del aire, y esto causa que el pulso de presión viaje de regreso hacia el puerto de la válvula de admisión. Es esta primera onda de presión reflejada que, si está correctamente sincronizada, es la responsable de impulsar el aire dentro del cilindro hacia el final del ciclo de admisión. Cuando la onda de presión nuevamente alcanza la parte posterior de la válvula de admisión revierte su dirección y es reflejada hacia afuera. Así, estas ondas negativas y positivas de presión son reflejadas continuamente entre la admisión abierta y el puerto de admisión, pero decayendo en amplitud hasta que la válvula de admisión se cierra (pp. 5,6).

Para la utilización correcta de los pulsos de onda de presión deben ser sincronizadas cumpliendo el objetivo de que la primera onda de presión positiva llegue al punto muerto inferior hacia el final del ciclo de admisión. Por tal razón es importante conocer el tiempo que tarda la onda en viajar a través de la columna de aire desde el ingreso de admisión hasta la válvula de admisión abierta, y ser reflejada para luego volver otra vez a la válvula de admisión.
Diseño computacional.

Dibujo CAD.

El diseño computacional parte desde la creación del diseño original generando un modelo CAD en el programa SolidWorks y posteriormente simulaciones computacionales que indican estudios estáticos para lo cual emplean diversos softwar entre ellos ANSYS con su módulo CFX. Las herramientas computacionales disminuyen los costos de la creación de un nuevo producto ya que se reduce el número de pruebas y ensayos de materiales o fluidos, la posibilidad de utilizar los sofware con licencias estudiantil permiten que la investigación puede desarrollarse de mejor manera ya que, las licencias son muy elevadas al momento de adquirir y no representan el costo de la investigación que se realiza.

Análisis de la estructura mediante el Método del Elemento Finito.

El análisis por el Método del Elemento Finito (MEF) se emplea para identificar condiciones a las cuales la estructura del múltiple de admisión diseñado va a estar expuesto como son temperaturas y tensiones entre otras, de tal forma de que el nuevo diseño cumpla con las condiciones de trabajo. El parámetro de simulación se encuentra a partir del material a utilizar, en el diseño del nuevo colector se utiliza material acero estructural ASTM A 500. En un estudio realizado por Tang (2016) sobre el diseño de un múltiple de admisión de un motor de cuatro cilindros turbo alimentado señala que mediante el análisis de elementos finitos encuentra la distribución de tensiones.

Las condiciones de simulación son la tensión máxima del material 215 MPa para el aluminio y acero galvanizado con una tensión de 500 MPa.
En la figura 1a se observa la tensión máxima de 110 MPa siendo inferior a la máxima presión que soporta el material que es 180MPa. En la figura 1b se observa la tensión de 93 MPa y de igual forma es menor que 180MPa lo cual Tang, (2016) señala que el diseño de la carcasa satisface los requisitos de resistencia estructural.

Simulación 1D.

La utilización de software de simulación en un estudio investigativo genera soluciones rápidas para la adquisición de resultados altamente cercanos a la realidad a la que se genera el parámetro de investigación, pero cabe recalcar que las simulaciones necesitan de un gasto computacional bastante alto. La simulación 1D genera un ahorro computacional bastante grande con el cual se reduce el tiempo de simulación y la entrega de resultados sigue siendo altamente eficiente.
Algunas investigaciones han realizado simulaciones 1D como lo señala Matiash (2016) en el desarrollo de un múltiple de admisión para un auto de competición, mediante la utilización del modelo GT-Power que realiza un estudio tomando en cuenta la geometría del cilindro, los perfiles del árbol de levas y los coeficientes de flujo de la culata se encuentran los parámetros de torque y potencia para posteriormente corroborarlos con una medición en un dinamómetro. En el diseño, los valores de variación fueron: una longitud del tubo de ingreso de aire de 140mm de largo y 50mm de diámetro de entrada generando el mayor torque que posteriormente es corroborado con una prueba dinamométrica como se observa en la figura 2.

Figura 2. Comparación del torque del múltiple antiguo (F194) y el nuevo (F260). Fuente: (Matiash, 2016)

La geometría en el múltiple de admisión y escape son indispensables para el buen desempeño del motor; la longitud y el diámetro de los ductos pueden incrementar las curvas de torque y potencia como nos señala Arroyo (2017) en su investigación donde emplea un nuevo diseño para el múltiple de escape logrando un incremento en el torque del motor, la metodología empleada es generado mediante un estudio en 1D con el software OpenWAM donde se realiza el análisis del
múltiple generando diferentes medidas en la geometría hasta obtener el diseño optimo y posteriormente verificar el resultado obtenido con una prueba dinamométrica del vehículo. La figura 3 indica el entorno del programa OpenWAM.

![Imagen de OpenWam](image)

Figura 3. Entorno programa OpenWAM

Simulación CFD.

En la actualidad se utiliza la ayuda de softwares especializados en el diseño de componentes automotrices con el fin de reducir costos y tiempo en la realización de pruebas con el fin de garantizar el buen desempeño o el correcto funcionamiento que tiene el producto diseñado. ANSYS CFX es una herramienta de alto rendimiento que garantiza soluciones muy fiables en tiempos rápidos de simulación en el area CFD (ANSYS, 2017). Los investigadores utilizan la herramienta computacional para realizar experimentaciones de nuevos diseños con el fin de economizar el procedimiento del análisis pero siempre validando los resultados, Bari y Saad (2013) en su investigación acerca de efectos de turbulencia y mejoramiento de flujo dentro del
cilindro del motor, utilizan ANSYS CFX para caracterizar el desempeño de funcionalidad del aire y una mezcla de aire combustible y obtener resultados de temperatura y presión en el modelo utilizado en la simulación. El análisis CFD ayuda a determinar las características de flujo dentro del múltiple de admisión para investigar la uniformidad del flujo, la variación de presión y velocidad como nos señala Tang et al. (2016).

ANSYS CFX es un software de simulación el cual puede analizar las características de presión, velocidad, temperatura del fluido de manera clara y eficiente del funcionamiento del múltiple de admisión. Se trabaja con la versión académica que es adecuada para este tipo de investigaciones.

Los parámetros que se utiliza para la simulación se basan en la investigación realizada por Saravana (2014) que consiste en el diseño y desarrollo de un sistema de colector de admisión doble basado en flujo donde analiza las características de funcionamiento del flujo dentro del múltiple en dos casos específicos como es en ciudad y en carretera, de lo cual nos presenta las condiciones de simulación que se utiliza en el estudio CFD.

Condiciones iniciales y de frontera:

- Presión de 25 inH₂O que se aplican en el ingreso del flujo
- Flujo de entrada de 6250 pascales
- Flujo de salida 0 pascales
- No existe valor de deslizamiento
En la figura 4 se observa las caracterizaciones de la simulación CFD. La figura 4a es el diseño del múltiple de admisión original. La figura 4b es el diseño del múltiple de admisión diseñado y se observa el flujo en condiciones de bajas revoluciones o condiciones de funcionamiento en ciudad. La figura 4c es el diseño del múltiple de admisión diseñado y se observa el flujo de altas revoluciones o condiciones de funcionamiento en carretera.

Resultados

Tabla 2. Comparación de los diseños de los múltiples de admisión.

<table>
<thead>
<tr>
<th>Condición ingreso de aire</th>
<th>Porcentaje de flujo, %</th>
<th>Tasa de flujo, CFM (Pie Cúbico por Minuto)</th>
<th>Total tasa de flujo, CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1b</td>
<td>Figura 1c</td>
<td>Figura 1b</td>
<td>Figura 1c</td>
</tr>
<tr>
<td>Condición ciudad – bajas rpm</td>
<td>75.67</td>
<td>28.47</td>
<td>13.23</td>
</tr>
<tr>
<td>Condición carretera – altas rpm</td>
<td>3.61</td>
<td>100.30</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Fuente: (Saravana, 2014)
En la tabla 2 se observa los resultados obtenidos en el estudio CFD donde señala que en ciudad el 75% del flujo se produce a través del colector más largo y en carretera el 100% del flujo pasa a través del colector más corto. Con lo cual se afirma que un colector de admisión con recorrido corto del flujo es muy eficiente para condiciones de altas rpm.

Pruebas dinamométricas.

La obtención de curvas características de torque y potencia de un automotor como parámetros importantes de identificación de un motor se las puede conseguir mediante la realización de una prueba en un dinamómetro. Existen algunos tipos de dinamómetros que permiten realizar el análisis de un motor, el dinamómetro de motor se caracteriza por su diseño de acoplamiento al volante del motor donde éste transmite movimiento a la masa inercial o la unidad de absorción de potencia y logrando como resultado de los valores necesarios para la obtención del par y potencia, el otro tipo de dinamómetro es el de chasis donde el automóvil va sobre una estructura donde sus neumáticos se encuentran en contacto con unos sorillos para que se genere una tracción.

La verificación del torque y potencia del motor en el país se realiza bajo normas INEN como nos señala el Ministerio de Industrias y Productividad a través de la Subsecretaría de la Calidad, donde señala que para la medición del rendimiento del tren motriz se realiza solo y bajo la norma INEN 960 (INEN, 2012).

El análisis del par motor y potencia es obtenido en el banco dinamométrico el cual realiza un ensayo dinámico para la obtención de los valores requeridos por el estudio, en la investigación realizada por Castillo, Rojas y Martínez (2017) donde estudian la obtención de torque y potencia mediante un modelo matemático para posteriormente realizar una comparación de resultados con los obtenidos en la prueba dinamométrica indican que: la diferencia entre los dos resultados es
del 4.5% en régimen bajos de funcionamiento del motor y del 0.005% de diferencia en los valores obtenidos en régimen altos del motor, por tal razón los resultados que se obtienen en el banco dinamométrico alcanza un intervalo de confianza del 92% que es bastante aceptable para el presente estudio.
Método

Tipo de estudio

El siguiente estudio utiliza una investigación de tipo exploratoria mediante métodos empíricos en los inicios ya que se empieza analizando la estructura del múltiple original con lo cual se encuentra los primeros parámetros comparativos que posteriormente ayudan a diferenciar con los resultados del nuevo diseño. Seguidamente se utiliza una investigación experimental, para lo cual se empieza a manejar las variables que en el caso del múltiple o colector de aire es longitud, diámetro de ingreso de aire, geometría en el diseño de los tubos, todo esto con el fin de mejorar el rendimiento del auto que es representado en los datos obtenidos de la prueba dinamométrica.

Modalidad de investigación

La investigación que se realiza es tipo empírica ya que se parte de un análisis óptico del diseño original, de los procedimientos de construcción que se utilizan dentro del país y además se experimenta cambios de la geometría que se realiza empíricamente. Mediante el análisis computacional se simplifica las condiciones de trabajo y generan un fácil análisis de las condiciones de trabajo tanto en estado estático como transitorio.

Metodología

La siguiente investigación se fundamenta en el análisis del comportamiento del torque y potencia de un vehículo de competencia mediante el diseño de un múltiple de admisión que genere mejor rendimiento en el automotor, el primer análisis es la verificación de las características de funcionamiento del múltiple original con la utilización de software ANSYS con su módulo CFD y realizar la validación experimental en el dinamómetro.

El método a utilizar es el siguiente:
La figura 5 indica la metodología empleada que inicia desde el diseño del múltiple en software, posteriormente se realiza el estudio estructural y el estudio en el software Open WAM, seguidamente se ejecuta un estudio CFD y finalmente se validan en un dinamómetro los datos obtenidos.

Vehículo de pruebas

El vehículo utilizado para la investigación es un automotor utilizado en las competencias automovilísticas que se realizan en el país, en su mayoría se realizan en la pista ubicada en la provincia de Imbabura. El bajo costo de adquisición del automóvil hace que sea uno de los más utilizados para competencias tanto de pista como rally. La especificación se encuentra en la tabla 2:

Tabla 2.

Especificaciones técnicas vehículo Chevrolet Forsa

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>G13B</td>
</tr>
<tr>
<td>Cilindrada</td>
<td>4 cilindros en línea</td>
</tr>
<tr>
<td>Carrera</td>
<td>1396cc</td>
</tr>
<tr>
<td>Diámetro Cilindro</td>
<td>77mm</td>
</tr>
<tr>
<td>Relación de compresión</td>
<td>10.8:1</td>
</tr>
<tr>
<td>Sistema de alimentación y encendido</td>
<td>Inyección electrónica multipunto</td>
</tr>
</tbody>
</table>
Distribución
4 válvulas por cilindro
2 árboles de leva en culata
Potencia y par máximo
74.3 kW (100CV) a 6500 rpm
112Nm a 5000 rpm
Transmission
Manual de 5 velocidades
Embrague mono disco en seco
Independiente a las 4 ruedas
Suspensión
Tipo McPherson delante
Barras estabilizadoras delante y detrás
Cremallera
Dirección
Diámetro de giro 9.2
Frenos
Discos ventilados delante
Discos macizos atrás
Llantas y neumáticos
14” x 5”
165/60R14
Velocidad máxima
185km/h
Tiempo de 0 a 100km/h
10 segundos
Fuente: (Tolerance Date, 2009)

Cálculos para el diseño del múltiple

Funcionamiento del auto en pista.

Tomando en cuenta que el vehículo es de competencia tipo pista se realiza una adquisición de datos del funcionamiento del auto en el autódromo José Tobar Tobar ubicado en la provincia de Imbabura y en el cual se realizan 6 de las 8 competencias anuales que se desarrollan en el país como nos afirma la FEDAK (2017). El dato adquirir más importante son las revoluciones a la que el motor se desempeña ya que posteriormente se utiliza para el cálculo del múltiple de admisión.

La adquisición de un promedio de revoluciones se realiza mediante un Data Log de la computadora instalada en el vehículo con la cual no altera el funcionamiento correcto del motor. En la figura 6 se observa la adquisición de datos en tiempo real.
Figura 6. Adquisición del régimen de giro del auto en pista

En la figura 6 se observa la adquisición y registro del régimen de giro del motor en pista, encontrando un rango de revoluciones comprendidas entre 1157 rpm y 7703 rpm. El tiempo de registro de los datos obtenidos indica que el motor se encuentra funcionando la mayoría del tiempo en un rango alto de revoluciones, lo cual indica que un diseño creado para trabajo en bajas revoluciones no tendría muy buen desempeño.

Generalidades en el diseño del múltiple de admisión.

Renovación de la carga.

En el libro titulado Flujo compresible en múltiples de motores Cuadrado, Agudelo, y Sánchez (2008) menciona que, la renovación de la carga es el proceso en el cual el motor expulsa los gases quemados y admite la mezcla fresca en el ciclo y donde se puede mejorar las condiciones de los gases dentro de los múltiples y se puede aumentar la masa de aire admitida produciendo un mejor rendimiento volumétrico y una mejor potencia.
En las ecuaciones 1 y 2 se tiene la relación directa de la masa de aire admitida \(m_a \) y el rendimiento volumétrico \(n_v \) con la potencia de salida para un motor de cuatro tiempos:

\[
P = n_f \cdot m_a \cdot F \cdot PCI \tag{1}
\]

\[
P = n_f \cdot n_v \cdot P_{ref} \cdot V_d \cdot n \cdot i \cdot F \cdot PCI \tag{2}
\]

En las ecuaciones 1 y 2 se tiene la relación de los siguientes parámetros: \(n_f \) es la eficiencia de transformación del combustible en energía útil, \(m_a \) masa de aire admitida, \(F \) el dosado o relación combustible/aire, \(PCI \) el poder calorífico inferior del combustible, \(n_v \) rendimiento volumétrico, \(P_{ref} \) es la densidad de referencia a la entrada del cilindro, \(V_d \) la cilindrada, \(n \) es el régimen de giro, \(i \) número de ciclos de potencia del motor y \(P \) es la potencia efectiva.

Entre los factores involucrados en las fórmulas 1 y 2 la masa de aire es el parámetro más flexible que puede ser modificado para tener un aumento de torque y potencia.

Dimensiones del múltiple.

\[
V_p \cdot S_p = V_g \cdot S_c \tag{3}
\]

En la ecuación 3, \(V_p \) es la velocidad del pistón y \(S_p \) es la superficie del pistón, el producto de estos dos valores da como resultado el caudal que teóricamente se necesita para llenar el cilindro a un régimen establecido. \(V_g \) es la velocidad del gas por la admisión y \(S_c \) es la sección del conducto, el producto de estos dos valores da a conocer el caudal que tiene que circular por la admisión para lograr el llenado en ciertas condiciones preestablecidas.
A continuación, se detallan las fórmulas para encontrar las expresiones anteriormente mencionadas:

\[V_p = \frac{C \times RPM}{30} \quad (4) \]

En la ecuación 4, \(V_p \) es la velocidad del pistón y es igual al resultado obtenido del producto entre la carrera del pistón (\(C \)) por el régimen de giro (\(RPM \)) y dividido para 30.

\[S_p = \frac{\pi \times D_c}{2} \quad (5) \]

En la ecuación 5, \(S_p \) es la superficie del pistón y se obtiene de la multiplicación de \(\pi \) por el diámetro del cilindro (\(D_c \)) dividido para 2.

\[S_c = \frac{V_p \times S_p}{V_g} \quad (6) \]

En la ecuación 6, \(S_c \) es la sección del conducto y es el resultado de la multiplicación de la velocidad del pistón (\(V_p \)) y la superficie del pistón (\(S_p \)) dividido para la velocidad del gas de la admisión (\(V_g \)).

\[D = \sqrt[2]{\frac{4 \times S_c}{\pi}} \quad (7) \]

En la ecuación 7, \(D \) es el diámetro del conducto y es el resultado de la raíz cuadrada del producto de la sección del conducto (\(S_c \)) por 4 dividido para \(\pi \).

\[L_c = \frac{Po}{RPM} \quad (8) \]

En la ecuación 8, la longitud del conducto (\(L_c \)) es igual al pulso de onda \(Po \) dividido para el régimen de giro del motor (\(RPM \)).
Diseño asistido por computadora

Modelado 3D.

A fin de reducir costos y entender mejor el comportamiento de los fluidos se emplean simulaciones basadas en Dinámica de Fluidos Computacional (CFD) siendo un software que permite predecir con confianza, el comportamiento de los flujos de fluidos en la elaboración de un producto, todo el diseño y la fabricación, así como durante su uso final. El análisis de fluidos se puede utilizar para diseñar y optimizar un nuevo producto sin la necesidad de llevarlo a la construcción para analizar su rendimiento. A más de permitir buenas condiciones de circulación de los flujos, se somete al diseño a un análisis para verificar las condiciones mecánicas de funcionamiento con respecto a la depresión sometida por el motor.

El modelado en 3D se realiza en el software Solid Works, permite realizar análisis de fluidos incompresible – compresible y transferencia de calor en geometrías complejas, permite importar la geometría y mallas, especificar los materiales, condiciones de contorno y los parámetros de la solución, resolver los cálculos, ver los resultados y crear informes con las herramientas integradas.

Para el modelado 3D se basa en los datos obtenidos anteriormente mediante la telemetría del auto en pista y las dimensiones para la geometría del colector de admisión. Lo cual se define dos tipos de múltiples para el análisis.

Parámetros a emplear como entrada de datos en la simulación CFX.

Configuraciones básicas análisis estático.

Tipo de Análisis “Analysis Type”: Se parte de un análisis estático “Steady State”, con el fin de obtener condiciones iniciales que el resultado de las mismas serán las nuevas condiciones de
DISEÑO, ANÁLISIS Y CONSTRUCCIÓN DE UN MÚLTIPLE DE ADMISIÓN

Entrada del análisis transitorio. El mallado debe cumplir con un porcentaje no mínimo al 70\%, para poder verificar que las ecuaciones diferenciales convergen, teniendo en cuenta los nodos y la cantidad de elementos que se generan al tener un refinamiento del mallado.

![Figura 7. Distribución del porcentaje de en mallado](image)

En las configuraciones básicas los datos a manejar para la simulación es el valor de la presión referencial que se establece a 0 Pa, teniendo que las variaciones de presiones dinámicas en el fluído son mínimas, la temperatura del fluido se considera a un valor promedio de 25°C de temperatura ambiente.

La opción a elegir para el tipo de turbulencia del fluido es “Shear Stress Transport” empleado para simulaciones de flujo de aire con capa límite donde la presencia de un sólido perturba el movimiento del aire. Los componentes de velocidad de contorno se especifican, con una resultante distinta de cero en el dominio, para el caso se emplea valores de cero en las direcciones que no hay una circulación de aire para la coordenada en que se encuentra ubicada la entrada de aire se especifica la velocidad con la que ingresa el fluido.

Se establece las condiciones iniciales para el análisis estático, para lo cual se considera la velocidad de ingreso del fluido en un promedio medida con el uso de un anemómetro e indicando la dirección en la que el orificio de entrada se encuentra con respecto a los ejes.
coordenados y el valor de la presión relativa medida antes de la mariposa de aceleración con el empleo de un sensor MAP. El diseño estructural del múltiple de admisión viene a relacionarse con la presión interna generada, que en el motor pudo ser medida mediante el sensor MAP que, para la investigación viene a ser un valor de 21kPa a 4500 rpm. Con estos parámetros puede analizar la capacidad estructural que puede soportar el colector.

Se especifica los contornos por donde se da la entrada y salidas del fluido mediante el empleo de vectores que indican la dirección del flujo. El número de iteraciones para el análisis es establecido en un valor de 200, un número suficiente para verificar que las ecuaciones diferenciales convergen. Las condiciones de dominio que se establecen para la entrada y las salidas son en base a la presión medida. Para el caso de la entrada del flujo de aire se realiza el análisis desde una presión total considerando la presión estática y la presión dinámica. Para las salidas del fluido se establece un valor promedio de presiones para cada cilindro en función de lo medido en el análisis estático se evaluará como convergen las ecuaciones diferenciales a través de una media cuadrática, siendo una medida que se obtiene de todos los residuos del dominio, una solución razonable requiere un nivel máximo de residuos no superior a 5×10^{-4}.

Los resultados se evalúan en cuanto a la cantidad de flujo másico que entregue el diseño, el comportamiento del fluido en el interior del recinto y las variaciones de presión que se dan en el proceso de admisión de aire del motor en un ciclo de trabajo. Las cantidades de gasto másico tanto en la entrada como en la salida se visualizan en una tabla donde se especifica la localización de la salida de aire.

Simulación 1D

Para el desarrollo de la simulación 1D se realizó mediante el software de licencia libre OpenWAM, en el cual utiliza algunos elementos definidos por el programa mismo para realizar
la simulación. Los datos utilizados son obtenidos directamente del motor como son: número de cilindros, tipo de motor, número de válvulas y las medidas de la mayoría de los componentes que se encuentran desde el ingreso del aire hasta la salida de los gases de la combustión.

En la tabla 3 se observa los elementos utilizados para la configuración inicial de la simulación 1D.

Tabla 3.
Elementos para generar el diagrama para la simulación.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Identificación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodos</td>
<td>![Imagen]</td>
<td>Uniones entre conductos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ductos con salida a la atmósfera</td>
</tr>
<tr>
<td>Conexiones</td>
<td>![Imagen]</td>
<td>Válvulas de admisión y escape.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ductos para uniones</td>
</tr>
<tr>
<td>OD Elementos</td>
<td>![Imagen]</td>
<td>Cámara de vacío.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plenum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pistón de motor cuatro tiempos</td>
</tr>
<tr>
<td>Otros</td>
<td>![Imagen]</td>
<td>Parámetros para condiciones iniciales</td>
</tr>
</tbody>
</table>

Los primeros datos en introducir son las condiciones de trabajo y geometrías de los componentes como se indica en la tabla 4.

Tabla 4.
Parámetros de funcionamiento y geometría

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de motor</td>
<td>MEP</td>
</tr>
<tr>
<td>Condición de operación</td>
<td>Estacionario</td>
</tr>
<tr>
<td>Numero de ciclos</td>
<td>10</td>
</tr>
<tr>
<td>Velocidad del motor (rpm)</td>
<td>2500 a 8000</td>
</tr>
<tr>
<td>Parámetro</td>
<td>Valor</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Poder calorífico del combustible (kJ/kg)</td>
<td>43950</td>
</tr>
<tr>
<td>Densidad de combustible (kg/m³)</td>
<td>854</td>
</tr>
<tr>
<td>Longitud de biela (mm)</td>
<td>120</td>
</tr>
<tr>
<td>Carrera de pistón (mm)</td>
<td>75.5</td>
</tr>
<tr>
<td>Diámetro de cilindro (mm)</td>
<td>77</td>
</tr>
<tr>
<td>Relación de compresión</td>
<td>9</td>
</tr>
<tr>
<td>Distancia entre válvulas (mm)</td>
<td>37</td>
</tr>
<tr>
<td>Orden de encendido</td>
<td>1-3-4-2</td>
</tr>
</tbody>
</table>

En el bloque “EJEC” se generan parámetros de cálculo con los cuales se rigen los modelos matemáticos como se indica en la tabla 5.

Tabla 5

Parámetros generados para el bloque “EJEC”

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método de cálculo</td>
<td>Independiente</td>
</tr>
<tr>
<td>Número de ciclos de convergencia</td>
<td>10</td>
</tr>
<tr>
<td>Presión ambiente (bar)</td>
<td>1</td>
</tr>
<tr>
<td>Temperatura ambiente (°C)</td>
<td>20</td>
</tr>
<tr>
<td>Tipo de cálculo</td>
<td>Simplificado</td>
</tr>
<tr>
<td>Cálculos externos</td>
<td>No</td>
</tr>
<tr>
<td>Combustible</td>
<td>Gasolina</td>
</tr>
<tr>
<td>Método numérico</td>
<td>Lax Wendroff</td>
</tr>
<tr>
<td>Sub - modelo</td>
<td>Without correction</td>
</tr>
</tbody>
</table>

Los datos para las válvulas de admisión y escape utilizados en la simulación 1D se muestran en la tabla 6.

Tabla 6

Valores de las válvulas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Admisión</th>
<th>Escape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro de la válvula (mm)</td>
<td>29.1</td>
<td>24.9</td>
</tr>
<tr>
<td>Angulo de apertura de válvula (°)</td>
<td>352</td>
<td>138</td>
</tr>
</tbody>
</table>
Control de velocidad
Relación de velocidad
Diámetro de referencia para cálculo Cd (mm)

<table>
<thead>
<tr>
<th>Control de velocidad</th>
<th>Motor</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relación de velocidad</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diámetro de referencia para cálculo Cd (mm)</td>
<td>29.1</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Los valores para el múltiple de admisión está dividido en tres secciones como se observa en la figura 8, se toma en cuenta parámetros como longitudes y diámetros de los ductos de ingreso de aire ya que las medidas de cada uno de los elementos generan variaciones importantes en los resultados finales.

Figura 8. Secciones para variación de valores de admisión

Según la sección se diferencia los valores ingresados al programa, ya que cada sección maneja valores diferentes al estar ubicados en distintos lugares o del múltiple de admisión. En la figura 9 se observa algunos de los parámetros que se ingresa para la simulación.
Los parámetros de ingresos para cada sección se definen según el tipo de simulación que se realiza. El mallado se aplica valores pequeños para obtener resultados exactos, pero se toma en cuenta el gasto computacional que ello demanda. Para el cálculo de la temperatura de pared se selecciona constante. Los valores de temperatura en el bloque de admisión se emplea 20°C para todas las secciones.

En la pestaña de geometría se maneja los valores de diámetro de ingreso de aire, diámetro de salida y la longitud del ducto, éstos valores son fundamentales para el cálculo adecuado ya se son valores que generan una variación directa sobre los resultados que se obtiene.

En la pestaña de selección del método numérico existen tres opciones de resolución siendo Lax wendroff el adecuado para los valores del múltiple de admisión y TVD para los valores del múltiple de escape.

La tabla 7 contiene la información de los parámetros empleados en el múltiple de admisión ubicados por secciones como se señaló anteriormente.
Tabla 7.
Parámetros para el múltiple de admisión original

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Sección 1</th>
<th>Sección 2</th>
<th>Sección 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallado (m)</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Tipo de ducto</td>
<td>Tubería de admisión</td>
<td>Tubería de admisión</td>
<td>Tubería de admisión</td>
</tr>
<tr>
<td>Cálculo de la temperatura de pared</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Rugosidad del conducto (mm)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Temperatura inicial de pared (°C)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Temperatura inicial del gas (°C)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Presión inicial del gas (bar)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Velocidad inicial del gas (m/s)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diámetro de entrada (mm)</td>
<td>57</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Longitud (mm)</td>
<td>67.5</td>
<td>350</td>
<td>85</td>
</tr>
<tr>
<td>Diámetro de salida (mm)</td>
<td>41</td>
<td>44</td>
<td>29.1</td>
</tr>
<tr>
<td>Método numérico</td>
<td>Lax</td>
<td>Lax</td>
<td>Lax</td>
</tr>
<tr>
<td></td>
<td>Wendroff</td>
<td>Wendroff</td>
<td>Wendroff</td>
</tr>
</tbody>
</table>

Para los parámetros del múltiple de escape de igual forma se manejó por secciones la introducción de los datos como se observa en la figura 10, la sección A representa a los ductos que se encuentra en el interior de la culata en la sección de gases de escape, la sección B representa a los ductos desde la culata hasta la unión de todos los ductos de escape y la sección C representa la última parte del escape que para el caso de estudio es una sección única de un tubo donde terminan el recorrido los gases de escape.
El ingreso de datos para la sección de escape de igual forma que la sección de admisión tiene el ingreso de algunos parámetros como son el mallado, diámetros, longitudes de los ductos, el método de cálculo a emplear como se observa en la figura 11.
Los parámetros para las secciones A, B y C del escape se encuentran en la tabla 8

Tabla 8.
Parámetros para las secciones del escape

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Sección A</th>
<th>Sección B</th>
<th>Sección C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallado (m)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Tipo de ducto</td>
<td>Puerto de escape</td>
<td>Puerto de escape</td>
<td>Tubería de escape</td>
</tr>
<tr>
<td>Cálculo de la temperatura de pared</td>
<td>Constante</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Rugosidad del conducto (mm)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Presión inicial del gas (bar)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diámetro de entrada (mm)</td>
<td>24.9</td>
<td>38</td>
<td>50.8</td>
</tr>
<tr>
<td>Longitud (mm)</td>
<td>85</td>
<td>740</td>
<td>1020</td>
</tr>
<tr>
<td>Diámetro de salida (mm)</td>
<td>35</td>
<td>38</td>
<td>50.8</td>
</tr>
<tr>
<td>Método numérico</td>
<td>TVD</td>
<td>Lax</td>
<td>Wendroff</td>
</tr>
<tr>
<td>Submodelo</td>
<td>1</td>
<td>Without correction</td>
<td>Without correction</td>
</tr>
</tbody>
</table>

El software OpenWAM permite realizar modificaciones sobre los parámetros empleados al momento de simular, los valores que permiten obtener resultados importantes para la investigación son velocidad de giro del motor, diámetros de los ductos de admisión, longitudes de los ductos de admisión. Los parámetros de las otras variables se mantienen idénticos en todas las simulaciones que se realizan.

La variación de los parámetros tiene como objetivo encontrar el mejor rendimiento del motor por lo tanto se realiza algunas simulaciones con variación de datos. En la tabla 9 se encuentra los datos del múltiple original y los del nuevo diseño. En los nuevos colectores se realizó modificaciones en el ducto de ingreso de aire y ductos medios variando el diámetro y longitud.
Tabla 9.
Parámetros de los ductos del múltiple de admisión original y el diseño 1

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Múltiple original</th>
<th>Múltiple diseñado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sección 1</td>
<td>Sección 2</td>
</tr>
<tr>
<td>Mallado (m)</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Tipo de conducto</td>
<td>Tubería de admisión</td>
<td>Tubería de admisión</td>
</tr>
<tr>
<td>Cálculo de temperatura de pared</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Rugosidad de conducto (mm)</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Diámetro de entrada (mm)</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>Longitud (mm)</td>
<td>67.5</td>
<td>350</td>
</tr>
<tr>
<td>Diámetro de salida (mm)</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Método numérico</td>
<td>Lax Wendroff</td>
<td>Wendroff</td>
</tr>
</tbody>
</table>

Tabla 10
Parámetros de los ductos del múltiple de admisión original y el diseño 2

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Múltiple original</th>
<th>Múltiple diseñado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sección 1</td>
<td>Sección 2</td>
</tr>
<tr>
<td>Mallado (m)</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Tipo de conducto</td>
<td>Tubería de admisión</td>
<td>Tubería de admisión</td>
</tr>
<tr>
<td>Cálculo de temperatura de pared</td>
<td>Constante</td>
<td>Constante</td>
</tr>
<tr>
<td>Rugosidad de conducto (mm)</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Diámetro de entrada (mm)</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>Longitud (mm)</td>
<td>67.5</td>
<td>350</td>
</tr>
<tr>
<td>Diámetro de salida (mm)</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Método numérico</td>
<td>Lax Wendroff</td>
<td>Wendroff</td>
</tr>
</tbody>
</table>

La tabla 10 indica los valores del múltiple original y el diseño 2 con lo cual se realiza la simulación para la obtención de torque y potencia de cada múltiple.
Una vez cargada toda la información necesaria en el software se procedió a seleccionar el tipo de resultado tanto para el múltiple de admisión como para el motor. La figura 12 indica los resultados seleccionados en lo que se refiere al motor, los valores importantes a obtener es la potencia, torque y velocidad de giro del motor.

![Defining mean results for the engine](image)

Figura 12. Valores para la obtención de resultados

El programa también facilita la obtención de otros valores útiles para la simulación 3D como son presión, temperatura y flujo másico en la sección de ingreso de aire. La figura 13 indica la selección de los valores anteriormente mencionados.
Figura 13. Variables para resultados en el cilindro

Una vez seleccionado todos los valores se procede a simular y obtener los resultados solicitados.

Figura 14. Archivos finales de la simulación 1D
La figura 14 indica el proceso de la simulación de los datos generados en el programa Open WAM con lo cual se obtuvo los valores de torque y potencia del motor utilizando el múltiple original.

Simulación CFD ANSYS

La simulación computacional del componente en análisis se utiliza el módulo de estudio CFD de Ansys en el cual en primer paso es obtener la geometría completa en Space Claim.

![Figura 15. Dibujo CAD del múltiple de admisión original](image)

Un buen diseño CAD garantiza que los datos a obtener mediante la simulación estén lo más exactos al trabajo real que realiza el componente automotriz. La figura 15 indica el dibujo del múltiple original del cual se obtiene los parámetros referenciales para la comparación con el nuevo diseño.

Mallado.

La generación del mallado se genera alrededor del dominio del fluido donde el software realiza el cálculo matemático que para el caso de fluidos es el estudio de volúmenes finitos, por lo tanto, la calidad de la creación de una malla adecuada al estudio realizado debe ser la más coherente para que los resultados no divergen de la realidad. Según Carrillo y L, (2012) en su
publicación acerca de las consideraciones del mallado para cálculos de flujos señalan que el mallado hexaedrico destacan la disminución del número de elementos del dominio y generan una mejora de la convergencia de los resultados, lo que genera menores tiempos de ejecución manteniendo una calidad alta de mallado sin influir mucho en el gasto computacional. La figura 18 indica los parámetros de malla del múltiple original.

![Mallado del múltiple](image)

Figura 16. Mallado del múltiple

El mallado se genera con el método skewness que significa oblicuidad, en el cual Manríquez (2016) señala la tabla 11 donde se observa los valores de mallado que generan una mayor confiabilidad en el estudio CFD.

<table>
<thead>
<tr>
<th>Calidad del mallado</th>
<th>Valores Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>0 – 0.25</td>
</tr>
<tr>
<td>Muy bien</td>
<td>0.25 – 0.50</td>
</tr>
<tr>
<td>Bien</td>
<td>0.50 – 0.80</td>
</tr>
<tr>
<td>Aceptable</td>
<td>0.80 – 0.95</td>
</tr>
<tr>
<td>Poco aceptable</td>
<td>0.95 – 0.98</td>
</tr>
<tr>
<td>Inaceptable</td>
<td>0.98 – 1.00</td>
</tr>
</tbody>
</table>

Nota. Valores skewness para mallado según (Manríquez, 2016)
Procesamiento CFX-Pre.

El procesamiento para el análisis del colector de admisión es generado en el módulo CFX – Pre de ANSYS, para lo cual se cuenta con las variables de ingreso como son velocidad, temperatura y presión a ciertas condiciones de desempeño del motor. La tabla 12 se describe los parámetros necesarios para realizar el estudio CFD.

Tabla 12. Condiciones de estudio estático CFD

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de análisis</td>
<td>Estático</td>
</tr>
<tr>
<td>Tipo de dominio</td>
<td>Fluido</td>
</tr>
<tr>
<td>Material</td>
<td>Aire</td>
</tr>
<tr>
<td>Presión</td>
<td>1 atm</td>
</tr>
<tr>
<td>Régimen de flujo</td>
<td>Subsónico</td>
</tr>
<tr>
<td>Velocidad de ingreso</td>
<td>12m/s</td>
</tr>
<tr>
<td>Turbulencia</td>
<td>Baja intensidad</td>
</tr>
<tr>
<td>Presión en el ducto de salida</td>
<td>21kPa</td>
</tr>
</tbody>
</table>

Es importante la introducción de datos obtenidos de manera experimental para que no exista variaciones al momento de los resultados y sus validaciones.

Figura 17. Condiciones de frontera para análisis

La figura 17 indica las condiciones de frontera para la simulación computacional, el valor para el parámetro de ingreso es de 12m/s, y el parámetro de salida es abierta al ambiente.
Validación simulación CFD y 1D

La validación de los resultados que generan la simulación CFD se realiza mediante la utilización de datos generados tanto del modelo 1D como lo es el flujo másico y la velocidad del fluido en el modelo de simulación computacional de fluidos.

Tomando en cuenta que el aire es un fluido compresible como nos señala Martín, Salcedo y Font (2011) en su libro titulado Mecánica de fluidos, las ecuaciones de los gases se toma en cuenta la densidad, la velocidad y éstos dos parámetros varían a lo largo de la circulación del aire por un ducto, por lo tanto se realiza los cálculos necesarios en el punto más cercano a la cámara de combustión que ha sido diseñado.

Flujo Másico en OpenWam

El flujo másico es la masa de fluido entrante o saliente que atraviesa una sección dada por unidad de tiempo (Kane y Sternhein, 1989), en la simulación en OpenWAM se selecciona el parámetro Intake Mass para poder obtener como resultado el flujo másico. La figura 18 muestra la selección del parámetro necesario en la pantalla de selección de resultados.
Figura 18. Selección flujo másico en OpenWAM

Mediante la utilización de la ecuación 9 (Martín, Salcedo y Font, 2011) se logra validar los valores obtenidos en la simulación generada por OpenWAM y CFD, los valores que intervienen son: densidad del aire a una temperatura específica, área de la sección por donde pasa el aire y la velocidad del fluido.

\[\dot{m} = \rho \cdot V \cdot dA \]

Donde: \(\dot{m} \) es el flujo másico, \(\rho \) es la densidad del aire a una temperatura específica de funcionamiento del colector de admisión, \(V \) es la velocidad del fluido y \(dA \) es el área de la sección transversal del conducto.

Densidad del aire

La densidad del aire es seleccionada de la tabla A–9 (Cengel y Cimbała, 2006) la cual es \(\rho = 1.225 \text{ kg/m}^3 \) a una temperatura de 20°C.
Velocidad del fluido

La velocidad del fluido puede ser medido matemáticamente o experimentalmente. Matemáticamente la fórmula esta representada en la ecuación 10 (Cengel y Cimbala, 2006)

Donde Q_a es rango de flujo de aire, d es el diámetro interno de la tubería y experimentalmente la velocidad del aire en el ducto de admisión es medido por el sensor MAF (Mass Air Flow)

$$v = \frac{Q_a}{d} \quad (10)$$

Área de una sección circular

El área en una sección circular se define en la ecuación 11 (Apache, 2016) donde d es el diámetro de la sección por donde circula el aire en este caso es el ducto de admisión.

$$A = \pi * r^2 \quad (11)$$

Relacionando los datos obtenidos en 1D como es el flujo másico se realiza la obtención de la velocidad del aire en una sección específica del ducto pudiendo comprobar con el dato obtenido en la simulación CFD quedando la ecuación 12 de la siguiente manera. El valor encontrado debe ser similar al dato de velocidad encontrado mediante CFD para poder ser validado los datos obtenidos.

$$V = \frac{dm}{\rho * dA} \quad (12)$$

Velocidad del aire mediante CFD

Mediante la dinámica de fluidos computacional (CFD) la cual es una rama de la mecánica de fluidos que utiliza métodos numéricos y algoritmos para resolver y analizar problemas sobre el flujo de fluidos (Rojas, Mariños, Huaraz y Chucuya, 2017). La figura 19 indica la velocidad existente en los ductos del colector de admisión.
Figura 19. Velocidad fluido colector de admisión

Construcción del múltiple de admisión

Selección material y componentes adicionales

Se utiliza material producido en el Ecuador tanto para la base y los ductos, así como también para el proceso de construcción con la utilización de fungibles de producción nacional. Para la base se utiliza una plancha que cumple la calidad ASTM A366 y para los conductos de aire son tubos redondos negro sin recubrimiento cumpliendo norma de calidad ASTM 500. Las especificaciones técnicas de los materiales utilizados se encuentran detallados en los anexos 3 y 4 respectivamente.
Adicionalmente se utiliza un cuerpo de aceleración independiente para el correcto funcionamiento del múltiple de admisión como se muestra en la figura 21 ya que el nuevo colector tiene ingreso de aire independiente para cada cilindro del motor.

Figura 20. Tubería redonda de uso automotriz. Fuente: *(FERROTOLL, 2018)*

Figura 21. Cuerpo de aceleración independiente

Manufactura

Corte plancha base

El corte de material se realiza mediante norma INEN 1623 (INEN, 2016) que define el procedimiento adecuado para el corte de acero.
El corte por plasma es un proceso que utiliza una boquilla, con un orificio para la circulación del gas ionizado a altas temperatura, de tal forma que se obtiene un rayo que se puede utilizar para cortar secciones de metales tales como el acero al carbono, acero inoxidable, aluminio y otros metales conductores de la electricidad. Por medio del uso de esta técnica, el arco de plasma funde el metal, y el gas elimina el material fundido (BAW, 2016). La figura 22 muestra el proceso de corte por plasma para la creación de la plancha base.

![Imagen de corte por plasma](imagen)

Figura 22 Corte mediante plasma

Corte de tubos

Para el corte de material se utiliza la máquina herramienta tronzadora de marca Stanley que utiliza un disco de corte que mejora el acabado. La figura 23 indica el proceso de corte de material para la fabricación del colector de admisión.
Para garantizar el proceso de soldado se utiliza la norma ASTM y código ASW D1.1 que define las uniones de materiales de estructuras metálicas cargadas estáticamente (SparkWeld, 2016).

La unión entre la plancha y los tubos metálicos se realiza mediante el proceso de soldado MIG de electrodo continuo MIG 70s-6(AWS ER 70s-6) con protección de gas inerte. La figura 24 indica el proceso de soldado del colector diseñado.
Finalmente se une la parte fabricada a un cuerpo de aceleración independiente el cual permite el correcto funcionamiento del colector, este cuerpo tiene incorporado la aleta de aceleración, 4 inyectores, sensor MAP, sensor TPS. La figura 25 presenta los componentes del colector de admisión que deben ser unidos, donde: 1 es la plancha base, 2 son los ductos de aire y 3 es el cuerpo de aceleración independiente. Las sujeciones entre 1 y 2 se realiza mediante proceso de soldado y la sujeciones entre 2 y 3 se realiza mediante uniones plásticas resistentes a altas tensiones y temperaturas de funcionamiento del motor.
Figura 25. Componentes múltiple de admisión

El colector de admisión diseñado se presenta en la figura 26, ya se encuentra instalado en el vehículo para realizar las pruebas dinámicas

Figura 26. Colector de admisión ya instalado en el motor
Pruebas dinamométricas

Para las pruebas dinamométricas se utiliza el dinamómetro de marca DYNOmite de la empresa Dinamyca Competición, las especificaciones técnicas son las siguientes (DYNOmite, 2017):

- Dinamómetro de chasis
- Velocidad máxima 155 MPH
- Potencia máxima 800 HP
- Torque máximo 5000 ft lbs
- Peso máximo por eje es de 6500 lbs

Se realizó varias pruebas con cada múltiple, la norma empleada es la INEN 960 que es usada a nivel nacional para la obtención de las curvas de torque y potencia como lo señala Rocha y Zambrano (2015) en su investigación realizada para la obtención de las curvas características de trabajo de un motor utilizó el siguiente procedimiento:

1. Verificar la dimensión de las ruedas igual o mayor a rin 13 pulgadas y que no supere la capacidad de peso definida por el fabricante

2. Ubicar el vehículo en el banco dinamométrico.

3. Revisar el perfil del neumático y verificar que esté libre de piedras o partículas que puedan desprenderse.

5. Verificar la alineación de las ruedas con respecto a los rodillos del dinamómetro, haciéndolas girar a una velocidad máxima de 20 km/h.

6. Asegurar el vehículo con cintas para evitar su salida de los rodillos.

7. Verificar la seguridad en el área de prueba.
8. Introducir los datos técnicos del vehículo en el software del dinamómetro.

10. El motor debe estar a la temperatura normal de funcionamiento.

11. Encender el ventilador de refrigeración del banco de pruebas.

12. Iniciar la prueba de medición.

13. Acelerar el vehículo con el pedal a fondo en la marcha de prueba hasta alcanzar el corte de rpm.

14. Cuando se alcanza el corte de rpm se debe pisar el embrague, con la marcha puesta. Entonces el banco de pruebas desacelera hasta detenerse y el resultado se muestra en la pantalla.

En la figura 27 se observa al vehículo ya sobre el banco dinamométrico listo para empezar las pruebas.
Los datos de torque y potencia entregados por el dinamómetro se debe realizar unas pequeñas correcciones para poder utilizar los parámetros ya que se debe tomar en cuenta un factor de corrección basado en las normas ISO 1585, JIS D 1001 o SAE J 1349 (Dietsche y Klingebiel, 2005). El factor de corrección está dado por la ecuación 11:

\[
\alpha_a = \left(\frac{99}{P_p} \right)^{1.2} \times \left(\frac{T_p}{298} \right)^{0.5} \tag{11}
\]

Donde \(P_p \) y \(T_p \), son los valores correspondientes a la presión barométrica y temperatura en el lugar de la prueba.

Para autos de competición generalmente se utiliza algún tipo de aditivo en el combustible esto para mejorar el rendimiento del motor como nos señala Rocha en su investigación (Rocha, Tipanluisa, Zambrano, y Portilla, 2018), el vehículo de pruebas utiliza combustible de
producción nacional sin ningún tipo de aditivo para mejorar las características de torque y potencia.
Resultados

Parámetros iniciales

Los datos iniciales para el nuevo diseño se obtuvo mediante la telemetría del auto como se observa en la figura 28, en pista pudiendo obtener el valor de las revoluciones de funcionamiento del motor durante el trayecto de una vuelta a la pista. Se realizaron cinco pruebas y se analizó la curva de cada prueba que se presenta en la tabla 13 y se define que el auto en un 80% del trayecto en la pista funciona a elevadas revoluciones de alrededor de 4500 rpm hasta 7500 rpm como se observa en la figura 29 y al hacer un control de rangos se eliminó los valores que están fuera de los rangos, dando como resultado un promedio de 6007 rpm que será el dato que utilizaremos para el cálculo del nuevo múltiple de admisión como se indica en Matiash, J. (2016).

Figura 28. Registro telemetría
La utilización de las fórmulas propuestas por Funes (2008) en su libro de preparación de motores para autos de competición se obtuvo los valores de diámetros y longitudes para los ductos del múltiple de admisión. La velocidad del gas de admisión se obtiene también mediante la telemetría y se obtienen los resultados indicados en la tabla 14.

Tabla 13
Promedio Pruebas Telemetría

<table>
<thead>
<tr>
<th>PRUEBA</th>
<th>Tiempo Prueba del ciclo</th>
<th>Rango de mayor rpm del ciclo</th>
<th>Rpm Máxima</th>
<th>Rpm Mínima</th>
<th>Revolución promedio de altas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.01</td>
<td>0.20 – 4.56</td>
<td>7703</td>
<td>4111</td>
<td>6107</td>
</tr>
<tr>
<td>2</td>
<td>6.1</td>
<td>0.19 – 5.01</td>
<td>7569</td>
<td>4250</td>
<td>5909.5</td>
</tr>
<tr>
<td>3</td>
<td>6.07</td>
<td>0.22 – 5.10</td>
<td>7611</td>
<td>4054</td>
<td>5832</td>
</tr>
<tr>
<td>4</td>
<td>6.01</td>
<td>0.24 – 5.07</td>
<td>7865</td>
<td>3995</td>
<td>6130</td>
</tr>
<tr>
<td>5</td>
<td>6.04</td>
<td>0.21 – 4.59</td>
<td>7693</td>
<td>4077</td>
<td>6057</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6007.1</td>
</tr>
</tbody>
</table>

Tabla 14
Promedio Pruebas Telemetría

<table>
<thead>
<tr>
<th>PRUEBA</th>
<th>Revoluciones del motor (rpm)</th>
<th>Flujo gas de admisión (mm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6107</td>
<td>17.25</td>
</tr>
<tr>
<td>2</td>
<td>5909.5</td>
<td>16.37</td>
</tr>
<tr>
<td>3</td>
<td>5832</td>
<td>16.55</td>
</tr>
<tr>
<td>4</td>
<td>6130</td>
<td>17.67</td>
</tr>
<tr>
<td>5</td>
<td>6057</td>
<td>17.16</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td>17.00</td>
</tr>
</tbody>
</table>

El anexo 7 indica la utilización de las fórmulas y variables empleadas para obtener las medidas necesarias como son para la sección 2 del múltiple que se puede observar en la tabla 14. Estas medidas han sido ajustadas a materiales existentes en el Ecuador.
Tabla 15
Valores de longitud y sección nuevo múltiple admisión

<table>
<thead>
<tr>
<th>Fórmula empleada</th>
<th>Medida (mm)</th>
<th>Medida Material Comercial (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección del conducto (S_c = \frac{V_p \times S_p}{V_g})</td>
<td>42.381</td>
<td>44</td>
</tr>
<tr>
<td>Longitud (L_c = \frac{P_o}{RPM})</td>
<td>199.294</td>
<td>200</td>
</tr>
</tbody>
</table>

Simulación OpenWAN

Concluido el proceso de ingreso de todas las variables solicitadas para la simulación en el software OpenWAN y si están correctamente realizado el proceso de ejecución de la simulación esta se realiza y no muestra ningún error. A continuación, se crea un archivo AVG de resultados con extensión *.DAT el cual indica los valores promedio medidos en cada ciclo de cálculo y un segundo archivo INS en el cual se visualiza los valores instantáneos medidos en el último ciclo de cálculo. Esta simulación se denomina 1D y se realizó una con las dimensiones del múltiple original y una segunda simulación con los valores del colector diseñado. Los valores encontrados fueron tratados en Excel para obtener las curvas de torque y potencia según el régimen de giro del motor, además de las curvas de flujo másico instantáneo en el múltiple.

Resultados obtenidos con el múltiple de admisión original.

La tabla 16 indica los valores obtenidos de la simulación utilizando el múltiple original mediante el software OpenWAM.
Tabla 16
Resultados utilizando el múltiple original en la simulación con OpenWAM

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Torque (Nm)</th>
<th>Potencia (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>106.18</td>
<td>27.798</td>
</tr>
<tr>
<td>3500</td>
<td>115.08</td>
<td>42.182</td>
</tr>
<tr>
<td>4500</td>
<td>111.80</td>
<td>52.686</td>
</tr>
<tr>
<td>5500</td>
<td>108.92</td>
<td>62.736</td>
</tr>
<tr>
<td>6000</td>
<td>104.34</td>
<td>66.591</td>
</tr>
<tr>
<td>6500</td>
<td>101.23</td>
<td>68.391</td>
</tr>
<tr>
<td>7000</td>
<td>95.65</td>
<td>66.593</td>
</tr>
<tr>
<td>7500</td>
<td>90.39</td>
<td>63.749</td>
</tr>
</tbody>
</table>

El torque máximo es de 111.80 Nm y una potencia máxima de 68.39 kW y se indica en la figura 29.

Figura 29. Diagrama torque y potencia múltiple original mediante 1D
Resultados obtenidos con el múltiple de admisión diseño 1.

La tabla 17 indica los resultados obtenidos de la simulación con los parámetros del múltiple de admisión modificado utilizando el software OpenWAM.

Tabla 17
Resultados utilizando el múltiple diseñado en el OpenWAM

<table>
<thead>
<tr>
<th>Revoluciones motor [rpm]</th>
<th>Torque [Nm]</th>
<th>Potencia [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>103.091</td>
<td>24.121</td>
</tr>
<tr>
<td>3500</td>
<td>105.463</td>
<td>38.654</td>
</tr>
<tr>
<td>4500</td>
<td>119.316</td>
<td>46.061</td>
</tr>
<tr>
<td>5500</td>
<td>130.655</td>
<td>58.357</td>
</tr>
<tr>
<td>6000</td>
<td>136.444</td>
<td>69.070</td>
</tr>
<tr>
<td>6500</td>
<td>133.362</td>
<td>75.039</td>
</tr>
<tr>
<td>7000</td>
<td>131.568</td>
<td>70.067</td>
</tr>
<tr>
<td>7500</td>
<td>128.565</td>
<td>68.056</td>
</tr>
</tbody>
</table>

El torque máximo se produce a 6000 rpm indicando un valor de 136.444 KW y una potencia máxima de 75.03 Nm a 6500 rpm como se observa en la figura 30.

![Figura 30. Diagrama torque y potencia colector diseño 1](image-url)
Al realizar la simulación 1D a diferentes rpm durante el último ciclo de trabajo se determinó las curvas de gasto másico de aire del múltiple original como se muestra en la tabla 18 y la figura 25.

Tabla 18
Resultados del flujo másico de aire utilizando el múltiple original en el Open Wam

<table>
<thead>
<tr>
<th>Velocidad motor (rpm)</th>
<th>Flujo másico ingreso de aire (kg/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0.000312376</td>
</tr>
<tr>
<td>3500</td>
<td>0.00034602</td>
</tr>
<tr>
<td>4500</td>
<td>0.000355796</td>
</tr>
<tr>
<td>5500</td>
<td>0.000374464</td>
</tr>
<tr>
<td>6500</td>
<td>0.00032139</td>
</tr>
<tr>
<td>7500</td>
<td>0.000300798</td>
</tr>
<tr>
<td>8000</td>
<td>0.00032159</td>
</tr>
</tbody>
</table>

La curva de la variación del flujo másico de aire con respecto a variación de las revoluciones del múltiple original se observa en la figura 31.

Figura 31. Variación del flujo másico de aire del múltiple original

Los datos de flujo másico de aire del múltiple modificado se muestran en la tabla 18 y en la figura 32, usando los resultados instantáneos de la simulación 1D, gracias a este parámetro podemos determinar la variación de ingreso de la masa de aire con respecto a las rpm.
Tabla 19

Resultados del flujo másico de aire utilizando el múltiple diseñado en el OpenWAM

<table>
<thead>
<tr>
<th>Velocidad motor (rpm)</th>
<th>Flujo másico ingreso de aire (kg/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0.000311612</td>
</tr>
<tr>
<td>3500</td>
<td>0.000321</td>
</tr>
<tr>
<td>4500</td>
<td>0.000326569</td>
</tr>
<tr>
<td>5500</td>
<td>0.000355252</td>
</tr>
<tr>
<td>6500</td>
<td>0.000329482</td>
</tr>
<tr>
<td>7500</td>
<td>0.000347109</td>
</tr>
<tr>
<td>8000</td>
<td>0.00036014</td>
</tr>
</tbody>
</table>

Figura 32. Flujo másico múltiple diseñado

Resultados obtenidos con el múltiple de admisión diseño 2.

La tabla 20 indica los resultados obtenidos de la simulación con los parámetros del múltiple de admisión diseño 2 utilizando el software OpenWAM.

Tabla 20

Torque y potencia diseño 2

<table>
<thead>
<tr>
<th>Revoluciones [rpm]</th>
<th>Torque [Nm]</th>
<th>Potencia [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>20.45</td>
<td>21.72</td>
</tr>
<tr>
<td>3500</td>
<td>29.17</td>
<td>28.25</td>
</tr>
<tr>
<td>4500</td>
<td>48.65</td>
<td>25.56</td>
</tr>
<tr>
<td>5500</td>
<td>53.88</td>
<td>29.8</td>
</tr>
</tbody>
</table>
El torque máximo se produce a 7500 rpm indicando un valor de 74.07 Nm y una potencia máxima de 49.63 kW a 8000 rpm como se observa en la figura 33.

Figura 33. Diagrama torque y potencia colector diseño 2

Resultados simulación CFD

En la simulación 3D se realizó análisis del múltiple de admisión original y los diseños propuestos tomando en cuenta los valores de presión y los valores de longitud y diámetro de los ductos.

Múltiple de admisión original.

La figura 34 muestra la geometría del múltiple de admisión el cual sirve para el estudio en CFD y obtener la presión y velocidad del colector original del auto.
Figura 34. Volumen interno múltiple de admisión original

Mallado.

En el mallado del múltiple original existen 98802 nodos y 515807 elementos, el factor de mallado Skewness es de 0.23522 lo cual señala que la calidad de mallado es excelente como se indica en la figura 35.

Figura 35. Mallado para simulación múltiple original
Múltiple de admisión diseño 1

La figura 36 muestra el primer diseño utilizando las dimensiones de diámetro y longitud para la creación del modelo 3D.

Posteriormente el diseño CAD es llevado al módulo CFD para definir el mallado y las condiciones de frontera. La figura 37 indica el mallado del múltiple modificado donde existen 16857 nodos y 80954 elementos, el factor de mallado Skewness es de 0.22839 lo cual señala que la calidad de mallado es excelente.
Múltiple de admisión diseño 2

La figura 38 indica el modelo CAD del diseño 2 del colector de admisión cumpliendo las dimensiones encontradas tanto en telemetría como en las generalidades del diseño.
La figura 39 indica el mallado del componente diseñado, cumpliendo el avarage de 0.23 lo cual indica que es un mallado confiable para la obtención de resultados.

![Figura 39. Mallado del diseño 2](image)

CFX-Post.

La simulación se realizó tomando los valores de funcionamiento del colector de admisión mediante un anemómetro, las medidas originales, los resultados obtenidos en la experimentación y según los cálculos realizados.

Múltiple original.

La figura 40 muestra el comportamiento del aire en el interior del múltiple de admisión y se observa donde se producen las mayores y menores velocidades del flujo, el análisis del comportamiento del aire en el interior del múltiple de admisión tomando en cuenta que la velocidad máxima de ingreso es 12.19 m/s. La velocidad de salida no es la misma en cada uno de los ductos. Los valores de velocidad están alrededor de 6.09 m/s para las salidas dos, tres, cuatro y la salida uno tiene una velocidad de salida del fluido de 3.048 m/s.
La figura 41 muestra los valores de presión en el múltiple de admisión, existe un valor máximo de presión de 53.17 Pa y una presión en los ductos de salida alrededor de -2.7 Pa.

Múltiple de admisión diseño 1

En la figura 42 se observa el múltiple de admisión modificado, los parámetros más relevantes en el colector es la longitud de los ductos, el orificio de ingreso de aire y la nueva cámara. La velocidad más alta es de 40 m/s y una velocidad mínima de 10.43 m/s.
La figura 43 indica las presiones existentes en el colector de admisión, las cuales son de valores de alrededor de 13 kPa en el sector de coloración verde, existe una presión máxima de 27.68 kPa y una presión mínima de -0.9180 kPa
Múltiple de admisión diseño 2

La figura 44 indica la simulación del fluido al interior del colector, teniendo las siguientes observaciones:

- La velocidad máxima de ingreso de aire a los ductos de la culata es 9.18 m/s
- La cantidad de flujo no es homogéneo en los cuatro ductos, se observa claramente que el ducto más cercano al ingreso no tiene la misma cantidad de fluido que los tres ductos existentes, lo cual indica que es deficiente el diseño 2

Figura 44. Simulación flujo diseño 2

Comparando la simulación de las figuras 40, 42 y 44 se analiza que el diseño 1 es el óptimo para realizar las validaciones correspondientes y construcción del mismo.
Validez de resultados obtenidos entre 1D y CFD

Los datos obtenidos en la simulación 1D que permiten validar con el análisis CFD del diseño 1 que es el óptimo para mejorar el rendimiento del motor es el flujo másico generado en el punto más cercano a la cámara de combustión que sería la parte final del colector de admisión.

Flujo másico

El flujo másico es obtenido mediante la simulación 1D en OpenWAM, la tabla 21 indica los valores generados, el promedio es 0.3358805 g/cc.

Tabla 21
Flujo másico obtenido mediante OpenWAM

<table>
<thead>
<tr>
<th>Revoluciones (rpm)</th>
<th>Flujo másico (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0.31161156</td>
</tr>
<tr>
<td>3500</td>
<td>0.32100033</td>
</tr>
<tr>
<td>4500</td>
<td>0.32656933</td>
</tr>
<tr>
<td>5500</td>
<td>0.35525156</td>
</tr>
<tr>
<td>6500</td>
<td>0.329482</td>
</tr>
<tr>
<td>7500</td>
<td>0.3471085</td>
</tr>
<tr>
<td>8000</td>
<td>0.36014025</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.3358805</td>
</tr>
</tbody>
</table>

Densidad de aire

La densidad del aire es seleccionada de la tabla A–9 (Cengel y Cimbala, 2006) la cual es \(\rho = 1.225 \ kg/m^3 \) a una temperatura de 20°C.

Velocidad del fluido

La velocidad del fluido es el parámetro a ser validado. En CFD la velocidad es de 40 m/s como se observa en la figura 45.
Área de la sección circular

Para el cálculo del área se utiliza la ecuación 11 donde se toma el diámetro de la sección circular que es 44 mm. El área es 1520.53 mm².

Aplicando la ecuación 10 se obtiene un resultado de 41.83 m/s, este resultado se compara con el valor obtenido mediante CFD en el mismo punto que es a la salida del ducto de admisión teniendo un valor de 40.53 m/s lo cual presenta una diferencia de 3.10% de diferencia entre las velocidades obtenidas como se observa en la tabla 22.

Tabla 22
Valores para validación entre 1D y CFD

<table>
<thead>
<tr>
<th>Valores utilizados en los cálculos matemáticos</th>
<th>Velocidad obtenida experimentalmente [m/s]</th>
<th>Velocidad obtenida en CFD [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flujo másico</td>
<td>0.3358805 g/cc.</td>
<td></td>
</tr>
<tr>
<td>Densidad del fluido</td>
<td>1.225 kg/m³</td>
<td>41.83 m/s</td>
</tr>
<tr>
<td>Área de la sección</td>
<td>1520.53 mm²</td>
<td></td>
</tr>
</tbody>
</table>

Diferencia 3.10%
Pruebas dinamométricas

La obtención de los valores de torque y potencia se realizó en un dinamómetro de rodillos de la compañía DYNOmite serie X 2WD. La prueba se realizó a la altura de 2800 msnm.

Se realizó cinco pruebas con cada múltiple, la norma empleada es la INEN 960 que es usada a nivel nacional para la obtención de las curvas de torque y potencia como lo señala (Rocha y Zambrano, 2015).

Múltiple original.

Se realizó cinco pruebas consecutivas en el dinamómetro utilizando el múltiple original del vehículo. Los resultados de cada una de las pruebas se pueden ver en el respectivo anexo 6, a continuación, se muestra en la tabla 23 el promedio de las pruebas de torque y potencia con el múltiple original, aplicando el control de rangos.

Tabla 23
Resultados promedios de las pruebas en dinamómetro múltiple original

<table>
<thead>
<tr>
<th>RPM (RPM)</th>
<th>Est. Hp (Hp)</th>
<th>Torque (Nm)</th>
<th>Potencia (kW)</th>
<th>Est. Tq. (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>13.59</td>
<td>47.98</td>
<td>10.13</td>
<td>35.39</td>
</tr>
<tr>
<td>2100</td>
<td>22.93</td>
<td>77.76</td>
<td>17.10</td>
<td>57.35</td>
</tr>
<tr>
<td>2200</td>
<td>26.84</td>
<td>86.89</td>
<td>20.01</td>
<td>64.09</td>
</tr>
<tr>
<td>2300</td>
<td>30.58</td>
<td>94.70</td>
<td>22.80</td>
<td>69.85</td>
</tr>
<tr>
<td>2400</td>
<td>33.31</td>
<td>98.81</td>
<td>24.84</td>
<td>72.88</td>
</tr>
<tr>
<td>2500</td>
<td>35.09</td>
<td>99.96</td>
<td>26.17</td>
<td>73.73</td>
</tr>
<tr>
<td>2600</td>
<td>36.35</td>
<td>99.53</td>
<td>27.11</td>
<td>73.41</td>
</tr>
<tr>
<td>2700</td>
<td>37.38</td>
<td>98.57</td>
<td>27.87</td>
<td>72.7</td>
</tr>
<tr>
<td>2800</td>
<td>39.05</td>
<td>99.30</td>
<td>29.12</td>
<td>73.24</td>
</tr>
<tr>
<td>2900</td>
<td>41.14</td>
<td>101.01</td>
<td>30.68</td>
<td>74.5</td>
</tr>
<tr>
<td>3000</td>
<td>42.95</td>
<td>101.92</td>
<td>32.03</td>
<td>75.17</td>
</tr>
<tr>
<td>4000</td>
<td>53.66</td>
<td>95.50</td>
<td>40.01</td>
<td>70.44</td>
</tr>
<tr>
<td>4100</td>
<td>54.27</td>
<td>94.26</td>
<td>40.47</td>
<td>69.52</td>
</tr>
<tr>
<td>4200</td>
<td>55.17</td>
<td>93.54</td>
<td>41.14</td>
<td>68.99</td>
</tr>
<tr>
<td>4300</td>
<td>56.73</td>
<td>93.94</td>
<td>42.30</td>
<td>69.29</td>
</tr>
<tr>
<td>4400</td>
<td>58.02</td>
<td>93.89</td>
<td>43.27</td>
<td>69.25</td>
</tr>
<tr>
<td>4500</td>
<td>58.47</td>
<td>92.52</td>
<td>43.60</td>
<td>68.24</td>
</tr>
<tr>
<td>Rpm</td>
<td>Torque (Nm)</td>
<td>Potencia (HP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4600</td>
<td>59.27</td>
<td>91.75</td>
<td>44.20</td>
<td>67.67</td>
</tr>
<tr>
<td>4700</td>
<td>60.65</td>
<td>91.90</td>
<td>45.23</td>
<td>67.78</td>
</tr>
<tr>
<td>4800</td>
<td>61.9</td>
<td>91.82</td>
<td>46.16</td>
<td>67.72</td>
</tr>
<tr>
<td>4900</td>
<td>63.96</td>
<td>92.94</td>
<td>47.69</td>
<td>68.55</td>
</tr>
<tr>
<td>5000</td>
<td>68.08</td>
<td>96.95</td>
<td>50.77</td>
<td>71.51</td>
</tr>
<tr>
<td>5100</td>
<td>71.55</td>
<td>99.91</td>
<td>53.35</td>
<td>73.69</td>
</tr>
<tr>
<td>5200</td>
<td>71.59</td>
<td>98.04</td>
<td>53.38</td>
<td>72.31</td>
</tr>
<tr>
<td>5300</td>
<td>71.79</td>
<td>96.45</td>
<td>53.53</td>
<td>71.14</td>
</tr>
<tr>
<td>5400</td>
<td>73.65</td>
<td>97.12</td>
<td>54.92</td>
<td>71.63</td>
</tr>
<tr>
<td>5500</td>
<td>76.05</td>
<td>98.46</td>
<td>56.71</td>
<td>72.62</td>
</tr>
<tr>
<td>5600</td>
<td>78.85</td>
<td>100.26</td>
<td>58.80</td>
<td>73.95</td>
</tr>
<tr>
<td>5700</td>
<td>81.08</td>
<td>101.28</td>
<td>60.46</td>
<td>74.7</td>
</tr>
<tr>
<td>5800</td>
<td>82.25</td>
<td>100.97</td>
<td>61.33</td>
<td>74.47</td>
</tr>
<tr>
<td>5900</td>
<td>83.6</td>
<td>100.90</td>
<td>62.34</td>
<td>74.42</td>
</tr>
<tr>
<td>6000</td>
<td>84.61</td>
<td>100.41</td>
<td>63.09</td>
<td>74.06</td>
</tr>
<tr>
<td>6100</td>
<td>85.12</td>
<td>99.37</td>
<td>63.47</td>
<td>73.29</td>
</tr>
<tr>
<td>6200</td>
<td>86.17</td>
<td>98.97</td>
<td>64.26</td>
<td>73.</td>
</tr>
<tr>
<td>6300</td>
<td>87.37</td>
<td>98.76</td>
<td>65.15</td>
<td>72.84</td>
</tr>
<tr>
<td>6400</td>
<td>88.74</td>
<td>98.73</td>
<td>66.17</td>
<td>72.82</td>
</tr>
<tr>
<td>6500</td>
<td>89.67</td>
<td>98.23</td>
<td>66.87</td>
<td>72.45</td>
</tr>
<tr>
<td>6600</td>
<td>89.68</td>
<td>96.75</td>
<td>66.87</td>
<td>71.36</td>
</tr>
<tr>
<td>6700</td>
<td>88.85</td>
<td>94.43</td>
<td>66.26</td>
<td>69.65</td>
</tr>
<tr>
<td>6800</td>
<td>88.55</td>
<td>92.72</td>
<td>66.03</td>
<td>68.39</td>
</tr>
<tr>
<td>6900</td>
<td>88.67</td>
<td>91.49</td>
<td>66.12</td>
<td>67.48</td>
</tr>
<tr>
<td>7000</td>
<td>88.61</td>
<td>90.13</td>
<td>66.08</td>
<td>66.48</td>
</tr>
<tr>
<td>7100</td>
<td>88.64</td>
<td>88.89</td>
<td>66.10</td>
<td>65.56</td>
</tr>
<tr>
<td>7200</td>
<td>87.97</td>
<td>86.99</td>
<td>65.60</td>
<td>64.16</td>
</tr>
<tr>
<td>7300</td>
<td>87.72</td>
<td>85.55</td>
<td>65.41</td>
<td>63.1</td>
</tr>
<tr>
<td>7400</td>
<td>87.85</td>
<td>84.54</td>
<td>65.51</td>
<td>62.35</td>
</tr>
<tr>
<td>7500</td>
<td>82.94</td>
<td>78.81</td>
<td>61.85</td>
<td>58.13</td>
</tr>
</tbody>
</table>

En la figura 46 se indica el gráfico de torque y potencia del vehículo con el múltiple original, el torque máximo de 101.28 Nm a 5700 rpm y una potencia máxima de 89.68 HP a 6600rpm.
Figura 46. Curvas promedio de potencia y torque múltiple original obtenido del dinamómetro

Múltiple diseñado.

Se realizó cinco pruebas consecutivas en el dinamómetro utilizando el múltiple diseñado del vehículo. Los resultados promedio de las cinco pruebas después de aplicar el control de rangos se indica en la tabla 24.

Tabla 24

Resultados promedios de las pruebas en dinamómetro múltiple diseñado

<table>
<thead>
<tr>
<th>RPM (rpm)</th>
<th>Potencia (Hp)</th>
<th>Torque (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>25.83</td>
<td>55.58</td>
</tr>
<tr>
<td>2500</td>
<td>28.45</td>
<td>59.77</td>
</tr>
<tr>
<td>2600</td>
<td>32.08</td>
<td>64.81</td>
</tr>
<tr>
<td>2700</td>
<td>36.51</td>
<td>71.03</td>
</tr>
<tr>
<td>2800</td>
<td>40.05</td>
<td>75.12</td>
</tr>
<tr>
<td>2900</td>
<td>42.72</td>
<td>77.36</td>
</tr>
<tr>
<td>3000</td>
<td>44.87</td>
<td>78.53</td>
</tr>
<tr>
<td>3100</td>
<td>46.84</td>
<td>79.37</td>
</tr>
<tr>
<td>3200</td>
<td>48.88</td>
<td>80.2</td>
</tr>
<tr>
<td>3300</td>
<td>50.75</td>
<td>80.77</td>
</tr>
<tr>
<td>3400</td>
<td>52.49</td>
<td>81.07</td>
</tr>
<tr>
<td>3500</td>
<td>54.16</td>
<td>81.27</td>
</tr>
<tr>
<td>3600</td>
<td>55.85</td>
<td>81.48</td>
</tr>
<tr>
<td>Valor (rpm)</td>
<td>Torque (Nm)</td>
<td>Potencia (HP)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3700</td>
<td>57.52</td>
<td>81.66</td>
</tr>
<tr>
<td>3800</td>
<td>59.2</td>
<td>81.81</td>
</tr>
<tr>
<td>3900</td>
<td>61.01</td>
<td>82.17</td>
</tr>
<tr>
<td>4000</td>
<td>62.85</td>
<td>82.51</td>
</tr>
<tr>
<td>4100</td>
<td>64.5</td>
<td>82.62</td>
</tr>
<tr>
<td>4200</td>
<td>66.12</td>
<td>82.67</td>
</tr>
<tr>
<td>4300</td>
<td>68.01</td>
<td>83.07</td>
</tr>
<tr>
<td>4400</td>
<td>70.08</td>
<td>83.63</td>
</tr>
<tr>
<td>4500</td>
<td>71.92</td>
<td>83.94</td>
</tr>
<tr>
<td>4600</td>
<td>73.99</td>
<td>84.47</td>
</tr>
<tr>
<td>4700</td>
<td>76.33</td>
<td>85.3</td>
</tr>
<tr>
<td>4800</td>
<td>78.49</td>
<td>85.89</td>
</tr>
<tr>
<td>4900</td>
<td>80.49</td>
<td>86.27</td>
</tr>
<tr>
<td>5000</td>
<td>82.44</td>
<td>86.59</td>
</tr>
<tr>
<td>5100</td>
<td>84.42</td>
<td>86.93</td>
</tr>
<tr>
<td>5200</td>
<td>86.38</td>
<td>87.23</td>
</tr>
<tr>
<td>5300</td>
<td>88.18</td>
<td>87.39</td>
</tr>
<tr>
<td>5400</td>
<td>89.81</td>
<td>87.34</td>
</tr>
<tr>
<td>5500</td>
<td>91.59</td>
<td>87.46</td>
</tr>
<tr>
<td>5600</td>
<td>93.33</td>
<td>87.53</td>
</tr>
<tr>
<td>5700</td>
<td>95.08</td>
<td>87.6</td>
</tr>
<tr>
<td>5800</td>
<td>97.17</td>
<td>87.99</td>
</tr>
<tr>
<td>5900</td>
<td>98.93</td>
<td>88.06</td>
</tr>
<tr>
<td>6000</td>
<td>100.8</td>
<td>88.24</td>
</tr>
<tr>
<td>6100</td>
<td>102.7</td>
<td>88.43</td>
</tr>
<tr>
<td>6200</td>
<td>104.2</td>
<td>88.25</td>
</tr>
<tr>
<td>6300</td>
<td>105.4</td>
<td>87.86</td>
</tr>
<tr>
<td>6400</td>
<td>106.3</td>
<td>87.23</td>
</tr>
<tr>
<td>6500</td>
<td>106.9</td>
<td>86.4</td>
</tr>
<tr>
<td>6600</td>
<td>107</td>
<td>85.13</td>
</tr>
<tr>
<td>6700</td>
<td>106.9</td>
<td>83.82</td>
</tr>
<tr>
<td>6800</td>
<td>107.2</td>
<td>82.8</td>
</tr>
<tr>
<td>6900</td>
<td>107.3</td>
<td>81.67</td>
</tr>
<tr>
<td>7000</td>
<td>107.5</td>
<td>80.63</td>
</tr>
<tr>
<td>7100</td>
<td>107.7</td>
<td>79.68</td>
</tr>
<tr>
<td>7200</td>
<td>107.3</td>
<td>78.25</td>
</tr>
<tr>
<td>7300</td>
<td>106.8</td>
<td>76.82</td>
</tr>
<tr>
<td>7400</td>
<td>106.6</td>
<td>75.62</td>
</tr>
<tr>
<td>7500</td>
<td>92.31</td>
<td>64.68</td>
</tr>
</tbody>
</table>

En la figura 47 indica el torque de 119.89 Nm a 6100 rpm y potencia máxima de 107.7 HP a 7100 rpm.
La construcción del múltiple se realizó utilizando materiales de fácil adquisición en nuestro país, se utilizó el ASTM A 366 cuyas especificaciones técnicas se indican en la figura 48.

Figura 47. Curvas promedio de potencia y torque múltiple diseñado obtenido del dinamómetro

Construcción del múltiple de admisión

La construcción del múltiple se realizó utilizando materiales de fácil adquisición en nuestro país, se utilizó el ASTM A 366 cuyas especificaciones técnicas se indican en la figura 48.

Figura 48. Características del material
Corte de material mediante plasma

La figura 49 indica el inicio de la construcción del múltiple diseñado en el cual como base se utiliza el empaque del múltiple de admisión para la base del colector de admisión.

![Imagen de un múltiple de admisión en proceso de corte]

Figura 49. Plancha base múltiple de admisión

Mediante la utilización del equipo portátil de corte con plasma se da la forma geométrica estructural de la plancha que servirá para el nuevo múltiple de admisión. La figura 50 indica el corte realizado en la plancha.
Posterior a la elaboración de la plancha base se realizó el corte de los tubos para posteriormente unir a la plancha mediante suelda eléctrica como se indica en la figura 51.

Se añadió el cuerpo de aceleración independiente para que el múltiple de admisión pueda funcionar correctamente en el vehículo como se indica en la figura 52.
Figura 52. Múltiple de admisión diseñado

La imagen 53 presenta el colector de admisión original y el diseñado, observando los cambios generados en la geometría del múltiple del diseñado. Se recalca el ingreso de aire adicional que se tiene en el nuevo diseño.

Figura 53. Múltiples de admisión motor G13B
Finalmente se instala el nuevo colector de admisión en el vehículo para realizar las pruebas de torque y potencia sobre un dinamómetro de chasis. La figura 54 indica el múltiple de admisión ya instalado en el motor.

Figura 54. Motor con múltiple de admisión instalado
Análisis y discusión de resultados

Análisis resultados obtenidos en OpenWAM

El software de simulación de rendimiento del motor OpenWAM se ha convertido en una parte integral del kit de herramientas del diseñador del motor. Sin embargo, la optimización de un diseño particular del múltiple admisión en relación con el diseño del múltiple original se analiza mediante los resultados obtenidos en este software. Se debe considerar el número de parámetros requeridos para caracterizar adecuadamente el motor y la interdependencia de estos parámetros entre sí.

Los resultados obtenidos del diseño 2 no son viables para la construcción del colector ya que las diferencias que presenta en sus curvas de torque y potencia están por encima del 50% y no es viable para el mejoramiento del rendimiento del motor, además en la tabla 20 se verifica los valores de torque y potencia que están por debajo de los especificados en la tabla 25.

La simulación en el software Open Wam entrega los parámetros de potencia en los dos casos del múltiple como se muestra en la tabla 25, en donde se puede observar que el menor valor de potencia es de 24.121 KW corresponde al múltiple diseñado y el mayor valor de potencia es 68.056 KW, lo que ratifica la hipótesis que el rendimiento volumétrico del vehículo depende del régimen de giro, el grado de admisión, forma y secciones de paso de válvulas, diagrama de distribución y del colector de admisión y mediante los datos obtenidos podemos comprobar que la forma, longitud y sección del múltiple de admisión si influye en el rendimiento volumétrico de un motor de combustión interna, además la hipótesis se ratifica ya que en el trabajo titulado Flujo compresible en múltiples de motores de Cuadrado, Agudelo, y Sánchez (2008) afirman que mediante el incremento de la cantidad de aire al colector se ve un aumento en el rendimiento del motor.
Tabla 25

Resultados Potencia

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Múltiple Original</th>
<th>Múltiple Diseñado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potencia (kW)</td>
<td>Potencia (kW)</td>
</tr>
<tr>
<td>2500</td>
<td>27.798</td>
<td>24.121</td>
</tr>
<tr>
<td>3500</td>
<td>42.182</td>
<td>38.654</td>
</tr>
<tr>
<td>4500</td>
<td>52.686</td>
<td>46.061</td>
</tr>
<tr>
<td>5500</td>
<td>62.736</td>
<td>58.357</td>
</tr>
<tr>
<td>6000</td>
<td>66.591</td>
<td>69.070</td>
</tr>
<tr>
<td>6500</td>
<td>68.391</td>
<td>75.039</td>
</tr>
<tr>
<td>7000</td>
<td>66.593</td>
<td>70.067</td>
</tr>
<tr>
<td>7500</td>
<td>63.749</td>
<td>68.056</td>
</tr>
</tbody>
</table>

En la figura 55 se puede observar la influencia del múltiple de admisión en la potencia debido a que el ingreso de aire al motor que influye directamente en el proceso de renovación de carga; y podemos observar como a bajas revoluciones 2500 rpm el múltiple original presenta una potencia de 27.798 kw que es 15% mayor al múltiple nuevo; pero a 7000 rpm esta condición cambia ya que la potencia del múltiple original es 63.749 kW es 6.75% menor que la del múltiple diseñado. Se debe considerar que en las competencias de pista el promedio del rango de trabajo es de 6000 a 6500 rpm y en esta condición tenemos una mayor potencia con el múltiple modificado es así que a las 6000 rpm 3.72% y a los 6500 rpm 9.72% mayor lo que una competencia significa reducción del tiempo en una vuelta. Como nos menciona Díaz, Hurtado, Molina y Valarezo (2014) en su trabajo de investigación titulado Diseño, construcción e implementación del colector de admisión para el motor de combustión interna Yamaha 600cc para la competencia formula SAE señalan que un colector contribuye al mejoramiento a la potencia del motor.
El valor de par efectivo del motor se muestra en la tabla 26 donde se observa que varía en función del régimen de giro y se puede determinar que a bajas rpm el múltiple original tiene un torque mayor de 2.99% considerando que el valor del múltiple diseñado es 103.091 Nm, mientras que a l mayor número de revoluciones el par del múltiple original es 42.23% menor que el del múltiple diseñado debido a que a esta condición se reducen las pérdidas por bombeo y se produce un mejor llenado del cilindro.

Tabla 26

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Múltiple Original Torque (Nm)</th>
<th>Múltiple Diseñado Torque [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>106.18</td>
<td>103.091</td>
</tr>
<tr>
<td>3500</td>
<td>115.08</td>
<td>105.463</td>
</tr>
<tr>
<td>4500</td>
<td>111.80</td>
<td>119.316</td>
</tr>
<tr>
<td>5500</td>
<td>108.92</td>
<td>130.655</td>
</tr>
<tr>
<td>6000</td>
<td>104.34</td>
<td>136.444</td>
</tr>
<tr>
<td>6500</td>
<td>101.23</td>
<td>133.362</td>
</tr>
<tr>
<td>7000</td>
<td>95.65</td>
<td>131.568</td>
</tr>
<tr>
<td>7500</td>
<td>90.39</td>
<td>128.565</td>
</tr>
</tbody>
</table>
La figura 56 muestra un comportamiento en el cual en el múltiple original el mayor torque se produce bajas rpm es así como las 2500 y 3500 rpm tenemos un torque de 106.18Nm y 115.08 Nm respectivamente y a los 7000 rpm un valor de 95.65Nm y a los 7500 rpm el valor de 90.39 Nm. Si analizamos los valores del múltiple diseñado se puede determinar que con conforme aumenta el número de revoluciones se va produciendo un incremento directamente proporcional, es decir, a medida que aumentan las revoluciones aumenta el par a excepción del 7000 y 7500 rpm. El incremento del torque se debe a la influencia del nuevo diseño del múltiple en la eficiencia volumétrica del motor, lo que indica que cuando el motor empieza a andar más rápido, el tiempo para que entre el aire con el combustible se reduce, pero el diseño del múltiple impide que el llenado sea ineficiente y por consiguiente el torque no baje. Arroyo (2017) en su investigación realiza el análisis de dos colectores de escape mediante 1D obteniendo un incremento de 10.1 % de mejora en el comportamiento de potencia y posteriormente lo comprueba mediante un dinamómetro, esto indica el correcto desempeño del software OpenWAM en el análisis del funcionamiento del motor mediante la variación de sus componentes.

Figura 56. Torque múltiple original y modificado
Otro dato que también se obtuvo con el OpenWam es el flujo másico de ingreso de aire en el cual se puede observar como sus valores en la tabla 27 en el cual se puede determinar que la cantidad de aire que ingresa por el colector depende mucho de la sección del ducto y un correcto cálculo de este valor influye en la eficiencia del ducto ya que incide directamente en la turbulencia y la velocidad de llenado del cilindro los cuales influyen directamente en el torque y la potencia.

<table>
<thead>
<tr>
<th>Velocidad motor (rpm)</th>
<th>Flujo másico ingreso de aire (g/cc)</th>
<th>Flujo másico ingreso de aire (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0.32376</td>
<td>0.311612</td>
</tr>
<tr>
<td>3500</td>
<td>0.34602</td>
<td>0.321</td>
</tr>
<tr>
<td>4500</td>
<td>0.355796</td>
<td>0.326569</td>
</tr>
<tr>
<td>5500</td>
<td>0.374464</td>
<td>0.355252</td>
</tr>
<tr>
<td>6500</td>
<td>0.32139</td>
<td>0.329482</td>
</tr>
<tr>
<td>7000</td>
<td>0.300798</td>
<td>0.347109</td>
</tr>
<tr>
<td>7500</td>
<td>0.32159</td>
<td>0.36014</td>
</tr>
</tbody>
</table>

Simulación 3D

Análisis de la velocidad.

La figura 57 muestra el comportamiento del aire en el interior del múltiple es visualizado por la forma en que las líneas se dirigen desde la entrada a la salida, considerando al mismo tiempo donde se dan los cambios de velocidades al variar la sección por donde circula el fluido. Para el análisis del comportamiento del aire en el interior del múltiple de admisión original se toma en cuenta que la velocidad máxima de ingreso es 12.19 m/s. La velocidad de salida no es la misma en cada uno de los ductos. Los valores de velocidad están alrededor de 6.09 m/s para las salidas dos, tres, cuatro y la salida uno tiene una velocidad de salida del fluido de 3.048 m/s. Mientras que con el múltiple diseñado la velocidad del aire a la salida del múltiple modificado, la salida es
totalmente homogénea con un valor de 40 m/s sin ninguna variación en cada uno de los ductos.

La velocidad que alcanza el fluido en los ductos de los cilindros es de vital importancia ya que influye en que el flujo tenga mayor turbulencia y laminarilidad lo que influye en la respuesta del motor a altas revoluciones, durante la entrega de potencia.

Figura 57. Análisis velocidad

En la investigación titulada Simulación CFD de un accesorio de motor diesel de 6 cilindros y colector de escape (Wang & Zhang, 2015) señala que la velocidad no es uniforme y tampoco consta de una alta velocidad si los ductos por donde se transporta el fluido no es lineal como se observa en la figura 53, se genera turbulencia logrando una mala distribución de la mezcla de combustible, esto refleja una disminución del rendimiento del motor.
Figura 58. Distribución de la velocidad en el colector de admisión. Fuente: (Wang y Zhang, 2015)

La figura 59 indica que la velocidad que influye directamente en la distribución del flujo no es homogénea, existe un mayor reparto de aire a los cilindros 2-3 y 4; y se pudo determinar que el flujo de aire hacia el cilindro número 1 es inferior en 49.55% en comparación a los ductos de admisión dos, tres y cuatro; lo cual influye en la potencia y torque que se requiere el cual favorece el funcionamiento de motor a bajo y medio régimen de revoluciones

Figura 59. Velocidad aire de salida múltiple original

La figura 60 indica los valores de velocidad del aire a la salida del múltiple modificado, la salida es totalmente homogénea con un valor de 40m/s sin ninguna variación en cada uno de los
ductos. El flujo de aire entre cada cilindro es homogéneo y no existen zonas donde se generen vacíos, lo que permite maximizar el rendimiento del motor en un rango de revoluciones más amplio. El aumento de la velocidad del aire es en un 88.77% en comparación al múltiple original.

El incremento de velocidad obtenido en el colector de admisión diseñado mejoró el rendimiento del motor lo cual nos afirma Carrera en su trabajo de investigación titulado Truaje de cabezote para competición (Carrera, 2016) donde señala que a mayor velocidad posea la mezcla de aire combustible mayor volumen tendrá este al interior del cilindro logrando así un incremento en la potencia y el par motor pudiendo así corroborar el aumento de velocidad y posterior aumento torque y potencia.

![Figura 60. Velocidad aire de salida múltiple modificado](image)

En el trabajo investigativo en el truaje de un motor del auto mini Austin realizan un mejoramiento al colector de admisión para mejorar el rendimiento del vehículo (Pozo y Cabezas, 2014) logrando elevar la velocidad de los gases en el conducto de 35.44 m/s a 65.42 m/s incrementando un 45.82% de incremento y para el colector de admisión diseñado se logró un incremento del 84.77% lo cual afirma que la modificación del múltiple de admisión incrementa la velocidad del fluido dentro del ducto.
El incremento de la velocidad en cada uno de los ductos de ingreso de aire permite un incremento en el rendimiento del motor como menciona Paredes (2015) en su trabajo investigativo donde sustituye el colector de admisión original a un sistema de entrada de aire independiente para cada cilindro logrando un incremento del 15% en el rendimiento total del motor. Este estudio afirma el buen desempeño del colector diseñado.

Análisis de la presión.

Al evaluar el diseño en cuánto a parámetros de forma geométrica esta influye directamente en la mayor diferencia de presión entre la entrada y la salida del colector que influye en las ondas depresivas y expansivas que se producen en la renovación de carga relacionadas directamente con la apertura y cierre de las válvulas. La figura 62 indica las presiones existentes en cada uno de los múltiples. El múltiple original presenta un valor de 53 Pa y el diseñado un valor de 13 Pa. La presión disminuyó en un 75.47% lo cual indica que la presión en el ducto es inferior a la atmosférica y ocasiona que los gases frescos sean arrastrados en forma de onda expansiva hacia la válvula de admisión cuando permanece abierta, lo que aumenta el rendimiento volumétrico del motor.

El análisis generado por Hinojosa, Piña, Erazo y Salazar (2014) donde diseñan un colector de ingreso de aire para un motor Honda CRB600 realizan un estudio en CFD sobre la presión ejercida en las paredes del colector de admisión logrando observar las partes de mator y menor presión como se indica en la figura 61, mediante esta metodología se pudo analizar el nuevo diseño del colector para que cpla con los parámetros de funcionamiento del material empleado en la construcción.
Figura 61. Análisis presión colector de admisión motor Honda CRB 600

Figura 62. Presiones existentes en los colectores

La diferencia de presión entre la entrada y la salida dará a entender que a mayor depresión la cantidad de aire aspirado será mayor y por ende la cantidad de gasto másico ingresado en los cilindros será favorable en la fase de admisión del cilindro la cual se indica en la tabla donde se puede observar que la mayor cantidad de aire de entrada se produce en el colector diseñado con un valor de 20.98 kPa que es mayor que el múltiple original lo que indica una mayor eficiencia volumétrica a altas rpm.
Tabla 28
Valores diferencia de presión

<table>
<thead>
<tr>
<th>Múltiple</th>
<th>Presión Entrada (kPa)</th>
<th>Presión Salida (kPa)</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.53</td>
<td>-2.5</td>
<td>1.97</td>
</tr>
<tr>
<td>Diseñado</td>
<td>21.96</td>
<td>-0.98</td>
<td>20.98</td>
</tr>
</tbody>
</table>

La optimización de los ductos de ingreso de aire a la cámara de combustión mejora las características de trabajo del motor como nos menciona Ali, Kantchev, y Salah (2011) permiten el mejoramiento del rendimiento del motor, la disminución de la presión en los ductos de admisión genera un mejor llenado de la cámara de combustión como se observa en la figura 63, se mantiene la tendencia de disminución de presión en el colector diseñado en la presente investigación.

Pruebas en el dinamómetro

Los resultados en el dinamómetro utilizando el múltiple de admisión original y el diseñado generó los resultados de potencia que se observan en la tabla 29, de acuerdo a las especificaciones del fabricante la potencia máxima es de 66.87 kW a 6600rpm, la cual si comparamos con la medida del múltiple original se mantiene y al realizar la prueba con el múltiple diseñado se puede determinar que la mayor potencia es de 80.16 kW a 7000 rpm, en base a estos resultados se puede determinar que con el diseño del múltiple se aumenta la potencia 19.87% y se aumenta el número de revoluciones en 400, lo que nos indica que los cálculos para el diseño del múltiple están correctos.

Tabla 29

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Múltiple Original (kW)</th>
<th>Múltiple Diseñado (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>26.17</td>
<td>21.21</td>
</tr>
<tr>
<td>3500</td>
<td>36.01</td>
<td>40.38</td>
</tr>
<tr>
<td>4500</td>
<td>43.60</td>
<td>53.63</td>
</tr>
<tr>
<td>5500</td>
<td>56.71</td>
<td>68.29</td>
</tr>
<tr>
<td>6000</td>
<td>63.09</td>
<td>75.16</td>
</tr>
<tr>
<td>6500</td>
<td>66.87</td>
<td>79.71</td>
</tr>
<tr>
<td>7000</td>
<td>66.08</td>
<td>80.16</td>
</tr>
<tr>
<td>7500</td>
<td>61.85</td>
<td>68.83</td>
</tr>
</tbody>
</table>

En la figura 64 se puede observar la variación de la potencia con los diferentes múltiples de admisión y se puede determinar que a altas revoluciones el desempeño del múltiple diseñado es mejor que el original debido a la mejora de la respiración del motor y el mayor incremento de potencia se produce a los rangos de trabajo de revoluciones de 4500, 5500 y 6500 rpm que son
los que más se desarrollan en el vehículo durante la competencia e indican una tendencia de aumento de la potencia del 20% promedio cada 1000 rpm en relación con el múltiple original.

Figura 64. Diferencia de la potencia entre el múltiple original y diseñado

La investigación genera por Castro (2016) sobre el diseño y construcción de colectores de admisión de aire con tomas individuales para cada cilindro de un motor de un vehículo Chevrolet corsa evolution logra un incremento de la potencia de 40.5 HP representando un porcentaje del 65.3%, esto define que la modificación del colector de admisión genera un incremento en la curva de potencia del motor.

El par motor viene determinado en los motores de combustión interna alternativos, por la presión media efectiva de la expansión de los gases sobre la cabeza del pistón. Esta presión la define la masa de la mezcla combustible aire que se expande: cuanto mayor sea esta masa, a igual volumen de cilindro, más par. En base a los datos obtenidos en la tabla 30 se determina que se la influencia del múltiple diseñado se manifiesta en la cantidad de aire que ingresa al motor lo que determina que se produzca un mayor torque a altas revoluciones en relación al múltiple original. El mayor torque corresponde al nuevo múltiple con un valor 119.63 Nm a 6000 rpm en
relación al original con un valor de 100.41 Nm a 6000 rpm lo que indica un incremento del 20% aproximadamente del torque con el múltiple diseñado.

Tabla 30
Resultados Torque

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Múltiple Original Torque (Nm)</th>
<th>Múltiple Diseñado Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>99.96</td>
<td>75.35</td>
</tr>
<tr>
<td>3500</td>
<td>97.80</td>
<td>110.18</td>
</tr>
<tr>
<td>4500</td>
<td>92.52</td>
<td>113.80</td>
</tr>
<tr>
<td>5500</td>
<td>98.47</td>
<td>118.57</td>
</tr>
<tr>
<td>6000</td>
<td>100.41</td>
<td>119.63</td>
</tr>
<tr>
<td>6500</td>
<td>98.23</td>
<td>117.13</td>
</tr>
<tr>
<td>7000</td>
<td>90.13</td>
<td>109.31</td>
</tr>
<tr>
<td>7500</td>
<td>78.87</td>
<td>87.68</td>
</tr>
</tbody>
</table>

La figura 65 indica el aumento del torque pasadas las 3500 rpm lo que indica que para las condiciones en que se desenvuelve el vehículo de competencia de pista al utilizar el nuevo diseño del múltiple aumenta. Se debe mencionar que la tendencia del aumento del torque se mantiene y considerando que el par cambia de acuerdo al régimen con el nuevo múltiple de admisión el vehículo será mas veloz y alcanzará mayor velocidad en menor tiempo de recorrido.
Comparación entre simulación 1D y resultados dinamómetro

Para validar la fiabilidad de este estudio se realiza una comparación de los datos obtenidos experimentalmente y los valores obtenidos en el software OpenWan y se obtienen los valores indicados en la tabla 31 de lo cual se indicar que en promedio la diferencia entre los valores del múltiple original de potencia es del 7.92% y del múltiple diseñado es del 9.29% lo que indica que los datos son fiables y están dentro de los rangos de error permitidos como se observa en la figura 66 y 67.

Tabla 31
Diferencia de potencia entre OpenWAM y dinamómetro

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>OPEN WAM</th>
<th>DINAMOMETRO</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Múltiple Original</td>
<td>Múltiple Diseñado</td>
<td>Múltiple Original</td>
</tr>
<tr>
<td></td>
<td>Potencia (kW)</td>
<td>Potencia (kW)</td>
<td>Potencia (kW)</td>
</tr>
<tr>
<td>2500</td>
<td>27.798</td>
<td>24.121</td>
<td>21.21</td>
</tr>
<tr>
<td>3500</td>
<td>42.182</td>
<td>38.654</td>
<td>40.38</td>
</tr>
<tr>
<td>4500</td>
<td>52.686</td>
<td>46.061</td>
<td>53.63</td>
</tr>
<tr>
<td>5500</td>
<td>62.736</td>
<td>58.357</td>
<td>68.29</td>
</tr>
<tr>
<td>Velocidad [rpm]</td>
<td>Potencia en OpenWAM [kW]</td>
<td>Potencia en DINAMOMETRO [kW]</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>66.591</td>
<td>8.10</td>
<td></td>
</tr>
<tr>
<td>6500</td>
<td>68.391</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>66.593</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>7500</td>
<td>63.749</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

Figura 66. Líneas de potencia múltiple original

Figura 67. Líneas de potencia múltiple diseñado
Con respecto al torque se realiza un análisis similar y se puede verificar que los datos indicados en la tabla 32 con respecto a los resultados en base al torque tienen una diferencia promedio de 8.10% del múltiple original y 9.29% del múltiple diseñado lo que nos indica que están los datos obtenidos dentro de los límites permitidos lo que también se puede observar en la figura 68 y 69 donde los valores son similares en las gráficas.

Tabla 32

Diferencia de torque entre OpenWAN y dinamómetro

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>OPEN WAM</th>
<th>DINAMOMETRO</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Múltiple Original</td>
<td>Múltiple Diseñado</td>
<td>Torque (Nm)</td>
</tr>
<tr>
<td></td>
<td>Torque (Nm)</td>
<td>Torque (Nm)</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>106.18</td>
<td>103.091</td>
<td>6.03</td>
</tr>
<tr>
<td>3500</td>
<td>115.08</td>
<td>105.463</td>
<td>16.38</td>
</tr>
<tr>
<td>4500</td>
<td>111.80</td>
<td>119.316</td>
<td>16.15</td>
</tr>
<tr>
<td>5500</td>
<td>108.92</td>
<td>130.655</td>
<td>7.99</td>
</tr>
<tr>
<td>6000</td>
<td>104.34</td>
<td>136.444</td>
<td>2.88</td>
</tr>
<tr>
<td>6500</td>
<td>101.23</td>
<td>133.362</td>
<td>2.24</td>
</tr>
<tr>
<td>7000</td>
<td>95.65</td>
<td>131.568</td>
<td>4.19</td>
</tr>
<tr>
<td>7500</td>
<td>90.39</td>
<td>128.565</td>
<td>8.96</td>
</tr>
</tbody>
</table>
Figura 68. Líneas de torque múltiple original

Figura 69. Líneas de torque múltiple diseñado
Comparación de modificación del múltiple de admisión en relación con distintos componentes modificados en el motor y el automóvil.

En el estudio de (Arroyo, 2017) se hace un estudio similar del mismo modelo de vehículo, pero en el múltiple de escape. En la tabla 31 se indica los valores de incremento de potencia del vehículo con respecto a modificar el múltiple de admisión y de escape medidos en el dinamómetro donde se puede observar que el mayor incremento de potencia se obtiene al variar el múltiple de admisión teniendo la mayor potencia de 80.16 kW a 7000 rpm; mientras que al variar el múltiple de escape la mayor potencia es de 64.75 kW a 7000 rpm lo que muestra un incremento de potencia a variar el múltiple de admisión del 23.79% mayor que al variar el múltiple de escape.

En el estudio de (Acosta, 2017) se realiza un cambio de la culata del motor G13 pasando de tener 8 a 16 válvulas en funcionamiento y adicional integran un turbo al sistema de alimentación de aire, esto influye directamente a la carga de aire hacia la cámara de combustión, logra incrementar en un 65% del rendimiento del vehículo lo cual se puede evidenciar en la tabla 33, adicionalmente se analiza que mejoraron la entrega de aire hacia la cámara logrando el incremento de torque y potencia pudiendo así ratificar que el mejoramiento de entrega de aire al motor produce mejoras al funcionamiento del motor.
Tabla 33
Comparación resultados de torque y potencia Acosta (2017) y colector diseñado

<table>
<thead>
<tr>
<th></th>
<th>Investigación Acosta (2017)</th>
<th>Investigación propia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehículo estándar</td>
<td>Vehículo modificado</td>
</tr>
<tr>
<td>Torque máximo [Nm]</td>
<td>82.1</td>
<td>136.31</td>
</tr>
<tr>
<td>Potencia máxima [kW]</td>
<td>35.4</td>
<td>101.36</td>
</tr>
</tbody>
</table>

En el estudio de (Cabrera, 2015) realiza la modificación sobre un motor G13 implementando un nuevo cabezote el cual a diferencia del original tiene 8 válvulas adicionales para el funcionamiento, además incluye un sistema de inyección programable para el mejoramiento del rendimiento del motor, aplicando todas las modificaciones obtuvo un incremento de potencia del 36% y un 26% de torque lo cual se puede evidenciar en la tabla 34, cabe mencionar que mediante la implementación de un nuevo cabezote el cual tiene un mayor número de válvulas lo cual permite un mejoramiento del ingreso de aire en velocidad y cantidad. Esto afirma los datos obtenidos en la actual investigación que mediante el mejoramiento de las características de ingreso de aire a la cámara de combustión se obtiene un incremento en torque y potencia del motor.

Tabla 34
Valores de torque y potencia de modificaciones de torque y potencia

<table>
<thead>
<tr>
<th></th>
<th>Investigación Cabrera (2015)</th>
<th>Investigación propia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehículo estándar</td>
<td>Vehículo modificado</td>
</tr>
<tr>
<td>Torque máximo [Nm]</td>
<td>69.1467</td>
<td>93.5514</td>
</tr>
<tr>
<td>Revoluciones motor (rpm)</td>
<td>Potencia Máxima de Admisión [kW]</td>
<td>Potencia Máxima de Escape [kW]</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2500</td>
<td>21.21</td>
<td>25.42</td>
</tr>
<tr>
<td>3500</td>
<td>40.38</td>
<td>38.61</td>
</tr>
<tr>
<td>4500</td>
<td>53.63</td>
<td>43.77</td>
</tr>
<tr>
<td>5500</td>
<td>68.29</td>
<td>59.42</td>
</tr>
<tr>
<td>6000</td>
<td>75.16</td>
<td>61.30</td>
</tr>
<tr>
<td>6500</td>
<td>79.71</td>
<td>63.40</td>
</tr>
<tr>
<td>7000</td>
<td>80.16</td>
<td>64.75</td>
</tr>
<tr>
<td>7500</td>
<td>68.83</td>
<td>63.00</td>
</tr>
</tbody>
</table>

En la figura 70 se puede observar que a las revoluciones de rangos normales de trabajo del vehículo de competencia comprendidas entre los 4500 y 7000 rpm se obtienen los mayores incrementos de potencia en el vehículo del 15% al 25% respectivamente.
Figura 70. Diferencias de potencias al variar el múltiple de admisión en relación con el de escape

Con respecto al torque en la tabla 36 se muestran los diferentes valores al modificar el múltiple de admisión y el múltiple de escape, y se puede determinar que el mayor torque al variar el múltiple de admisión se produce a las 6000 rpm con un valor de 119.63 Nm y al variar el múltiple de escape el mayor valor se obtiene a los 3500 rpm con un valor 105.35 Nm lo que indica que con el múltiple de escape modificado se obtiene un mayor torque a bajas r.p.m. lo que nos indica que la variación de este múltiple se puede realizar para otro tipo de competencia.

Tabla 36
Diferencia de torque entre el múltiple de admisión y múltiple de escape

<table>
<thead>
<tr>
<th>Revoluciones motor (rpm)</th>
<th>Múltiple Admisión (Torque (Nm))</th>
<th>Múltiple Escape (Torque (Nm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>75.35</td>
<td>97.10</td>
</tr>
<tr>
<td>3500</td>
<td>110.18</td>
<td>105.35</td>
</tr>
<tr>
<td>4500</td>
<td>113.80</td>
<td>92.89</td>
</tr>
<tr>
<td>5500</td>
<td>118.57</td>
<td>103.16</td>
</tr>
<tr>
<td>6000</td>
<td>119.63</td>
<td>97.57</td>
</tr>
<tr>
<td>6500</td>
<td>117.13</td>
<td>93.15</td>
</tr>
<tr>
<td>7000</td>
<td>109.31</td>
<td>88.33</td>
</tr>
<tr>
<td>7500</td>
<td>87.68</td>
<td>80.22</td>
</tr>
</tbody>
</table>
En base a la gráfica 71 se puede observar que para las solicitudes de torque necesarias los circuitos en pista la mejor opción constituye la variación del múltiple de admisión, debido a que en el rango de revoluciones de trabajo del vehículo que se puede determinar entre las 4500 y 7000 rpm el incremento del torque es de 15 a 24 Nm, debido a que el múltiple de admisión influye directamente en la eficiencia volumétrica del motor por que no está sometido a una alta temperatura como el múltiple de escape lo que influye directamente en la densidad del aire.

Figura 71. Diferencias de torque al variar el múltiple de admisión en relación con el de escape
Conclusiones

Se diseñó el múltiple de admisión de un vehículo Chevrolet Forsa 1.3 para competencia de pista mediante el análisis de los datos obtenidos en base a la teoría de diseño de múltiples de admisión, la simulación en el programa OpenWAM 1D, el software Ansys en 3D y pruebas experimentales en dinamómetro logrando el aumento del torque potencia a altas revoluciones.

Se realizó el análisis de la teoría de diseño de múltiples de admisión para mejorar la renovación de carga del motor mediante los parámetros del fabricante y la obtención de datos mediante la telemetría determinando que el diámetro y la longitud ideal del nuevo múltiple corresponden a 44mm y 200mm respectivamente.

Se efectuó el modelado en el software OpenWAM del múltiple original y el diseñado, utilizando las especificaciones técnicas del vehículo de estudio y se obtuvo los valores flujo másico de ingreso de aire para utilizarlos como condiciones de frontera en la simulación en el software Ansys además de obtener un valor referencial de torque y potencia que indicó la viabilidad de seguir con el proyecto.

La elaboración de los colectores de admisión en el software Ansys permitió desarrollar simulaciones de fluido y poder entender cómo se comportan las líneas de flujo desde el ingreso hasta la entrega de los diferentes ductos pudiendo determinar el tipo de modelo más óptimo a la hora de llevarlo a la construcción en función de la variación de presión y el flujo másico.

Las velocidades de entrada en el múltiples diseñado aumenta de 12.19 m/s a 40 m/s debido a la variación de la geometría de la sección y longitud del múltiple de admisión lo que mejora la eficiencia volumétrica del motor a altas revoluciones.

Se determinó que en el múltiple original la presión es 75.47% mayor que la presión en múltiple diseñado debido a la geometría del nuevo múltiple la cual con presenta zonas de
concentración de gases o restricciones que elevan la presión, teniendo como consecuencia que la presión en el ducto es inferior a la atmosférica y ocasiona que los gases frescos sean arrastrados en forma de onda expansiva hacia la válvula de admisión cuando permanece abierta, lo que aumenta el rendimiento volumétrico del motor.

Mediante la experimentación en el dinamómetro se determinó que con el nuevo múltiple incrementa la potencia en 19.20% al comparar con la potencia indicada por el fabricante y la potencia obtenida en el múltiple original, además se comprobó que la mayor potencia se produce a un número de revoluciones que las especificadas por el fabricante es decir, la mayor potencia se obtuvo a 7000 rpm y se incrementó un valor de 123.29kW.

El torque original del vehículo se incrementa con el nuevo múltiple debido al aumento de la presión media efectiva, lo que se demuestra en las pruebas en el dinamómetro ya que el mayor par motor se produce a las 6000 rpm y se determinó un incremento del 20% con el nuevo múltiple.

Los parámetros de torque y potencia obtenidos en la prueba experimental mediante el dinamómetro y la simulación en software OpenWAM, para el múltiple original tienen una diferencia promedio de 8.10% y 9.29% respectivamente, y hay una similitud de las curvas características, lo que indica que los datos de la experimentación son válidos.

Se determinó que un auto de las mismas especificaciones técnicas que al cambiar los múltiples de escape y admisión se producen valores de torque y de potencia diferentes, es así que al modificar el múltiple de admisión se produce 23.79% más potencia que al modificar el múltiple de escape y el mayor torque del vehículo especificado por el fabricante es de 100.41 Nm, con el múltiple de escape a ese mismo número de revoluciones es 97.57 Nm y con el
El trabajo investigativo para el diseño de un colector de admisión se desarrolló bajo análisis de varias consideraciones automotrices tomando en cuenta que el componente diseñado es utilizado en autos de competencia y éstos tienen condiciones de funcionamiento distintas a autos de calle, de tal forma que un parámetro no tomado en cuenta es el consumo de combustible ya que en competencia se busca el mejor rendimiento del vehículo depreciando la cantidad de gasolina utilizada en carrera.
Recomendaciones

Se recomienda realizar un estudio instalando en el mismo vehículo los múltiples de admisión y de escape originales y modificados para determinar como el reemplazo de los dos múltiple influye en el torque y potencia de vehículo.

Se recomienda hacer un diseño del estudio de renovación de carga de diferentes vehículos de diferente cilindraje que compiten, con el programa OpenWAM debido a que se puede obtener valores de presión de admisión y valores para establecer las condiciones de frontera para mejorar los rendimientos de dichos vehículos.

Se recomienda realizar los estudios de los múltiples de admisión y de escape con materiales compuestos para obtener un mayor beneficio en reducción de peso, resistencia de material, y reducción de costos.

Se recomienda difundir este tipo de investigaciones para fomentar la preparación técnica de los vehículos de competencia en nuestro país.
Referencias Bibliográficas

Castillo, J., Rojas, V., & Martínez, J. (2017). Detreminación del torque y potencia de un motor de combustión interna a gasolina mediante el uso de bujía con sensor de presión adaptado y aplicación de un modelo matemático.

FERROTOLL. (2018). *Tubería redonda*. Obtenido de https://www.ferrotoll.com/tuber%C3%ADa/tuber%C3%ADa-redonda-astm-a-500-a-513/

Tolerance Date. (2009).

UNICON. (2017). *Tablas estructurales VEMAcero*. Obtenido de

file:///F:/MAESTRIA/TESIS/DESARROLLO%20TESIS/TESIS%20ENTREGADA%20LECTORES/CFD%206%20CILINDROS.pdf

Anexos

Anexo 1. Especificaciones técnicas Chevrolet Forsa 1.3.
Anexo 2. Licencia estudiantil ANSYS.

Fuente: (DIPAC, 2016) http://www.dipacmanta.com/planchas-de-acero/planchas-laminadas-enfrio
Anexo 4. Propiedades material ASTM A 500.

Especificaciones de Producto

Estructurales

Tubos Estructurales

- <longitud comercial (m)>
- <número de colada>
- <orden de fabricación (O/F)>

Todos los productos son empaquetados y flejados para facilitar su transporte y manejo. Cada paquete tiene un peso teórico máximo de 2,000 Kg.

Propiedades Mecánicas

<table>
<thead>
<tr>
<th>Norma ASTM A 500</th>
<th>Propiedades Mecánicas (mínimas)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado del Acero</td>
<td>Limites de Fluencia (psi)</td>
<td>Resistencia a la Tracción (psi)</td>
</tr>
<tr>
<td>Grado A</td>
<td>39,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Grado B</td>
<td>46,000</td>
<td>58,000</td>
</tr>
<tr>
<td>Grado C</td>
<td>50,000</td>
<td>62,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Norma EN 10219</th>
<th>Propiedades Mecánicas (mínimas)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado del Acero</td>
<td>Limites de Fluencia</td>
<td>Resistencia a la Tracción Espesor ≤ 3 mm</td>
</tr>
<tr>
<td></td>
<td>MPa</td>
<td>psi</td>
</tr>
<tr>
<td>S235</td>
<td>235</td>
<td>34,000</td>
</tr>
<tr>
<td>S275</td>
<td>275</td>
<td>40,000</td>
</tr>
<tr>
<td>S355</td>
<td>355</td>
<td>51,000</td>
</tr>
</tbody>
</table>

Anexo 5. Ficha técnica dinamómetro.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Horsepower</td>
<td>1,300 hp</td>
</tr>
<tr>
<td>Max Absorption</td>
<td>900 hp</td>
</tr>
<tr>
<td>Loading Device</td>
<td>Air-cooled eddy current power absorber (model MDK-250)</td>
</tr>
<tr>
<td>Torque Measurement Strain Gauge</td>
<td>Provides closed loop control signal for dynamic vehicle</td>
</tr>
<tr>
<td>Device</td>
<td>Load option</td>
</tr>
<tr>
<td>Inertia</td>
<td>Approximately 2,000 lbs. base mechanical inertia</td>
</tr>
<tr>
<td>Max Speed</td>
<td>175 mph</td>
</tr>
<tr>
<td>Controls</td>
<td>Closed Loop Digital Controller with Windows based PowerDyne Software, Includes Patented Virtual Road Simulation Technology, Precision machined and dynamically balanced Knurled finish for superior tire traction Belted for bi-directional capability</td>
</tr>
<tr>
<td>Roll(s)/Wheelbase</td>
<td>10.7” (272mm) diameter balanced rolls</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>40” (1,016mm) face length</td>
</tr>
<tr>
<td></td>
<td>28” (711mm) inner track width</td>
</tr>
<tr>
<td></td>
<td>108” (2,743mm) outer track width</td>
</tr>
<tr>
<td></td>
<td>19.6” (498mm) roll spacing</td>
</tr>
<tr>
<td>Roll Lock</td>
<td>Industrial brake pad in contact with 0.0” of roll</td>
</tr>
<tr>
<td>Roll Decelerator</td>
<td>Allows vehicle deceleration without use of vehicle brakes, Eddy Current PAU used to decelerate rollers.</td>
</tr>
<tr>
<td>Air Requirements</td>
<td>100 PSI, dry, regulated, oil free</td>
</tr>
<tr>
<td></td>
<td>115 VAC, single phase, 60 Hz, 15 Amps (computer)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>230 VAC, single phase, 60 Hz, 40 Amps (dynamometer)</td>
</tr>
<tr>
<td>Axle Weight</td>
<td>12,000 lbs (2,727 kg) maximum</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>4,500 lbs. (dynamometer weight only)</td>
</tr>
</tbody>
</table>

Fuente: (DYNAMOMETER, 2018)
Anexo 6. Pruebas en el dinamómetro múltiple original.

PRUEBA 1

<table>
<thead>
<tr>
<th>RPM (RPM)</th>
<th>Est. Hp (Hp)</th>
<th>Torque (Nm)</th>
<th>Potencia (kW)</th>
<th>Est. Tq. (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>13,67</td>
<td>48,78</td>
<td>10,93</td>
<td>36,19</td>
</tr>
<tr>
<td>2100</td>
<td>23,01</td>
<td>78,56</td>
<td>17,90</td>
<td>58,15</td>
</tr>
<tr>
<td>2200</td>
<td>26,92</td>
<td>87,69</td>
<td>20,81</td>
<td>64,89</td>
</tr>
<tr>
<td>2300</td>
<td>30,66</td>
<td>95,50</td>
<td>23,60</td>
<td>70,65</td>
</tr>
<tr>
<td>2400</td>
<td>33,39</td>
<td>99,61</td>
<td>25,64</td>
<td>73,68</td>
</tr>
<tr>
<td>2500</td>
<td>35,17</td>
<td>100,76</td>
<td>26,97</td>
<td>74,53</td>
</tr>
<tr>
<td>2600</td>
<td>36,43</td>
<td>100,33</td>
<td>27,91</td>
<td>74,21</td>
</tr>
<tr>
<td>2700</td>
<td>37,46</td>
<td>99,37</td>
<td>28,67</td>
<td>73,5</td>
</tr>
<tr>
<td>2800</td>
<td>39,13</td>
<td>100,10</td>
<td>29,92</td>
<td>74,04</td>
</tr>
<tr>
<td>2900</td>
<td>41,22</td>
<td>101,81</td>
<td>31,48</td>
<td>75,3</td>
</tr>
<tr>
<td>3000</td>
<td>43,03</td>
<td>102,72</td>
<td>32,83</td>
<td>75,97</td>
</tr>
<tr>
<td>3000</td>
<td>43,03</td>
<td>102,72</td>
<td>32,83</td>
<td>75,97</td>
</tr>
<tr>
<td>4000</td>
<td>53,74</td>
<td>96,30</td>
<td>40,81</td>
<td>71,24</td>
</tr>
<tr>
<td>4100</td>
<td>54,35</td>
<td>95,06</td>
<td>41,27</td>
<td>70,32</td>
</tr>
<tr>
<td>4200</td>
<td>55,25</td>
<td>94,34</td>
<td>41,94</td>
<td>69,79</td>
</tr>
<tr>
<td>4300</td>
<td>56,81</td>
<td>94,74</td>
<td>43,10</td>
<td>70,09</td>
</tr>
<tr>
<td>4400</td>
<td>58,1</td>
<td>94,69</td>
<td>44,07</td>
<td>70,05</td>
</tr>
<tr>
<td>4500</td>
<td>58,55</td>
<td>93,32</td>
<td>44,40</td>
<td>69,04</td>
</tr>
<tr>
<td>4600</td>
<td>59,35</td>
<td>92,55</td>
<td>45,00</td>
<td>68,47</td>
</tr>
<tr>
<td>4700</td>
<td>60,73</td>
<td>92,70</td>
<td>46,03</td>
<td>68,58</td>
</tr>
<tr>
<td>4800</td>
<td>61,98</td>
<td>92,62</td>
<td>46,96</td>
<td>68,52</td>
</tr>
<tr>
<td>4900</td>
<td>64,04</td>
<td>93,74</td>
<td>48,49</td>
<td>69,35</td>
</tr>
<tr>
<td>5000</td>
<td>68,16</td>
<td>97,75</td>
<td>51,57</td>
<td>72,31</td>
</tr>
<tr>
<td>5100</td>
<td>71,63</td>
<td>100,71</td>
<td>54,15</td>
<td>74,49</td>
</tr>
<tr>
<td>5200</td>
<td>71,67</td>
<td>98,84</td>
<td>54,18</td>
<td>73,11</td>
</tr>
<tr>
<td>5300</td>
<td>71,87</td>
<td>97,25</td>
<td>54,33</td>
<td>71,94</td>
</tr>
<tr>
<td>5400</td>
<td>73,73</td>
<td>97,92</td>
<td>55,72</td>
<td>72,43</td>
</tr>
<tr>
<td>5500</td>
<td>76,13</td>
<td>99,26</td>
<td>57,51</td>
<td>73,42</td>
</tr>
<tr>
<td>5600</td>
<td>78,93</td>
<td>101,06</td>
<td>59,60</td>
<td>74,75</td>
</tr>
<tr>
<td>5700</td>
<td>81,16</td>
<td>102,08</td>
<td>61,26</td>
<td>75,5</td>
</tr>
<tr>
<td>5800</td>
<td>82,33</td>
<td>101,77</td>
<td>62,13</td>
<td>75,27</td>
</tr>
<tr>
<td>5900</td>
<td>83,68</td>
<td>101,70</td>
<td>63,14</td>
<td>75,22</td>
</tr>
<tr>
<td>6000</td>
<td>84,69</td>
<td>101,21</td>
<td>63,89</td>
<td>74,86</td>
</tr>
<tr>
<td>6100</td>
<td>85,2</td>
<td>100,17</td>
<td>64,27</td>
<td>74,09</td>
</tr>
<tr>
<td>6200</td>
<td>86,25</td>
<td>99,77</td>
<td>65,06</td>
<td>73,8</td>
</tr>
<tr>
<td>6300</td>
<td>87,45</td>
<td>99,56</td>
<td>65,95</td>
<td>73,64</td>
</tr>
<tr>
<td>6400</td>
<td>88,82</td>
<td>99,53</td>
<td>66,97</td>
<td>73,62</td>
</tr>
<tr>
<td>6500</td>
<td>89,75</td>
<td>99,03</td>
<td>67,67</td>
<td>73,25</td>
</tr>
<tr>
<td>RPM (RPM)</td>
<td>Est. Hp (Hp)</td>
<td>Boost PSI</td>
<td>AFR (A/F)</td>
<td>Est. Tq. (ft-lb)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>2000</td>
<td>13,47</td>
<td>-5,279</td>
<td>14,66</td>
<td>35,27</td>
</tr>
<tr>
<td>2100</td>
<td>22,81</td>
<td>-4,219</td>
<td>14,67</td>
<td>57,23</td>
</tr>
<tr>
<td>2200</td>
<td>26,72</td>
<td>-4,201</td>
<td>14,67</td>
<td>63,97</td>
</tr>
<tr>
<td>2300</td>
<td>30,46</td>
<td>-4,186</td>
<td>14,59</td>
<td>69,73</td>
</tr>
<tr>
<td>2400</td>
<td>33,19</td>
<td>-4,187</td>
<td>14,43</td>
<td>72,76</td>
</tr>
<tr>
<td>2500</td>
<td>34,97</td>
<td>-4,2</td>
<td>14,28</td>
<td>73,61</td>
</tr>
<tr>
<td>2600</td>
<td>36,23</td>
<td>-4,212</td>
<td>14,23</td>
<td>73,29</td>
</tr>
<tr>
<td>2700</td>
<td>37,26</td>
<td>-4,221</td>
<td>14,27</td>
<td>72,58</td>
</tr>
<tr>
<td>2800</td>
<td>38,93</td>
<td>-4,227</td>
<td>14,36</td>
<td>73,12</td>
</tr>
<tr>
<td>2900</td>
<td>41,02</td>
<td>-4,23</td>
<td>14,46</td>
<td>74,38</td>
</tr>
<tr>
<td>3000</td>
<td>42,83</td>
<td>-4,233</td>
<td>14,55</td>
<td>75,05</td>
</tr>
<tr>
<td>3100</td>
<td>44,62</td>
<td>-4,235</td>
<td>14,66</td>
<td>75,66</td>
</tr>
<tr>
<td>3200</td>
<td>46,26</td>
<td>-4,236</td>
<td>14,82</td>
<td>75,99</td>
</tr>
<tr>
<td>3300</td>
<td>47,29</td>
<td>-4,237</td>
<td>15,07</td>
<td>75,34</td>
</tr>
<tr>
<td>3400</td>
<td>48,43</td>
<td>-4,237</td>
<td>15,34</td>
<td>74,88</td>
</tr>
<tr>
<td>3500</td>
<td>50,32</td>
<td>-4,238</td>
<td>15,55</td>
<td>75,58</td>
</tr>
<tr>
<td>3600</td>
<td>51,76</td>
<td>-4,239</td>
<td>15,64</td>
<td>75,57</td>
</tr>
<tr>
<td>3700</td>
<td>52,58</td>
<td>-4,24</td>
<td>15,65</td>
<td>74,69</td>
</tr>
<tr>
<td>3800</td>
<td>53,28</td>
<td>-4,24</td>
<td>15,58</td>
<td>73,69</td>
</tr>
<tr>
<td>3900</td>
<td>53,32</td>
<td>-4,24</td>
<td>15,39</td>
<td>71,83</td>
</tr>
<tr>
<td>4000</td>
<td>53,54</td>
<td>-4,241</td>
<td>15,13</td>
<td>70,32</td>
</tr>
<tr>
<td>4100</td>
<td>54,15</td>
<td>-4,242</td>
<td>14,84</td>
<td>69,4</td>
</tr>
<tr>
<td>4200</td>
<td>55,05</td>
<td>-4,242</td>
<td>14,54</td>
<td>68,87</td>
</tr>
<tr>
<td>4300</td>
<td>56,61</td>
<td>-4,243</td>
<td>14,23</td>
<td>69,17</td>
</tr>
<tr>
<td>4400</td>
<td>57,9</td>
<td>-4,244</td>
<td>13,93</td>
<td>69,13</td>
</tr>
<tr>
<td>RPM</td>
<td>Est. Hp (Hp)</td>
<td>Boost PSI</td>
<td>AFR (A/F)</td>
<td>Est. Tq. (ft-lb)</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2000</td>
<td>13,79</td>
<td>-4,959</td>
<td>14,98</td>
<td>35,59</td>
</tr>
<tr>
<td>2100</td>
<td>23,13</td>
<td>-3,899</td>
<td>14,99</td>
<td>57,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2200</td>
<td>27,04</td>
<td>-3,881</td>
<td>14,99</td>
<td>64,29</td>
</tr>
<tr>
<td>2300</td>
<td>30,78</td>
<td>-3,866</td>
<td>14,91</td>
<td>70,05</td>
</tr>
<tr>
<td>2400</td>
<td>33,51</td>
<td>-3,867</td>
<td>14,75</td>
<td>73,08</td>
</tr>
<tr>
<td>2500</td>
<td>35,29</td>
<td>-3,88</td>
<td>14,6</td>
<td>73,93</td>
</tr>
<tr>
<td>2600</td>
<td>36,55</td>
<td>-3,892</td>
<td>14,55</td>
<td>73,61</td>
</tr>
<tr>
<td>2700</td>
<td>37,58</td>
<td>-3,901</td>
<td>14,59</td>
<td>72,9</td>
</tr>
<tr>
<td>2800</td>
<td>39,25</td>
<td>-3,907</td>
<td>14,68</td>
<td>73,44</td>
</tr>
<tr>
<td>2900</td>
<td>41,34</td>
<td>-3,91</td>
<td>14,78</td>
<td>74,7</td>
</tr>
<tr>
<td>3000</td>
<td>43,15</td>
<td>-3,913</td>
<td>14,87</td>
<td>75,37</td>
</tr>
<tr>
<td>3100</td>
<td>44,94</td>
<td>-3,915</td>
<td>14,98</td>
<td>75,98</td>
</tr>
<tr>
<td>3200</td>
<td>46,58</td>
<td>-3,916</td>
<td>15,14</td>
<td>76,31</td>
</tr>
<tr>
<td>3300</td>
<td>47,61</td>
<td>-3,917</td>
<td>15,39</td>
<td>75,66</td>
</tr>
<tr>
<td>3400</td>
<td>48,75</td>
<td>-3,917</td>
<td>15,66</td>
<td>75,2</td>
</tr>
<tr>
<td>3500</td>
<td>50,64</td>
<td>-3,918</td>
<td>15,87</td>
<td>75,9</td>
</tr>
<tr>
<td>3600</td>
<td>52,08</td>
<td>-3,919</td>
<td>15,96</td>
<td>75,89</td>
</tr>
<tr>
<td>3700</td>
<td>52,9</td>
<td>-3,92</td>
<td>15,97</td>
<td>75,01</td>
</tr>
<tr>
<td>3800</td>
<td>53,6</td>
<td>-3,92</td>
<td>15,9</td>
<td>74,01</td>
</tr>
<tr>
<td>3900</td>
<td>53,64</td>
<td>-3,92</td>
<td>15,71</td>
<td>72,15</td>
</tr>
<tr>
<td>4000</td>
<td>53,86</td>
<td>-3,921</td>
<td>15,45</td>
<td>70,64</td>
</tr>
<tr>
<td>4100</td>
<td>54,47</td>
<td>-3,922</td>
<td>15,16</td>
<td>69,72</td>
</tr>
<tr>
<td>4200</td>
<td>55,37</td>
<td>-3,922</td>
<td>14,86</td>
<td>69,19</td>
</tr>
<tr>
<td>4300</td>
<td>56,93</td>
<td>-3,923</td>
<td>14,55</td>
<td>69,49</td>
</tr>
<tr>
<td>4400</td>
<td>58,22</td>
<td>-3,924</td>
<td>14,25</td>
<td>69,45</td>
</tr>
<tr>
<td>4500</td>
<td>58,67</td>
<td>-3,924</td>
<td>13,97</td>
<td>68,44</td>
</tr>
<tr>
<td>4600</td>
<td>59,47</td>
<td>-3,925</td>
<td>13,68</td>
<td>67,87</td>
</tr>
<tr>
<td>4700</td>
<td>60,85</td>
<td>-3,927</td>
<td>13,36</td>
<td>67,98</td>
</tr>
<tr>
<td>4800</td>
<td>62,1</td>
<td>-3,929</td>
<td>13,03</td>
<td>67,92</td>
</tr>
<tr>
<td>4900</td>
<td>64,16</td>
<td>-3,932</td>
<td>12,73</td>
<td>68,75</td>
</tr>
<tr>
<td>5000</td>
<td>68,28</td>
<td>-3,933</td>
<td>12,44</td>
<td>71,71</td>
</tr>
<tr>
<td>5100</td>
<td>71,75</td>
<td>-3,933</td>
<td>12,21</td>
<td>73,89</td>
</tr>
<tr>
<td>5200</td>
<td>71,79</td>
<td>-3,934</td>
<td>12,01</td>
<td>72,51</td>
</tr>
<tr>
<td>5300</td>
<td>71,99</td>
<td>-3,934</td>
<td>11,85</td>
<td>71,34</td>
</tr>
<tr>
<td>5400</td>
<td>73,85</td>
<td>-3,934</td>
<td>11,75</td>
<td>71,83</td>
</tr>
<tr>
<td>5500</td>
<td>76,25</td>
<td>-3,935</td>
<td>11,69</td>
<td>72,82</td>
</tr>
<tr>
<td>5600</td>
<td>79,05</td>
<td>-3,936</td>
<td>11,66</td>
<td>74,15</td>
</tr>
<tr>
<td>5700</td>
<td>81,28</td>
<td>-3,937</td>
<td>11,65</td>
<td>74,9</td>
</tr>
<tr>
<td>5800</td>
<td>82,45</td>
<td>-3,938</td>
<td>11,65</td>
<td>74,67</td>
</tr>
<tr>
<td>5900</td>
<td>83,8</td>
<td>-3,942</td>
<td>11,65</td>
<td>74,62</td>
</tr>
<tr>
<td>6000</td>
<td>84,81</td>
<td>-3,944</td>
<td>11,65</td>
<td>74,26</td>
</tr>
<tr>
<td>6100</td>
<td>85,32</td>
<td>-3,945</td>
<td>11,66</td>
<td>73,49</td>
</tr>
<tr>
<td>6200</td>
<td>86,37</td>
<td>-3,947</td>
<td>11,68</td>
<td>73,2</td>
</tr>
<tr>
<td>RPM(RPM)</td>
<td>Est. Hp (Hp)</td>
<td>Boost PSI</td>
<td>AFR (A/F)</td>
<td>Est. Tq. (ft-lb)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>2000</td>
<td>13,54</td>
<td>-5,659</td>
<td>14,73</td>
<td>35,34</td>
</tr>
<tr>
<td>2100</td>
<td>22,88</td>
<td>-4,599</td>
<td>14,74</td>
<td>57,3</td>
</tr>
<tr>
<td>2200</td>
<td>26,79</td>
<td>-4,581</td>
<td>14,74</td>
<td>64,04</td>
</tr>
<tr>
<td>2300</td>
<td>30,53</td>
<td>-4,566</td>
<td>14,66</td>
<td>69,8</td>
</tr>
<tr>
<td>2400</td>
<td>33,26</td>
<td>-4,567</td>
<td>14,5</td>
<td>72,83</td>
</tr>
<tr>
<td>2500</td>
<td>35,04</td>
<td>-4,58</td>
<td>14,35</td>
<td>73,68</td>
</tr>
<tr>
<td>2600</td>
<td>36,3</td>
<td>-4,592</td>
<td>14,3</td>
<td>73,36</td>
</tr>
<tr>
<td>2700</td>
<td>37,33</td>
<td>-4,601</td>
<td>14,34</td>
<td>72,65</td>
</tr>
<tr>
<td>2800</td>
<td>39</td>
<td>-4,607</td>
<td>14,43</td>
<td>73,19</td>
</tr>
<tr>
<td>2900</td>
<td>41,09</td>
<td>-4,61</td>
<td>14,53</td>
<td>74,45</td>
</tr>
<tr>
<td>3000</td>
<td>42,9</td>
<td>-4,613</td>
<td>14,62</td>
<td>75,12</td>
</tr>
<tr>
<td>3100</td>
<td>44,69</td>
<td>-4,615</td>
<td>14,73</td>
<td>75,73</td>
</tr>
<tr>
<td>3200</td>
<td>46,33</td>
<td>-4,616</td>
<td>14,89</td>
<td>76,06</td>
</tr>
<tr>
<td>3300</td>
<td>47,36</td>
<td>-4,617</td>
<td>15,14</td>
<td>75,41</td>
</tr>
<tr>
<td>3400</td>
<td>48,5</td>
<td>-4,617</td>
<td>15,41</td>
<td>74,95</td>
</tr>
<tr>
<td>3500</td>
<td>50,39</td>
<td>-4,618</td>
<td>15,62</td>
<td>75,65</td>
</tr>
<tr>
<td>3600</td>
<td>51,83</td>
<td>-4,619</td>
<td>15,71</td>
<td>75,64</td>
</tr>
<tr>
<td>3700</td>
<td>52,65</td>
<td>-4,62</td>
<td>15,72</td>
<td>74,76</td>
</tr>
<tr>
<td>3800</td>
<td>53,35</td>
<td>-4,62</td>
<td>15,65</td>
<td>73,76</td>
</tr>
<tr>
<td>3900</td>
<td>53,39</td>
<td>-4,62</td>
<td>15,46</td>
<td>71,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>4000</td>
<td>53,61</td>
<td>-4,621</td>
<td>15,2</td>
<td>70,39</td>
</tr>
<tr>
<td>4100</td>
<td>54,22</td>
<td>-4,622</td>
<td>14,91</td>
<td>69,47</td>
</tr>
<tr>
<td>4200</td>
<td>55,12</td>
<td>-4,622</td>
<td>14,61</td>
<td>68,94</td>
</tr>
<tr>
<td>4300</td>
<td>56,68</td>
<td>-4,623</td>
<td>14,3</td>
<td>69,24</td>
</tr>
<tr>
<td>4400</td>
<td>57,97</td>
<td>-4,624</td>
<td>14</td>
<td>69,2</td>
</tr>
<tr>
<td>4500</td>
<td>58,42</td>
<td>-4,624</td>
<td>13,72</td>
<td>68,19</td>
</tr>
<tr>
<td>4600</td>
<td>59,22</td>
<td>-4,625</td>
<td>13,43</td>
<td>67,62</td>
</tr>
<tr>
<td>4700</td>
<td>60,6</td>
<td>-4,627</td>
<td>13,11</td>
<td>67,73</td>
</tr>
<tr>
<td>4800</td>
<td>61,85</td>
<td>-4,629</td>
<td>12,78</td>
<td>67,67</td>
</tr>
<tr>
<td>4900</td>
<td>63,91</td>
<td>-4,632</td>
<td>12,48</td>
<td>68,5</td>
</tr>
<tr>
<td>5000</td>
<td>68,03</td>
<td>-4,633</td>
<td>12,19</td>
<td>71,46</td>
</tr>
<tr>
<td>5100</td>
<td>71,5</td>
<td>-4,633</td>
<td>11,96</td>
<td>73,64</td>
</tr>
<tr>
<td>5200</td>
<td>71,54</td>
<td>-4,634</td>
<td>11,76</td>
<td>72,26</td>
</tr>
<tr>
<td>5300</td>
<td>71,74</td>
<td>-4,634</td>
<td>11,6</td>
<td>71,09</td>
</tr>
<tr>
<td>5400</td>
<td>73,6</td>
<td>-4,634</td>
<td>11,5</td>
<td>71,58</td>
</tr>
<tr>
<td>5500</td>
<td>76</td>
<td>-4,635</td>
<td>11,44</td>
<td>72,57</td>
</tr>
<tr>
<td>5600</td>
<td>78,8</td>
<td>-4,636</td>
<td>11,41</td>
<td>73,9</td>
</tr>
<tr>
<td>5700</td>
<td>81,03</td>
<td>-4,637</td>
<td>11,4</td>
<td>74,65</td>
</tr>
<tr>
<td>5800</td>
<td>82,2</td>
<td>-4,638</td>
<td>11,4</td>
<td>74,42</td>
</tr>
<tr>
<td>5900</td>
<td>83,55</td>
<td>-4,642</td>
<td>11,4</td>
<td>74,37</td>
</tr>
<tr>
<td>6000</td>
<td>84,56</td>
<td>-4,644</td>
<td>11,4</td>
<td>74,01</td>
</tr>
<tr>
<td>6100</td>
<td>85,07</td>
<td>-4,645</td>
<td>11,41</td>
<td>73,24</td>
</tr>
<tr>
<td>6200</td>
<td>86,12</td>
<td>-4,647</td>
<td>11,43</td>
<td>72,95</td>
</tr>
<tr>
<td>6300</td>
<td>87,32</td>
<td>-4,649</td>
<td>11,44</td>
<td>72,79</td>
</tr>
<tr>
<td>6400</td>
<td>88,69</td>
<td>-4,651</td>
<td>11,44</td>
<td>72,77</td>
</tr>
<tr>
<td>6500</td>
<td>89,62</td>
<td>-4,654</td>
<td>11,45</td>
<td>72,4</td>
</tr>
<tr>
<td>6600</td>
<td>89,63</td>
<td>-4,655</td>
<td>11,48</td>
<td>71,31</td>
</tr>
<tr>
<td>6700</td>
<td>88,8</td>
<td>-4,656</td>
<td>11,53</td>
<td>69,6</td>
</tr>
<tr>
<td>6800</td>
<td>88,5</td>
<td>-4,656</td>
<td>11,6</td>
<td>68,34</td>
</tr>
<tr>
<td>6900</td>
<td>88,62</td>
<td>-4,657</td>
<td>11,68</td>
<td>67,43</td>
</tr>
<tr>
<td>7000</td>
<td>88,56</td>
<td>-4,657</td>
<td>11,76</td>
<td>66,43</td>
</tr>
<tr>
<td>7100</td>
<td>88,59</td>
<td>-4,658</td>
<td>11,83</td>
<td>65,51</td>
</tr>
<tr>
<td>7200</td>
<td>87,92</td>
<td>-4,659</td>
<td>11,9</td>
<td>64,11</td>
</tr>
<tr>
<td>7300</td>
<td>87,67</td>
<td>-4,661</td>
<td>11,96</td>
<td>63,05</td>
</tr>
<tr>
<td>7400</td>
<td>87,8</td>
<td>-4,663</td>
<td>12,02</td>
<td>62,3</td>
</tr>
<tr>
<td>7500</td>
<td>82,89</td>
<td>-4,664</td>
<td>12,06</td>
<td>58,08</td>
</tr>
<tr>
<td>RPM (RPM)</td>
<td>Est. Hp (Hp)</td>
<td>Boost PSI</td>
<td>AFR (A/F)</td>
<td>Est. Tq. (ft-lb)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2000</td>
<td>13,46</td>
<td>-5,289</td>
<td>14,65</td>
<td>35,26</td>
</tr>
<tr>
<td>2100</td>
<td>22,8</td>
<td>-4,229</td>
<td>14,66</td>
<td>57,22</td>
</tr>
<tr>
<td>2200</td>
<td>26,71</td>
<td>-4,211</td>
<td>14,66</td>
<td>63,96</td>
</tr>
<tr>
<td>2300</td>
<td>30,45</td>
<td>-4,196</td>
<td>14,58</td>
<td>69,72</td>
</tr>
<tr>
<td>2400</td>
<td>33,18</td>
<td>-4,197</td>
<td>14,42</td>
<td>72,75</td>
</tr>
<tr>
<td>2500</td>
<td>34,96</td>
<td>-4,21</td>
<td>14,27</td>
<td>73,6</td>
</tr>
<tr>
<td>2600</td>
<td>36,22</td>
<td>-4,222</td>
<td>14,22</td>
<td>73,28</td>
</tr>
<tr>
<td>2700</td>
<td>37,25</td>
<td>-4,231</td>
<td>14,26</td>
<td>72,57</td>
</tr>
<tr>
<td>2800</td>
<td>38,92</td>
<td>-4,237</td>
<td>14,35</td>
<td>73,11</td>
</tr>
<tr>
<td>2900</td>
<td>41,01</td>
<td>-4,24</td>
<td>14,45</td>
<td>74,37</td>
</tr>
<tr>
<td>3000</td>
<td>42,82</td>
<td>-4,243</td>
<td>14,54</td>
<td>75,04</td>
</tr>
<tr>
<td>3100</td>
<td>44,61</td>
<td>-4,245</td>
<td>14,65</td>
<td>75,65</td>
</tr>
<tr>
<td>3200</td>
<td>46,25</td>
<td>-4,246</td>
<td>14,81</td>
<td>75,98</td>
</tr>
<tr>
<td>3300</td>
<td>47,28</td>
<td>-4,247</td>
<td>15,06</td>
<td>75,33</td>
</tr>
<tr>
<td>3400</td>
<td>48,42</td>
<td>-4,247</td>
<td>15,33</td>
<td>74,87</td>
</tr>
<tr>
<td>3500</td>
<td>50,31</td>
<td>-4,248</td>
<td>15,54</td>
<td>75,57</td>
</tr>
<tr>
<td>3600</td>
<td>51,75</td>
<td>-4,249</td>
<td>15,63</td>
<td>75,56</td>
</tr>
<tr>
<td>3700</td>
<td>52,57</td>
<td>-4,25</td>
<td>15,64</td>
<td>74,68</td>
</tr>
<tr>
<td>3800</td>
<td>53,27</td>
<td>-4,25</td>
<td>15,57</td>
<td>73,68</td>
</tr>
<tr>
<td>3900</td>
<td>53,31</td>
<td>-4,25</td>
<td>15,38</td>
<td>71,82</td>
</tr>
<tr>
<td>4000</td>
<td>53,53</td>
<td>-4,251</td>
<td>15,12</td>
<td>70,31</td>
</tr>
<tr>
<td>4100</td>
<td>54,14</td>
<td>-4,252</td>
<td>14,83</td>
<td>69,39</td>
</tr>
<tr>
<td>4200</td>
<td>55,04</td>
<td>-4,252</td>
<td>14,53</td>
<td>68,86</td>
</tr>
<tr>
<td>4300</td>
<td>56,6</td>
<td>-4,253</td>
<td>14,22</td>
<td>69,16</td>
</tr>
<tr>
<td>4400</td>
<td>57,89</td>
<td>-4,254</td>
<td>13,92</td>
<td>69,12</td>
</tr>
<tr>
<td>4500</td>
<td>58,34</td>
<td>-4,254</td>
<td>13,64</td>
<td>68,11</td>
</tr>
<tr>
<td>4600</td>
<td>59,14</td>
<td>-4,255</td>
<td>13,35</td>
<td>67,54</td>
</tr>
<tr>
<td>4700</td>
<td>60,52</td>
<td>-4,257</td>
<td>13,03</td>
<td>67,65</td>
</tr>
<tr>
<td>4800</td>
<td>61,77</td>
<td>-4,259</td>
<td>12,7</td>
<td>67,59</td>
</tr>
<tr>
<td>4900</td>
<td>63,83</td>
<td>-4,262</td>
<td>12,4</td>
<td>68,42</td>
</tr>
<tr>
<td>5000</td>
<td>67,95</td>
<td>-4,263</td>
<td>12,11</td>
<td>71,38</td>
</tr>
<tr>
<td>5100</td>
<td>71,42</td>
<td>-4,263</td>
<td>11,88</td>
<td>73,56</td>
</tr>
<tr>
<td>5200</td>
<td>71,46</td>
<td>-4,264</td>
<td>11,68</td>
<td>72,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>5300</td>
<td>71,66</td>
<td>-4,264</td>
<td>11,52</td>
<td>71,01</td>
</tr>
<tr>
<td>5400</td>
<td>73,52</td>
<td>-4,264</td>
<td>11,42</td>
<td>71,5</td>
</tr>
<tr>
<td>5500</td>
<td>75,92</td>
<td>-4,265</td>
<td>11,36</td>
<td>72,49</td>
</tr>
<tr>
<td>5600</td>
<td>78,72</td>
<td>-4,266</td>
<td>11,33</td>
<td>73,82</td>
</tr>
<tr>
<td>5700</td>
<td>80,95</td>
<td>-4,267</td>
<td>11,32</td>
<td>74,57</td>
</tr>
<tr>
<td>5800</td>
<td>82,12</td>
<td>-4,268</td>
<td>11,32</td>
<td>74,34</td>
</tr>
<tr>
<td>5900</td>
<td>83,47</td>
<td>-4,272</td>
<td>11,32</td>
<td>74,29</td>
</tr>
<tr>
<td>6000</td>
<td>84,48</td>
<td>-4,274</td>
<td>11,32</td>
<td>73,93</td>
</tr>
<tr>
<td>6100</td>
<td>84,99</td>
<td>-4,275</td>
<td>11,33</td>
<td>73,16</td>
</tr>
<tr>
<td>6200</td>
<td>86,04</td>
<td>-4,277</td>
<td>11,35</td>
<td>72,87</td>
</tr>
<tr>
<td>6300</td>
<td>87,24</td>
<td>-4,279</td>
<td>11,36</td>
<td>72,71</td>
</tr>
<tr>
<td>6400</td>
<td>88,61</td>
<td>-4,281</td>
<td>11,36</td>
<td>72,69</td>
</tr>
<tr>
<td>6500</td>
<td>89,54</td>
<td>-4,284</td>
<td>11,37</td>
<td>72,32</td>
</tr>
<tr>
<td>6600</td>
<td>89,55</td>
<td>-4,285</td>
<td>11,4</td>
<td>71,23</td>
</tr>
<tr>
<td>6700</td>
<td>88,72</td>
<td>-4,286</td>
<td>11,45</td>
<td>69,52</td>
</tr>
<tr>
<td>6800</td>
<td>88,42</td>
<td>-4,286</td>
<td>11,52</td>
<td>68,26</td>
</tr>
<tr>
<td>6900</td>
<td>88,54</td>
<td>-4,287</td>
<td>11,6</td>
<td>67,35</td>
</tr>
<tr>
<td>7000</td>
<td>88,48</td>
<td>-4,287</td>
<td>11,68</td>
<td>66,35</td>
</tr>
<tr>
<td>7100</td>
<td>88,51</td>
<td>-4,288</td>
<td>11,75</td>
<td>65,43</td>
</tr>
<tr>
<td>7200</td>
<td>87,84</td>
<td>-4,289</td>
<td>11,82</td>
<td>64,03</td>
</tr>
<tr>
<td>7300</td>
<td>87,59</td>
<td>-4,291</td>
<td>11,88</td>
<td>62,97</td>
</tr>
<tr>
<td>7400</td>
<td>87,72</td>
<td>-4,293</td>
<td>11,94</td>
<td>62,22</td>
</tr>
<tr>
<td>7500</td>
<td>82,81</td>
<td>-4,294</td>
<td>11,98</td>
<td>58</td>
</tr>
</tbody>
</table>
Anexo 7. Pruebas en el dinamómetro múltiple modificado

PRUEBA 1

<table>
<thead>
<tr>
<th>RPM (RPM)</th>
<th>Est. Hp (Hp)</th>
<th>Est. Tq. (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>26,93</td>
<td>56,68</td>
</tr>
<tr>
<td>2500</td>
<td>29,55</td>
<td>60,87</td>
</tr>
<tr>
<td>2600</td>
<td>33,18</td>
<td>65,91</td>
</tr>
<tr>
<td>2700</td>
<td>37,61</td>
<td>72,13</td>
</tr>
<tr>
<td>2800</td>
<td>41,15</td>
<td>76,22</td>
</tr>
<tr>
<td>2900</td>
<td>43,82</td>
<td>78,46</td>
</tr>
<tr>
<td>3000</td>
<td>45,97</td>
<td>79,63</td>
</tr>
<tr>
<td>3100</td>
<td>47,94</td>
<td>80,47</td>
</tr>
<tr>
<td>3200</td>
<td>49,98</td>
<td>81,3</td>
</tr>
<tr>
<td>3300</td>
<td>51,85</td>
<td>81,87</td>
</tr>
<tr>
<td>3400</td>
<td>53,59</td>
<td>82,17</td>
</tr>
<tr>
<td>3500</td>
<td>55,26</td>
<td>82,37</td>
</tr>
<tr>
<td>3600</td>
<td>56,95</td>
<td>82,58</td>
</tr>
<tr>
<td>3700</td>
<td>58,62</td>
<td>82,76</td>
</tr>
<tr>
<td>3800</td>
<td>60,3</td>
<td>82,91</td>
</tr>
<tr>
<td>3900</td>
<td>62,11</td>
<td>83,27</td>
</tr>
<tr>
<td>4000</td>
<td>63,95</td>
<td>83,61</td>
</tr>
<tr>
<td>4100</td>
<td>65,6</td>
<td>83,72</td>
</tr>
<tr>
<td>4200</td>
<td>67,22</td>
<td>83,77</td>
</tr>
<tr>
<td>4300</td>
<td>69,11</td>
<td>84,17</td>
</tr>
<tr>
<td>4400</td>
<td>71,18</td>
<td>84,73</td>
</tr>
<tr>
<td>4500</td>
<td>73,02</td>
<td>85,04</td>
</tr>
<tr>
<td>4600</td>
<td>75,09</td>
<td>85,57</td>
</tr>
<tr>
<td>4700</td>
<td>77,43</td>
<td>86,4</td>
</tr>
<tr>
<td>4800</td>
<td>79,59</td>
<td>86,99</td>
</tr>
<tr>
<td>4900</td>
<td>81,59</td>
<td>87,37</td>
</tr>
<tr>
<td>5000</td>
<td>83,54</td>
<td>87,69</td>
</tr>
<tr>
<td>5100</td>
<td>85,52</td>
<td>88,03</td>
</tr>
<tr>
<td>5200</td>
<td>87,48</td>
<td>88,33</td>
</tr>
<tr>
<td>5300</td>
<td>89,28</td>
<td>88,49</td>
</tr>
<tr>
<td>5400</td>
<td>90,91</td>
<td>88,44</td>
</tr>
<tr>
<td>5500</td>
<td>92,69</td>
<td>88,56</td>
</tr>
<tr>
<td>5600</td>
<td>94,43</td>
<td>88,63</td>
</tr>
<tr>
<td>5700</td>
<td>96,18</td>
<td>88,7</td>
</tr>
<tr>
<td>5800</td>
<td>98,27</td>
<td>89,09</td>
</tr>
<tr>
<td>RPM</td>
<td>Est. Hp (Hp)</td>
<td>Est. Tq (ft-lb)</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2400</td>
<td>24,98</td>
<td>54,73</td>
</tr>
<tr>
<td>2500</td>
<td>27,6</td>
<td>58,92</td>
</tr>
<tr>
<td>2600</td>
<td>31,23</td>
<td>63,96</td>
</tr>
<tr>
<td>2700</td>
<td>35,66</td>
<td>70,18</td>
</tr>
<tr>
<td>2800</td>
<td>39,2</td>
<td>74,27</td>
</tr>
<tr>
<td>2900</td>
<td>41,87</td>
<td>76,51</td>
</tr>
<tr>
<td>3000</td>
<td>44,02</td>
<td>77,68</td>
</tr>
<tr>
<td>3100</td>
<td>45,99</td>
<td>78,52</td>
</tr>
<tr>
<td>3200</td>
<td>48,03</td>
<td>79,35</td>
</tr>
<tr>
<td>3300</td>
<td>49,9</td>
<td>79,92</td>
</tr>
<tr>
<td>3400</td>
<td>51,64</td>
<td>80,22</td>
</tr>
<tr>
<td>3500</td>
<td>53,31</td>
<td>80,42</td>
</tr>
<tr>
<td>3600</td>
<td>55</td>
<td>80,63</td>
</tr>
<tr>
<td>3700</td>
<td>56,67</td>
<td>80,81</td>
</tr>
<tr>
<td>3800</td>
<td>58,35</td>
<td>80,96</td>
</tr>
<tr>
<td>3900</td>
<td>60,16</td>
<td>81,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4000</td>
<td>62</td>
<td>81,66</td>
</tr>
<tr>
<td>4100</td>
<td>63,65</td>
<td>81,77</td>
</tr>
<tr>
<td>4200</td>
<td>65,27</td>
<td>81,82</td>
</tr>
<tr>
<td>4300</td>
<td>67,16</td>
<td>82,22</td>
</tr>
<tr>
<td>4400</td>
<td>69,23</td>
<td>82,78</td>
</tr>
<tr>
<td>4500</td>
<td>71,07</td>
<td>83,09</td>
</tr>
<tr>
<td>4600</td>
<td>73,14</td>
<td>83,62</td>
</tr>
<tr>
<td>4700</td>
<td>75,48</td>
<td>84,45</td>
</tr>
<tr>
<td>4800</td>
<td>77,64</td>
<td>85,04</td>
</tr>
<tr>
<td>4900</td>
<td>79,64</td>
<td>85,42</td>
</tr>
<tr>
<td>5000</td>
<td>81,59</td>
<td>85,74</td>
</tr>
<tr>
<td>5100</td>
<td>83,57</td>
<td>86,08</td>
</tr>
<tr>
<td>5200</td>
<td>85,53</td>
<td>86,38</td>
</tr>
<tr>
<td>5300</td>
<td>87,33</td>
<td>86,54</td>
</tr>
<tr>
<td>5400</td>
<td>88,96</td>
<td>86,49</td>
</tr>
<tr>
<td>5500</td>
<td>90,74</td>
<td>86,61</td>
</tr>
<tr>
<td>5600</td>
<td>92,48</td>
<td>86,68</td>
</tr>
<tr>
<td>5700</td>
<td>94,23</td>
<td>86,75</td>
</tr>
<tr>
<td>5800</td>
<td>96,32</td>
<td>87,14</td>
</tr>
<tr>
<td>5900</td>
<td>98,08</td>
<td>87,21</td>
</tr>
<tr>
<td>6000</td>
<td>99,95</td>
<td>87,39</td>
</tr>
<tr>
<td>6100</td>
<td>101,85</td>
<td>87,58</td>
</tr>
<tr>
<td>6200</td>
<td>103,35</td>
<td>87,4</td>
</tr>
<tr>
<td>6300</td>
<td>104,55</td>
<td>87,01</td>
</tr>
<tr>
<td>6400</td>
<td>105,45</td>
<td>86,38</td>
</tr>
<tr>
<td>6500</td>
<td>106,05</td>
<td>85,55</td>
</tr>
<tr>
<td>6600</td>
<td>106,15</td>
<td>84,28</td>
</tr>
<tr>
<td>6700</td>
<td>106,05</td>
<td>82,97</td>
</tr>
<tr>
<td>6800</td>
<td>106,35</td>
<td>81,95</td>
</tr>
<tr>
<td>6900</td>
<td>106,45</td>
<td>80,82</td>
</tr>
<tr>
<td>7000</td>
<td>106,65</td>
<td>79,78</td>
</tr>
<tr>
<td>7100</td>
<td>106,85</td>
<td>78,83</td>
</tr>
<tr>
<td>7200</td>
<td>106,45</td>
<td>77,4</td>
</tr>
<tr>
<td>7300</td>
<td>105,95</td>
<td>75,97</td>
</tr>
<tr>
<td>7400</td>
<td>105,75</td>
<td>74,77</td>
</tr>
<tr>
<td>7500</td>
<td>91,46</td>
<td>63,83</td>
</tr>
</tbody>
</table>
PRUEBA 3

<table>
<thead>
<tr>
<th>RPM(RPM)</th>
<th>Est. Hp (Hp)</th>
<th>Est. Tq. (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>26,78</td>
<td>56,53</td>
</tr>
<tr>
<td>2500</td>
<td>29,4</td>
<td>60,72</td>
</tr>
<tr>
<td>2600</td>
<td>33,03</td>
<td>65,76</td>
</tr>
<tr>
<td>2700</td>
<td>37,46</td>
<td>71,98</td>
</tr>
<tr>
<td>2800</td>
<td>41</td>
<td>76,07</td>
</tr>
<tr>
<td>2900</td>
<td>43,67</td>
<td>78,31</td>
</tr>
<tr>
<td>3000</td>
<td>45,82</td>
<td>79,48</td>
</tr>
<tr>
<td>3100</td>
<td>47,79</td>
<td>80,32</td>
</tr>
<tr>
<td>3200</td>
<td>49,83</td>
<td>81,15</td>
</tr>
<tr>
<td>3300</td>
<td>51,7</td>
<td>81,72</td>
</tr>
<tr>
<td>3400</td>
<td>53,44</td>
<td>82,02</td>
</tr>
<tr>
<td>3500</td>
<td>55,11</td>
<td>82,22</td>
</tr>
<tr>
<td>3600</td>
<td>56,8</td>
<td>82,43</td>
</tr>
<tr>
<td>3700</td>
<td>58,47</td>
<td>82,61</td>
</tr>
<tr>
<td>3800</td>
<td>60,15</td>
<td>82,76</td>
</tr>
<tr>
<td>3900</td>
<td>61,96</td>
<td>83,12</td>
</tr>
<tr>
<td>4000</td>
<td>63,8</td>
<td>83,46</td>
</tr>
<tr>
<td>4100</td>
<td>65,45</td>
<td>83,57</td>
</tr>
<tr>
<td>4200</td>
<td>67,07</td>
<td>83,62</td>
</tr>
<tr>
<td>4300</td>
<td>68,96</td>
<td>84,02</td>
</tr>
<tr>
<td>4400</td>
<td>71,03</td>
<td>84,58</td>
</tr>
<tr>
<td>4500</td>
<td>72,87</td>
<td>84,89</td>
</tr>
<tr>
<td>4600</td>
<td>74,94</td>
<td>85,42</td>
</tr>
<tr>
<td>4700</td>
<td>77,28</td>
<td>86,25</td>
</tr>
<tr>
<td>4800</td>
<td>79,44</td>
<td>86,84</td>
</tr>
<tr>
<td>4900</td>
<td>81,44</td>
<td>87,22</td>
</tr>
<tr>
<td>5000</td>
<td>83,39</td>
<td>87,54</td>
</tr>
<tr>
<td>5100</td>
<td>85,37</td>
<td>87,88</td>
</tr>
<tr>
<td>5200</td>
<td>87,33</td>
<td>88,18</td>
</tr>
<tr>
<td>5300</td>
<td>89,13</td>
<td>88,34</td>
</tr>
<tr>
<td>5400</td>
<td>90,76</td>
<td>88,29</td>
</tr>
<tr>
<td>5500</td>
<td>92,54</td>
<td>88,41</td>
</tr>
<tr>
<td>5600</td>
<td>94,28</td>
<td>88,48</td>
</tr>
<tr>
<td>RPM (RPM)</td>
<td>Est. Hp (Hp)</td>
<td>Est. Tq. (ft-lb)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2400</td>
<td>24,83</td>
<td>54,58</td>
</tr>
<tr>
<td>2500</td>
<td>27,45</td>
<td>58,77</td>
</tr>
<tr>
<td>2600</td>
<td>31,08</td>
<td>63,81</td>
</tr>
<tr>
<td>2700</td>
<td>35,51</td>
<td>70,03</td>
</tr>
<tr>
<td>2800</td>
<td>39,05</td>
<td>74,12</td>
</tr>
<tr>
<td>2900</td>
<td>41,72</td>
<td>76,36</td>
</tr>
<tr>
<td>3000</td>
<td>43,87</td>
<td>77,53</td>
</tr>
<tr>
<td>3100</td>
<td>45,84</td>
<td>78,37</td>
</tr>
<tr>
<td>3200</td>
<td>47,88</td>
<td>79,2</td>
</tr>
<tr>
<td>3300</td>
<td>49,75</td>
<td>79,77</td>
</tr>
<tr>
<td>3400</td>
<td>51,49</td>
<td>80,07</td>
</tr>
<tr>
<td>3500</td>
<td>53,16</td>
<td>80,27</td>
</tr>
<tr>
<td>3600</td>
<td>54,85</td>
<td>80,48</td>
</tr>
<tr>
<td>3700</td>
<td>56,52</td>
<td>80,66</td>
</tr>
<tr>
<td>3800</td>
<td>58,2</td>
<td>80,81</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3900</td>
<td>60,01</td>
<td>81,17</td>
</tr>
<tr>
<td>4000</td>
<td>61,85</td>
<td>81,51</td>
</tr>
<tr>
<td>4100</td>
<td>63,5</td>
<td>81,62</td>
</tr>
<tr>
<td>4200</td>
<td>65,12</td>
<td>81,67</td>
</tr>
<tr>
<td>4300</td>
<td>67,01</td>
<td>82,07</td>
</tr>
<tr>
<td>4400</td>
<td>69,08</td>
<td>82,63</td>
</tr>
<tr>
<td>4500</td>
<td>70,92</td>
<td>82,94</td>
</tr>
<tr>
<td>4600</td>
<td>72,99</td>
<td>83,47</td>
</tr>
<tr>
<td>4700</td>
<td>75,33</td>
<td>84,3</td>
</tr>
<tr>
<td>4800</td>
<td>77,49</td>
<td>84,89</td>
</tr>
<tr>
<td>4900</td>
<td>79,49</td>
<td>85,27</td>
</tr>
<tr>
<td>5000</td>
<td>81,44</td>
<td>85,59</td>
</tr>
<tr>
<td>5100</td>
<td>83,42</td>
<td>85,93</td>
</tr>
<tr>
<td>5200</td>
<td>85,38</td>
<td>86,23</td>
</tr>
<tr>
<td>5300</td>
<td>87,18</td>
<td>86,39</td>
</tr>
<tr>
<td>5400</td>
<td>88,81</td>
<td>86,34</td>
</tr>
<tr>
<td>5500</td>
<td>90,59</td>
<td>86,46</td>
</tr>
<tr>
<td>5600</td>
<td>92,33</td>
<td>86,53</td>
</tr>
<tr>
<td>5700</td>
<td>94,08</td>
<td>86,6</td>
</tr>
<tr>
<td>5800</td>
<td>96,17</td>
<td>86,99</td>
</tr>
<tr>
<td>5900</td>
<td>97,93</td>
<td>87,06</td>
</tr>
<tr>
<td>6000</td>
<td>99,8</td>
<td>87,24</td>
</tr>
<tr>
<td>6100</td>
<td>101,7</td>
<td>87,43</td>
</tr>
<tr>
<td>6200</td>
<td>103,2</td>
<td>87,25</td>
</tr>
<tr>
<td>6300</td>
<td>104,4</td>
<td>86,86</td>
</tr>
<tr>
<td>6400</td>
<td>105,3</td>
<td>86,23</td>
</tr>
<tr>
<td>6500</td>
<td>105,9</td>
<td>85,4</td>
</tr>
<tr>
<td>6600</td>
<td>106</td>
<td>84,13</td>
</tr>
<tr>
<td>6700</td>
<td>105,9</td>
<td>82,82</td>
</tr>
<tr>
<td>6800</td>
<td>106,2</td>
<td>81,8</td>
</tr>
<tr>
<td>6900</td>
<td>106,3</td>
<td>80,67</td>
</tr>
<tr>
<td>7000</td>
<td>106,5</td>
<td>79,63</td>
</tr>
<tr>
<td>7100</td>
<td>106,7</td>
<td>78,68</td>
</tr>
<tr>
<td>7200</td>
<td>106,3</td>
<td>77,25</td>
</tr>
<tr>
<td>7300</td>
<td>105,8</td>
<td>75,82</td>
</tr>
<tr>
<td>7400</td>
<td>105,6</td>
<td>74,62</td>
</tr>
<tr>
<td>7500</td>
<td>91,31</td>
<td>63,68</td>
</tr>
</tbody>
</table>
PRUEBA 5

<table>
<thead>
<tr>
<th>RPM(RPM)</th>
<th>Est. Hp (Hp)</th>
<th>Est. Tq. (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>25,68</td>
<td>55,43</td>
</tr>
<tr>
<td>2500</td>
<td>28,3</td>
<td>59,62</td>
</tr>
<tr>
<td>2600</td>
<td>31,93</td>
<td>64,66</td>
</tr>
<tr>
<td>2700</td>
<td>36,36</td>
<td>70,88</td>
</tr>
<tr>
<td>2800</td>
<td>39,9</td>
<td>74,97</td>
</tr>
<tr>
<td>2900</td>
<td>42,57</td>
<td>77,21</td>
</tr>
<tr>
<td>3000</td>
<td>44,72</td>
<td>78,38</td>
</tr>
<tr>
<td>3100</td>
<td>46,69</td>
<td>79,22</td>
</tr>
<tr>
<td>3200</td>
<td>48,73</td>
<td>80,05</td>
</tr>
<tr>
<td>3300</td>
<td>50,6</td>
<td>80,62</td>
</tr>
<tr>
<td>3400</td>
<td>52,34</td>
<td>80,92</td>
</tr>
<tr>
<td>3500</td>
<td>54,01</td>
<td>81,12</td>
</tr>
<tr>
<td>3600</td>
<td>55,7</td>
<td>81,33</td>
</tr>
<tr>
<td>3700</td>
<td>57,37</td>
<td>81,51</td>
</tr>
<tr>
<td>3800</td>
<td>59,05</td>
<td>81,66</td>
</tr>
<tr>
<td>3900</td>
<td>60,86</td>
<td>82,02</td>
</tr>
<tr>
<td>4000</td>
<td>62,7</td>
<td>82,36</td>
</tr>
<tr>
<td>4100</td>
<td>64,35</td>
<td>82,47</td>
</tr>
<tr>
<td>4200</td>
<td>65,97</td>
<td>82,52</td>
</tr>
<tr>
<td>4300</td>
<td>67,86</td>
<td>82,92</td>
</tr>
<tr>
<td>4400</td>
<td>69,93</td>
<td>83,48</td>
</tr>
<tr>
<td>4500</td>
<td>71,77</td>
<td>83,79</td>
</tr>
<tr>
<td>4600</td>
<td>73,84</td>
<td>84,32</td>
</tr>
<tr>
<td>4700</td>
<td>76,18</td>
<td>85,15</td>
</tr>
<tr>
<td>4800</td>
<td>78,34</td>
<td>85,74</td>
</tr>
<tr>
<td>4900</td>
<td>80,34</td>
<td>86,12</td>
</tr>
<tr>
<td>5000</td>
<td>82,29</td>
<td>86,44</td>
</tr>
<tr>
<td>5100</td>
<td>84,27</td>
<td>86,78</td>
</tr>
<tr>
<td>5200</td>
<td>86,23</td>
<td>87,08</td>
</tr>
<tr>
<td>5300</td>
<td>88,03</td>
<td>87,24</td>
</tr>
<tr>
<td>5400</td>
<td>89,66</td>
<td>87,19</td>
</tr>
<tr>
<td>5500</td>
<td>91,44</td>
<td>87,31</td>
</tr>
<tr>
<td>5600</td>
<td>93,18</td>
<td>87,38</td>
</tr>
<tr>
<td>5700</td>
<td>94,93</td>
<td>87,45</td>
</tr>
<tr>
<td>5800</td>
<td>97,02</td>
<td>87,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>5900</td>
<td>98,78</td>
<td>87,91</td>
</tr>
<tr>
<td>6000</td>
<td>100,65</td>
<td>88,09</td>
</tr>
<tr>
<td>6100</td>
<td>102,55</td>
<td>88,28</td>
</tr>
<tr>
<td>6200</td>
<td>104,05</td>
<td>88,1</td>
</tr>
<tr>
<td>6300</td>
<td>105,25</td>
<td>87,71</td>
</tr>
<tr>
<td>6400</td>
<td>106,15</td>
<td>87,08</td>
</tr>
<tr>
<td>6500</td>
<td>106,75</td>
<td>86,25</td>
</tr>
<tr>
<td>6600</td>
<td>106,85</td>
<td>84,98</td>
</tr>
<tr>
<td>6700</td>
<td>106,75</td>
<td>83,67</td>
</tr>
<tr>
<td>6800</td>
<td>107,05</td>
<td>82,65</td>
</tr>
<tr>
<td>6900</td>
<td>107,15</td>
<td>81,52</td>
</tr>
<tr>
<td>7000</td>
<td>107,35</td>
<td>80,48</td>
</tr>
<tr>
<td>7100</td>
<td>107,55</td>
<td>79,53</td>
</tr>
<tr>
<td>7200</td>
<td>107,15</td>
<td>78,1</td>
</tr>
<tr>
<td>7300</td>
<td>106,65</td>
<td>76,67</td>
</tr>
<tr>
<td>7400</td>
<td>106,45</td>
<td>75,47</td>
</tr>
<tr>
<td>7500</td>
<td>92,16</td>
<td>64,53</td>
</tr>
</tbody>
</table>
Anexo 8. Diámetro y longitud múltiple de admisión.

CALCULO PARA DIMENSIONES DEL MÚLTIPLE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p</td>
<td>S_p</td>
<td>V_g</td>
</tr>
<tr>
<td>$V_p \times S_p$</td>
<td>Caudal teórico para</td>
<td></td>
</tr>
<tr>
<td>$V_g \times S_c$</td>
<td>Caudal a circular por admisión para</td>
<td></td>
</tr>
<tr>
<td>V_p</td>
<td>Velocidad del pistón</td>
<td></td>
</tr>
<tr>
<td>S_p</td>
<td>Superficie del pistón</td>
<td></td>
</tr>
<tr>
<td>V_g</td>
<td>Velocidad gas admisión</td>
<td>17 mm/min</td>
</tr>
<tr>
<td>S_c</td>
<td>Sección del conducto</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Diámetro del conducto</td>
<td></td>
</tr>
<tr>
<td>L_c</td>
<td>Longitud del conducto</td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>Pulso de onda</td>
<td>13</td>
</tr>
</tbody>
</table>

DATOS NECESARIOS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>3,1415927</td>
</tr>
<tr>
<td>Carrera (mm)</td>
<td>75</td>
</tr>
<tr>
<td>RPM</td>
<td>7500</td>
</tr>
<tr>
<td>Diámetro cilindro D_c (mm)</td>
<td>77</td>
</tr>
</tbody>
</table>

\[
V_p = \frac{\text{Carrera} \times \text{RPM}}{30} = 18750 \text{ (mm)(rev)/min}
\]

\[
S_p = \frac{\pi \times D_c}{2} = 120,95132 \text{ mm}
\]

\[
S_c = \frac{V_p \times S_p}{V_g} = 133402,19 \text{ mm}
\]

\[
D = \sqrt{\frac{4 \times S_c}{\pi}} = 42,381 \text{ mm}
\]

\[
L_c = \frac{P_o}{\text{RPM}} = 199,294 \text{ mm}
\]
Anexo 9. Simulaciones ANSYS

Múltiple original

1. File Report
Table 1. File Information for CFX

<table>
<thead>
<tr>
<th>Case</th>
<th>CFX</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Path</td>
<td>C:\Users\hp\AppData\Local\Temp\1.tmp\1_files\dp0\CFX\CFX\Fluid Flow CFX_004.res</td>
</tr>
<tr>
<td>File Date</td>
<td>11 enero 2018</td>
</tr>
<tr>
<td>File Time</td>
<td>09:44:46 a. m.</td>
</tr>
<tr>
<td>File Type</td>
<td>CFX5</td>
</tr>
<tr>
<td>File Version</td>
<td>18.0</td>
</tr>
</tbody>
</table>

2. Mesh Report
Table 2. Mesh Information for CFX

<table>
<thead>
<tr>
<th>Domain</th>
<th>Nodes</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Domain</td>
<td>206592</td>
<td>1100803</td>
</tr>
</tbody>
</table>

3. Physics Report
Table 3. Domain Physics for CFX

<table>
<thead>
<tr>
<th>Domain - Default Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Air at 25 C</td>
</tr>
<tr>
<td>Fluid Definition</td>
</tr>
<tr>
<td>Morphology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Settings</td>
</tr>
</tbody>
</table>
Buoyancy Model
Non Buoyant

Domain Motion
Stationary

Reference Pressure
1.0000e+00 \([\text{atm}]\)

Heat Transfer Model
Isothermal

Fluid Temperature
2.5000e+01 \([\text{C}]\)

Turbulence Model
k epsilon

Turbulent Wall Functions
Scalable

Table 4. Boundary Physics for CFX

<table>
<thead>
<tr>
<th>Domain</th>
<th>Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary - Entrada</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>INLET</td>
</tr>
<tr>
<td>Location</td>
<td>Entrada</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Flow Regime</td>
<td>Subsonic</td>
</tr>
<tr>
<td>Mass And Momentum</td>
<td>Normal Speed</td>
</tr>
<tr>
<td>Normal Speed</td>
<td>1.2000e+01 ([\text{m s}^{-1}])</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Medium Intensity and Eddy Viscosity Ratio</td>
</tr>
</tbody>
</table>

<p>| Boundary - Salida1 | |
| Type | OPENING |
| Location | Salida1 |
| Settings | |
| Flow Direction | Normal to Boundary Condition |
| Flow Regime | Subsonic |
| Mass And Momentum | Opening Pressure and Direction |
| Relative Pressure | 0.0000e+00 ([\text{Pa}]) |
| Turbulence | Medium Intensity and Eddy Viscosity Ratio |</p>
<table>
<thead>
<tr>
<th>Boundary - Salida2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>OPENING</td>
</tr>
<tr>
<td>Location</td>
<td>Salida2</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Flow Direction</td>
<td>Normal to Boundary Condition</td>
</tr>
<tr>
<td>Flow Regime</td>
<td>Subsonic</td>
</tr>
<tr>
<td>Mass And Momentum</td>
<td>Opening Pressure and Direction</td>
</tr>
<tr>
<td>Relative Pressure</td>
<td>0.0000e+00 [Pa]</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Medium Intensity and Eddy Viscosity Ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary - Salida3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>OPENING</td>
</tr>
<tr>
<td>Location</td>
<td>Salida3</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Flow Direction</td>
<td>Normal to Boundary Condition</td>
</tr>
<tr>
<td>Flow Regime</td>
<td>Subsonic</td>
</tr>
<tr>
<td>Mass And Momentum</td>
<td>Opening Pressure and Direction</td>
</tr>
<tr>
<td>Relative Pressure</td>
<td>0.0000e+00 [Pa]</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Medium Intensity and Eddy Viscosity Ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary - Salida4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>OPENING</td>
</tr>
<tr>
<td>Location</td>
<td>Salida4</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Flow Direction</td>
<td>Normal to Boundary Condition</td>
</tr>
<tr>
<td>Flow Regime</td>
<td>Subsonic</td>
</tr>
<tr>
<td>Mass And Momentum</td>
<td>Opening Pressure and Direction</td>
</tr>
</tbody>
</table>
DISEÑO, ANÁLISIS Y CONSTRUCCIÓN DE UN MÚLTIPLE DE ADMISIÓN

Relative Pressure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Pressure</td>
<td>0.0000e+00 [Pa]</td>
</tr>
</tbody>
</table>

Turbulence

Medium Intensity and Eddy Viscosity Ratio

Boundary - Default Domain Default

<table>
<thead>
<tr>
<th>Type</th>
<th>WALL</th>
</tr>
</thead>
</table>

Settings

<table>
<thead>
<tr>
<th>Mass And Momentum</th>
<th>No Slip Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Roughness</td>
<td>Smooth Wall</td>
</tr>
</tbody>
</table>

4. Solution Report

Table 5. Boundary Flows for CFX

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Mass Flow</th>
<th>Momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Default Domain Default</td>
<td>Boundary</td>
<td>0.0000e+00</td>
<td>-2.8430e-01</td>
</tr>
<tr>
<td>Entrada</td>
<td>Boundary</td>
<td>2.2708e-02</td>
<td>2.8416e-01</td>
</tr>
<tr>
<td>Salida1</td>
<td>Boundary</td>
<td>-3.3408e-03</td>
<td>2.2750e-04</td>
</tr>
</tbody>
</table>
Múltiple modificado

1. File Report

<table>
<thead>
<tr>
<th>Table 1. File Information for CFX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
</tr>
<tr>
<td>File Path</td>
</tr>
<tr>
<td>File Date</td>
</tr>
<tr>
<td>File Time</td>
</tr>
<tr>
<td>File Type</td>
</tr>
<tr>
<td>File Version</td>
</tr>
</tbody>
</table>

2. Mesh Report

<table>
<thead>
<tr>
<th>Table 2. Mesh Information for CFX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Default Domain</td>
</tr>
</tbody>
</table>

3. Physics Report

<table>
<thead>
<tr>
<th>Table 3. Domain Physics for CFX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain - Default Domain</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Location</td>
</tr>
</tbody>
</table>

Materials

- Air at 25 C
- Fluid Definition: Material Library
- Morphology: Continuous Fluid
<table>
<thead>
<tr>
<th>Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoyancy Model</td>
<td>Non Buoyant</td>
</tr>
<tr>
<td>Domain Motion</td>
<td>Stationary</td>
</tr>
<tr>
<td>Reference Pressure</td>
<td>1.0000e+00 [atm]</td>
</tr>
<tr>
<td>Heat Transfer Model</td>
<td>Isothermal</td>
</tr>
<tr>
<td>Fluid Temperature</td>
<td>2.5000e+01 [C]</td>
</tr>
<tr>
<td>Turbulence Model</td>
<td>k epsilon</td>
</tr>
<tr>
<td>Turbulent Wall Functions</td>
<td>Scalable</td>
</tr>
</tbody>
</table>

Table 4. Boundary Physics for CFX

<table>
<thead>
<tr>
<th>Domain</th>
<th>Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Domain</td>
<td>Boundary - Ingreso</td>
</tr>
<tr>
<td></td>
<td>Settings</td>
</tr>
<tr>
<td>Type</td>
<td>INLET</td>
</tr>
<tr>
<td>Location</td>
<td>F86.47</td>
</tr>
<tr>
<td></td>
<td>Flow Regime</td>
</tr>
<tr>
<td></td>
<td>Subsonic</td>
</tr>
<tr>
<td></td>
<td>Mass And Momentum</td>
</tr>
<tr>
<td></td>
<td>Normal Speed</td>
</tr>
<tr>
<td>Normal Speed</td>
<td>1.2000e+01 [m s^-1]</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Medium Intensity and Eddy Viscosity Ratio</td>
</tr>
<tr>
<td>Boundary - Salida</td>
<td>Settings</td>
</tr>
<tr>
<td>Type</td>
<td>OUTLET</td>
</tr>
<tr>
<td>Location</td>
<td>F95.47, F100.47, F83.47, F90.47</td>
</tr>
<tr>
<td></td>
<td>Flow Regime</td>
</tr>
<tr>
<td></td>
<td>Subsonic</td>
</tr>
<tr>
<td></td>
<td>Mass And Momentum</td>
</tr>
<tr>
<td></td>
<td>Average Static Pressure</td>
</tr>
<tr>
<td>Pressure Profile Blend</td>
<td>5.0000e-02</td>
</tr>
<tr>
<td>Relative Pressure</td>
<td>0.0000e+00 [Pa]</td>
</tr>
<tr>
<td>Pressure Averaging</td>
<td>Average Over Whole Outlet</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Boundary - Default Domain Default</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>WALL</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Mass And Momentum</td>
<td>No Slip Wall</td>
</tr>
<tr>
<td>Wall Roughness</td>
<td>Smooth Wall</td>
</tr>
</tbody>
</table>
Anexo 10. Planos de construcción múltiple de admisión.
<table>
<thead>
<tr>
<th>Nº</th>
<th>Denominación</th>
<th>Material</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ducto 1</td>
<td>ASTM A500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ducto 2</td>
<td>ASTM A500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ducto 3</td>
<td>ASTM A500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ducto 4</td>
<td>ASTM A500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Base</td>
<td>ASTM A366</td>
<td></td>
</tr>
</tbody>
</table>

Trat. Térmico: Ninguno
Recubrimiento: Pintura
Material:
ASTM A366
ASTM A500
Tol. Gral.: + - 0.005
Escala: 1 : 5
UISEK
FACULTAD DE ARQUITECTURA E INGENIERÍA
MAESTRÍA EN DISEÑO MECÁNICO MENCION
FABRICACIÓN DE AUTOPARTES

DIB: VINICIO PALACIOS QUIROZ
DIS: VINICIO PALACIOS QUIROZ
REV: JULIO LEGUISAMO

MÚLTIPLE DE ADMISIÓN DISEÑADO
1 : 2
FECHA: 23/08/2018