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Abstract: This paper sets out a design methodology for the cockpit of a 
competition vehicle that applies ergonomic criteria. Through a practical  
design case of a Formula SAE single-seater, a methodology is proposed that 
ranges from taking anthropometric measurements of the comfort posture  
of a population of 22 possible drivers to the use of an ergonomic module of a  
three-dimensional (3D) design program and the construction of the chassis and 
the driver’s seat. This methodology, which can be used in other different 
applications, is at all times documented with the results obtained from 
measurements, with the parameters used in the design and with photographs 
that capture the data collection and manufacturing process. 
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1 Introduction 

Although there is a considerable bibliography on the best posture for people to adopt  
to do different jobs (Hanson et al., 2006; Porter and Gyi, 1998; Kyung et al., 2008),  
the number of references becomes fewer, as more specific and unusual activities are dealt 
with. This is the case with the ergonomics of a competition single-seater cockpit. 
Competitions with adapted private cars (World Rally Championship, Private Car Road 
Championships of different makes, etc.) benefit from a driving position similar to that of 
motor vehicles, but a single-seater formula design cockpit must start out from a different 
position, usually more reclined. 

This position is partly due, on the one hand, to the aerodynamic requirements of the 
vehicle, and, on the other hand, to the need to lower the single-seater’s centre of gravity 
to the maximum. 

The vibrations transmitted from the road to the driver through a necessarily hard 
suspension, as well as the high inertias exerted on the driver by the speed, mean that a 
detailed ergonomics study is necessary if the appearance of fatigue or even injuries are to 
be avoided while driving (Baur et al., 2006). Most of the bruises or injuries occur in the 
limbs and in some post-race cases the driver presents symptoms of inability to raise his 
arms accordingly (Minoyama and Tsuchida, 2004). 

The participation of a team from Madrid Polytechnic University, the UPM, led by the 
University Institute for Automobile Research, INSIA, in the Formula SAE competition, 
created the right conditions for a group of teachers and students lacking in any prior 
documentation for this application to confront the need to design a competition  
single-seat car. 

The lack of any clear bibliography in this respect (Jawad and Mariotti, 2000) and the 
impossibility to use any specific databases (Hunn, 1998) due to the confidentiality under 
which competition businesses and teams guard their researches, led the UPMracing team 
to develop a simple methodology based on You’s work (You et al., 1997). An important 
database was also created of measurements, comfortable postures, acceptable ranges, etc., 
with feedback of custom questionnaires to the drivers who had taken part in the specially 
built simulators and the competition track trials. 
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The entire process of data collection, design and results analysis was rigorously 
documented, and has already been used to develop other competition single-seaters. 

2 Designing the cockpit for a competition vehicle 

There are many factors that cause the cockpit design parameters and functional 
requirements of a competition vehicle to differ greatly from those of a passenger car.  
On the one hand, driving a competition vehicle is a more active and demanding task than 
a normal vehicle: the driver needs greater concentration, makes more sudden movements 
and is subjected to considerable accelerations/decelerations both longitudinal and 
transversal. In addition, the vibrations endured due to the speed and hardness of the 
suspension means that the threshold of what would be acceptable in another type  
of vehicle is exceeded. 

Ergonomic requirements may be grouped into physical, such as the dimensions  
and position of the seat, and perceptual, such as the visibility of the control panel  
(Ouidir et al., 2008). 

Also, particularly in formula-type single-seaters, the interior space is much smaller, 
the upper part is open to the outside and the driver’s posture is conditioned by the need to 
reduce the vehicle’s centre of gravity, which means the driver is in a highly reclined 
posture with his legs stretching forward. A large part of the design restrictions of the 
cockpit are laid down by international regulations, like those of the International 
Automobile Federation, the FIA. These regulations and recommendations are mainly 
aimed at ensuring driver safety in the event of an accident. In addition to the rigidity  
of the chassis or the presence of elements such as safety arcs or the firewall separating  
the engine zone, the regulations also lay down characteristics such as the height of the 
side bars to protect the driver’s arms and shoulders. 

In addition to meeting these kinds of requirements, some perceptual features must be 
taken into account: driving a single-seater demands the driver’s whole attention at every 
instant and his peripheral vision is hindered by the use of a helmet, the information 
received via the display is also hindered (Verwey, 2000; Matthews, 2002). This is why 
the design of the control and communication interfaces is a key issue so that they do not 
distract the driver’s attention through being located at a position distant from the line of 
vision or because they offer information that is not essential for driving. 

One issue to be borne in mind is how limited any possible movements of the driver 
are: with a moulded seat fitted with a 5 or 6 point harness that literally clamps the driver 
down, and with such a narrow cockpit, leg movement is simply reduced to operating the 
pedals, while the arms are limited to moving the steering wheel and a few other things. 
Although almost all single-seater competition cars are fitted with sequential gearboxes 
with the gear lever on the steering wheel, in cars that have a manual gear change, the 
position and path of the gear lever have to be closely studied so that the hand is off the 
wheel for as little as possible and so that the effects of inertias on the arm as it passes 
from one element to another are minimised. 

Conditions of comfort are, therefore, very different. The three components that can 
usually be modified to adapt to different sizes of drivers are the seat, the steering wheel 
and the pedals. Therefore, the ergonomics designer, in accordance with the specifications 
of the other vehicle systems, has to decide what components in each vehicle need to be 
adjustable and which can be fixed regardless of the driver’s size. 



      

      

      

   142 F.J. Sánchez-Alejo et al.    

      

      

      

      

Although the high inertias to which a driver is subjected suggest the cockpit design 
should be very narrow (Figure 1) in addition to appropriate manoeuvrability, safety 
regulations also require a driver to be able to get out of a car by himself in a short space 
of time (Andreoni et al., 2004; Galer et al. 1999), usually 5 sec. In this time, the driver 
must be able to disconnect the steering wheel, put it outside the car, free the harness, get 
his arms out the cockpit to support himself, stand up on the seat and jump out of the 
vehicle. 

Figure 1 Formula1 cockpit 

For all these reasons, it is of vital importance to analyse the driver’s driving position and 
design the cockpit by applying rigorous ergonomics criteria. If this is not done, the driver 
can suffer discomfort, acceleration fatigue or injuries derived from a poor posture, from 
high vibration and inertia thresholds or simply from banging against some parts  
of the chassis or inside panels. 

Therefore, the essential parameters to be studied for ergonomic cockpit design are as 
follows: 

• Visibility with regard to the road and instrument panel 

• Forces and vibrations acting on the driver 

• Driver’s posture and seat shape 

• Controls within reach (steering wheel, gears and pedals) 

• Interior space and volume necessary to avoid interferences and impacts 

• Cockpit accessibility, particularly for its evacuation. 

According to the experience of our Institute in the design of single-seaters, a good 
approach is to design it by working from the driver to the outside. But this is not simple, 
as some parts like the suspension or the engine have complex requirements that affect the 
driver’s posture and comfort and which cannot be modified without altering the vehicle’s 
performance. Moreover, if a light and easy-to-handle single-seater racing car is wanted, 
the solution passes through designing a very compact vehicle, which may conflict with 
the best ergonomics practices. 

Although of enormous usefulness, a driving position design based on Digital Human 
Modelling (DHM) software is not sufficient (Hunn, 1998; Coutu, 2003; Chaffin, 2001), 
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as this only evaluates static aspects like visibility or reach. So, this has to be 
supplemented with an empirical study on a real population group to satisfy the dynamic 
criteria, which are partly subjective and need a person’s evaluation. Moreover, the main 
ergonomics parameters, like the position of the pedals, need to be meticulously adjusted 
to every driver. It is also usual to have a seat for every driver, made-to-measure to his 
size, and for which, quite often his own body is used to make the mould. 

3 The Formula SAE competition 

In 1982, engineers from Ford, DaimlerChrysler and General Motors, all members of the 
SAE, Society of Automotive Engineers, of the USA, being aware of how little newly 
graduated engineers were trained for work in automotive companies, designed a 
competition for universities throughout the world, which involved conceiving, designing 
and constructing a single seat formula-type vehicle and competing with it (Figure 2).  
This competition was called Formula SAE (Formula SAE Rules, 2009). 

Figure 2 Single-seaters taking part in the formula SAE 

It was thought that this challenge would serve to increase the skills profile of engineering 
students, forcing them to work as part of a team with high levels of communication, 
responsibility and motivation, applying knowledge acquired during their degree. 

In order for projects to be uniform and provide equal opportunities in the competition, 
the SAE sets strict standards as the designing and manufacturing of different vehicle 
parts, in addition to stringent safety regulations. Most of these regulations are based  
on those imposed by the International Automobile Federation, the FIA, for other 
competitions. In spite of this, students are left with a considerable autonomy and capacity 
for innovation, as can be seen in the differences in the models from each university. 

Every university must present a project as if it was dealing with a company 
manufacturing 1000 vehicles a year for an amateur public competing at weekends, and at 
a cost of under 25,000$ per vehicle. 

The main condition refers to vehicle power, which is limited by engine capacity 
(600 cm3 maximum) and by a limited air intake. 

Other restrictions refer to vehicle size (1.520 mm minimum wheelbase, and a 
minimum 9 m slalom track pass), which means the vehicles are around 2700–3000 mm 
long. There is also an exhaustive check of the materials of which the chassis is built, and 
close attention is paid to safety and cockpit ergonomics. 
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Tests scored in the competition are divided into two categories: static and dynamic.  
In addition, there are other preliminary tests that do not score, but that need to be passed 
to reach the competition. Table 1 lists the tests together with a brief description  
of each. 

Table 1 Description of the competition tests 

Tests Points Description 
Preliminary 0 Pre-competition safety tests 
Technical inspection – General examination of the car by the judges 
Inclination – The car is inclined at up to 60º to check stability and ensure 

there is no liquid leakage 
Brakes – Simultaneous blocking of all four wheels after a brief 

acceleration
Noise – The vehicle is checked to ensure it emits less than 110 dB 

under certain acceleration conditions 
Static 325 in all Presentations and oral defence before the judges of the 

technical solutions adopted 
Design 150 Technical defence of vehicle design and the solutions 

proposed
Presentation 75 Marketing presentation to convince the judges to choose their 

car as opposed to the others 
Costs 100 Written report detailing the cost of each part and component 

of the unit built 
Dynamics 675 in all Various on-track tests with the single-seater 
Acceleration 75 Cover 75 m in a straight run in the shortest possible time 
Skidpad 50 Manoeuvrability test drive round a 9 m circle in both 

directions
Sprint 150 Fast lap of the circuit 
Endurance 350 Overall vehicle performance and reliability during 22 laps  

of a circuit 
Fuel 50 Minimum consumption in the endurance test 
Total 1000 

As can be seen, this is an authentic engineering competition that evaluates not only 
vehicle speed and performance but also the project and the finished product. The students 
are the stars in this competition. They have to organise themselves, find the resources 
needed, manage project time, costs, etc., and all under the supervision of the advisory 
teachers and the ‘Faculty Adviser’. The students must design and make the parts with 
their own hands (the fewer parts purchased the better), and four of them must finally 
drive the car. 

What is new about this project, apart from it being a new, innovative educational 
methodology where the vehicle is simply the means to get the best possible training, is 
the challenge posed to the students by having to take on and participate in an entire 
vehicle development life cycle. This can only be achieved by forming a strong working 
team, promoting active participation, the assumption of responsibilities, decision making  
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and involvement in reaching a common objective. In exchange, the student gets the 
satisfaction of being able to take the vehicle built by his/her own hard work to an actual 
competition. 

Currently, more than 250 universities throughout the world take part each year in the 
Formula SAE. For this, it has been necessary to extend the competitions to other 
countries, like England, where it is called Formula Student, Australia, etc., as well as the 
original in Michigan. Overall, this is an important source of new professionals to set the 
foundations for a successful future career in the automotive industry. 

4 Practical case: a Formula SAE cockpit design 

When INSIA decided to set up the UPMracing team to take part in the Formula Student, 
it had experience in designing driving seats for vehicles and coaches (García et al., 2006), 
but a project design for a single-seater had never been taken on. For this reason, it was 
impossible to transmit any ad-hoc knowledge to students to help them with their work. 

Apart from the competition constraints themselves, what is also highly appreciated  
is that design is carried out with the idea that the majority of people will be able to drive 
the car or the fact that regulations demand it be driven by several drivers in each of the 
tests; there were also other constraints specific to the UPMracing team. To be precise, the 
cockpit had to be designed without any prior knowledge as to who would eventually be 
the drivers as they would be chosen after the single-seater was finished, from among the 
students who had worked hard to build it, which meant the chance of being chosen would 
prove to be an incentive. 

This considerably complicated the design process and was a reason for an ergonomic 
study of the vehicle to be made to analyse the physical constitution of the team members. 
The final objective set as a requirement was for any person who had between a 5% 
percentile female stature and a 95% percentile male stature, both North American 
standards, to be able to fit in the single-seater while meeting the 6 principles stated 
previously. 

The intrinsic complexity of designing a cockpit for a single-seater competition car 
with all these requisites is accompanied by a lack of practical literature (SAE Standards, 
1987) since most competition teams keep their research secret. This means that a team 
starting to design a single-seater must start out from square one conducting trials, taking 
measurements and making tests; such was the case of UPMracing. 

Before beginning the design, an analysis was made of the objectives that it was hoped 
to meet. Some general sketches were made to bring the comfort posture sought closer to 
the other vehicle components. It is recommended (SAE Standards, 1987; Porter and Gyi, 
1998; Hanson et al., 2006; Kyung et al., 2008) certain distances in the angles of the joints 
to obtain a good driving position in a car. Although in our case it was necessary to make 
the seat-back more reclined and the feet more raised than in a standard car, we started out 
from the data provided on comfortable joint angles. 

In addition to the preliminary sketches (Figure 3), some life-size mock-ups were 
made so that the driver and the main vehicle systems could be put in place (Figure 4). 
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Figure 3 Preliminary design sketch of the cockpit 

Figure 4 Test with sheets of cardboard 

4.1 Methodology 

The methodology carried out for the design and manufacture of cockpit and seat was as 
follows: 

• Collection of the main 15 anthropometric measurements from the 22 team members. 
These measures were used to assure that all of them were inside the 5% female–95% 
male range, and if not, to increase this range. 

• Development of a custom cockpit simulator regulated with several degrees of 
freedom. 

• Analysis of the main parameters of the cockpit, like the seat, the position of driving 
elements, etc., by using the cockpit simulator with the team members, to define the 
best-scored driving comfort position. 

• Design the chassis with CATIA V5 CAD software. For that, 95% male and 5% 
female North American percentile dummies have to be modelled. The main focus  
of these dummies is to produce iterative simulations of position in the cockpit 
components within the previous comfort ranges measured. The goal for this activity 
is to assess the ergonomics issues, including the operation capabilities, the visibility, 
etc. After the validation of main configuration, all other vehicle’s components are 
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designed and placed on the model, like the suspension, the engine, the bodywork or 
the wheels. 

• Manufacture of chassis and seat. Once the position of each component is set to meet 
all the requirements, the chassis is built and major components are assembled, such 
as pedals, steering wheel and shifter. The seat is built considering the space and 
position required by dummies. The framework for the external face of the mould  
is carried out in wood boards, and the internal face of the mould is made using the 
body of one of the possible drivers. Between the two faces of the mould, a bag with 
polyurethane foam is placed to define the desired shape of the seat. The final seat 
will be manufactured with fibre glass using the previous configured polyurethane 
foam piece as a mould. 

• Finally, tests on vehicle have to be performed on track to verify that the design meets 
the requirements. This phase had been conducted using surveys from the four 
selected drivers. 

Thus, as is usually done during the designing of human interfaces, it is necessary to 
balance the use of real anthropometric measures with virtual simulations, since CAD 
dummies’ dimensions are not standard, and they need to be adjusted with actual data. 
Moreover, dummies cannot be deformed or adapted adequately to surfaces, as a human 
does when sitting on a seat. In addition, we need to be sure that the final design is 
adequate, since the dummy does not complain, either, it tells us where it hurts or what 
parts of its body feels any fatigue. Nonetheless, when designing a whole vehicle it is not 
possible to avoid the virtual phase, since it is very helpful on the designing and 
manufacturing of a complex system with many subsystems interacting with each other. 

4.2 Anthropometric measurements 

As it was not known a priori who the drivers would be, anthropometric measurements  
of the 22 team members were taken, with some very varied results. To do this, a 
measuring table was used (Figures 5–7) that had a series of graduated scales so that the 
most representative measurements could be taken in a seated position. 

Figure 5 Anthropometric measuring table 
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Figure 6 Measuring elbow–hand length 

Figure 7 Measuring chest perimeter 

Although Hanson et al. (2006) defines nine (9) anthropometric characteristics in his 
methodology to define a preferred driving position, in our study we decided to  
measure another 6 anthropometric variables of every individual, what turned out enough 
to characterise a computer model (dummy) with the anthropometry of the person 
measured: 

1 Height 6 Sitting height 11 Hip width 
2 Weight 7 Field of vision when seated 12 Shoulder width 
3 Buttock–knee length 8 Shoulder–elbow length 13 Waist perimeter 
4 Knee–heel length 9 Elbow–hand length (including 

hand)
14 Hip perimeter 

5 Sitting shoulder height 10 Foot length 15 Chest perimeter 

Table 2 shows a summary with the mean, the standard deviation and the minimum and 
maximum of the 9 (Hanson et al., 2006) most relevant measurements. 
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Table 2 Anthropometric measurements of the group evaluated 
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One of the most critical measurements is hip width, basic for the designing of a seat that 
needs to adjust well to the body to hold it firmly in place against lateral forces.  
Head height when seated is also important for positioning the rollover protective arc and 
the headrests. 

4.3 Tests with the cockpit simulator 

Having taken the anthropometric measurements of the potential drivers, tests were then 
performed to evaluate dynamic criteria and the driving position. So that each individual 
could freely choose the most comfortable posture for them, a simulator with an adjustable 
cockpit for the single-seater was designed with every possible degree of freedom  
(Figure 8). The driver could choose the following parameters: 

• height and length of the pedals (brake, accelerator and clutch) 

• height length and inclination of the steering wheel 

• inclination of the seat and its back 

• height and length of the gear lever and its distance from the steering wheel. 

Figure 8 Side view of the ergonomics simulator with all its degrees of freedom 

The test procedure was as follows: all drivers received instructions of how to perform the 
test. Then, every driver was given 15 min during which each of the adjustable parameters 
was gradually changed so that the most comfortable could be chosen. Afterwards, they 
were subjected to a 30 min test where driving had to be simulated following a series  
of simple instructions (braking, gear changes, turns, etc.) that the driver read and 
performed (Figure 9). The list contained 20 operations typical of a competition circuit 
that were repeated in a loop until the half hour test time was up. A computer screen with 
two simulations was also added to the simulator: one active, consisting of a car-driving 
video game, and another passive one with a route run by a single-seater on a racetrack 
with typical competition features. In both cases, they were asked to practise for different 
lengths of time. 

During the tests, the required measurements were taken: those that characterise the 
driver’s driving position and those related to cockpit size (Figure 10). 
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Figure 9 Test in the ergonomics simulator 

Figure 10 Taking one of the posture measurements 

To be specific, the angles in 6 joints were measured (Table 3) following the techniques 
described by Porter and Gyi (1998) to define the driving position adopted by each driver. 
The mean was calculated, the standard deviation and the minimum and maximum of the 
data obtained. These variables define the driving position adopted for each driver. 

Table 3 Measurement of the angles of the driving position 

N = 22 
Heel
angle

Knee
angle

Trunk-thigh
angle

Trunk-ARM
angle

Elbow
angle

Neck
inclination

Mean 80.17º 135.67º 112.5º 18.67º 120.33º 45.16º 
Standard deviation 7.25º 7.73º 5.35º 5.95º 9.6º 5.23º 
Minimum 69º 124º 107º 13º 110º 35º 
Maximum 91º 146º 122º 30º 136º 50º 
Rebiffe (Theoretical) 90–110º 95–135º 95–120º 10–45º 80–120º 20–30º 

In the last row of Table 3, the theoretical intervals studied by Rebiffe (1969) for adopting 
a comfortable driving position in a car have been added. The differences between this 
posture and that adopted for the single-seater can be appreciated. The neck inclination 
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and the heel angle fall outside those intervals, which leads us to suspect these will be the 
zones that most suffer fatigue. 

In addition to the above, also measured was the distance between both knees, the 
distance between elbows, etc. Given that the single-seater to be designed would have a 
manual gear change not a power-assisted one, it was essential to measure the distance and 
angle of the elbow when operating the gear change in neutral so that enough space for  
a comfortable gear change could be provided. 

Having completed the test, each driver was given a questionnaire where they were 
asked to answer a series of questions (Kyung et al., 2008) referring to driver posture 
comfort and fatigue in the body, as critically as they possibly could. The following 
conclusions were reached: 

• The clutch foot is in permanent tension, since while it is not operating the pedal it is 
suspended in the air. This resulted in fatigue for most of the drivers polled. To solve 
this, fitting a footrest or fourth pedal attached to the pedal set was proposed (it 
cannot be attached to the chassis since the pedals need to be adjustable in length). 

• Some drivers suffered neck pain in the lower vertebrae or in the shoulder  
(Figure 11). This is because the driving position requires the neck to be inclined in 
excess and the weight of the helmet also has an influence. 

• The accelerator pedal can be pressed down a long way compared with the brake 
pedal (Figure 12). This causes the foot to make considerable movements (it is not 
enough to move the heel) to go from full acceleration to braking. This caused some 
drivers to have a feeling of fatigue in the right foot. One of the drivers polled could 
find no comfortable posture in spite of changing his leg position numerous times.  
Two possible solutions are to reduce the length of the accelerator path, which in turn 
causes the engine load control to react less precisely. The second is to move the 
accelerator forward compared with the brake, which was the solution adopted.
This also meant that the engine revolutions could be maintained during braking 
thereby achieving an improvement in the vehicle’s longitudinal accelerations. 

Figure 11 Uncomfortable neck posture 
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Figure 12 Pedal set design fault 

4.4 Defining the comfortable posture 

The posture has to allow the majority of population group (5–95% percentiles)  
to comfortably fit into the single-seater. To define a comfortable posture, Rebiffe’s 
(1969) criteria were used as first reference, and with the simulation results exposed on 
Table 3 in addition to the conclusions of the questionnaire, a comfort posture was defined 
(Table 4). The heel and neck angels were moved around 5º from the mean value due to 
the presence of fatigue detected on the questionnaire. 

Table 4 Final posture angles 

Heel angle Knee angle 
Trunk-thigh

angle
Trunk-arm

angle Elbow angle Neck inclination 

85º 135º 112º 19º 120º 40º

The measurements taken to position the steering wheel, the pedals, the seat, the headrest 
and the gear change in respect of an origin of coordinates located at the point of 
intersection between the seat and the seat-back are as follows (Table 5): 

Table 5 Measurements for the cockpit design 

N = 22 Heel length 
Steering

wheel length
Steering

wheel height
Seat-back
inclination Knees height 

Headrests
height

Mean 960.83 316.67 478.33 51.66 365.83 737.5 
Standard
deviation 48.31 41.91 28.75 2.64 36.66 61.21 

Minimum 895 280 435 48,5 315 665 
Maximum 1015 390 510 5 405 825 

Deciding at what angle the seat-back should be reclined was a major decision. Designing 
an adjustable seat would make no sense in this kind of vehicle as it would greatly 
complicate its manufacture and the positioning of the safety harness and the rollover 
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protective arc, which, it should not be forgotten, are governed by regulations. The final 
seat-back inclination is 52º (Table 5). 

The headrest on the single-seater is also fixed, but it is long enough to take in the  
full-required range (665–825mm). 

Regarding knee–heel length, which decides where to position the pedals, a significant 
difference was noted between a person with short legs and another with long legs.  
Box pedals that are adjustable in longitudinal length are, therefore, required. 

The final decision was the position of the steering wheel. While an adjustable height 
steering wheel would not be very difficult to design, its range of variation would be very 
small. This is because regulations state that the topmost point of the steering wheel 
cannot project from the chassis, and if its height was lowered, it would be in contact with 
the driver’s knees due to the driving position. The steering wheel height was, therefore, 
fixed at 490 mm. This figure is above the mean so that large drivers do not knock their 
knees against the steering wheel when turning it. 

So, of the three adjustable parameters (pedals, steering wheel and seat), the steering 
wheel is the least critical. By adjusting the length of the pedals and with an appropriate 
seat design, the cockpit can be adapted to the different measurements of the population 
studied. 

4.5 Sizing the chassis design 

The adjustment intervals of each parameter and the final measurements were analysed 
with the aid of the ergonomics module of the CAD CATIA V5 program, called 
Ergonomics Design & Analysis. With this module, a dummy can be edited with the 
dimensions and driving position (Figures 13 and 14) of any individual evaluated. 

Figure 13 Anthropometry of a 95% percentile dummy in CATIA v5 
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Figure 14 95% percentile dummy in the comfort posture in CATIA v5 

When we had modelled the 95% percentile dummy in its driving position, the chassis 
could be designed around its body (Figure 15), assembling it together with the other 
components that had been previously modelled. 

Figure 15 Chassis and other single-seater components with a 95% driver percentile  
in CATIA v5 

4.6 Meeting specifications 

When the main components had been modelled and assembled into a whole, the time had 
come to check they met both competition and team specifications. Among the latter are 
static criteria that can be evaluated with the CATIA v5 Ergonomics module. 

On the one hand, the model analyses the visibility of any driver, for example, the 5th 
percentile female (Figure 16) as it is important for the instrument panel and a large part of 
the roadway to be in direct view. It also analyses the distance to reach the controls and 
again the 5th percentile female is an example of a critical case. The yellow sphere 
represents the distance reached by the left hand of a 5th percentile female without the 
back becoming separated from the seat (see Figure 17). 
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Figure 16 5% female percentile field of vision 

Figure 17 Sphere reached by a 95% percentile 

However, results obtained by DHM software are not always reliable due to the difficulty 
of modelling the human body, that as it was stated in the methodology, the dummy 
cannot deform or adapt to a surface. When the chassis design was completed, a scale 1 : 1 
model was built to ensure the design was right. The materials chosen for this model were 
PVC tubes (Figure 18) joined with glue as this is a fast, cheap way to build. 

Figure 18 Model of the PVC chassis tested by a 98% percentile driver 
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4.7 Constructing the chassis and seat 

Having made all these checks, construction of the cockpit began with welded carbon steel 
tubes in line with competition specifications for materials and measurement (Figure 19). 

Figure 19 End result of the single-seater cockpit with all the controls 

Without any doubt, the most difficult component to make was the seat (SAE Standards, 
1987), since this had to take up as little space as possible, be very light and at the same 
time tough. The material selected was glass-fibre-reinforced polyester, as it is a cheap 
and easy-to-use technology that comprised all the requirements. Despite having a 3D 
model obtained from the dummy’s back fitted in 3D to design and construct the seat, it 
was decided to do it by hand using the back of one of the drivers. 

The two main parameters that define the seat geometry are the sitting height and the 
hip width, and the seat manufactured was adjusted to the median of the possible drivers 
that matched with 80th percentile sitting height measurement and a 70th percentile hip 
width. 

The back of the driver chosen was used to make the seat mould in the following way: 
first, a cockpit was made in medium-density fibre board and the driver placed inside in 
the posture to be adapted to the single-seater (Figure 20). During this procedure, the 
driver must be well protected so that there is no risk of intoxication and the seat-back 
angle required checked together with the correct posture for the spinal column. 

Figure 20 Model driver of the seat with the comfort posture in the wooden cockpit 
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Using a polyol-isocyanate, which gives polyurethane, all the gaps between the body and 
the cockpit were filled (Figure 21). The result was a preliminary seat mould, which only 
needed a good finish. 

Figure 21 Polyurethane mould obtained from the driver’s back and buttocks 

Errors were subsequently corrected and any cracks found were filled. To harden the 
mould plaster, bandage strips were applied to the whole surface of the seat, and when it 
was all-hard and dry it was lightly sanded. Thus, the mould was ready for the application 
of layers of fibre glass (Figure 22). Even though the whole seat was fairly rigid, fewer 
layers of fibre glass were applied to the part of the seat that held the driver’s hip and 
thighs so that it would have the required flexibility. 

Figure 22 Fibre glass seat on the mould 
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The final procedures to give it a finish consisted of separating the seat from the mould, 
cutting it to shape, trimming it, painting it, coating it with neoprene to give it a better 
appearance and then fitting it into the chassis (Figure 23). 

Figure 23 Finished seat 

Since the goodness of design made must be assessed in dynamic testing on track where 
the accelerations, vibrations and coordination in handling high-speed controls come into 
play, these validation tests were only carried out by the four drivers selected to participate 
in competition. 

The four drivers were given a survey related to vehicle’s ergonomics, which was 
divided into eight parts: pedals, steering wheel, shift levers, seat, instruments panel, 
chassis, headrest and inertial forces. The aim was to obtain open answers about driving 
position and seat comfort to improve actual and future single-seaters. 

All of them reflected an absence of fatigue beyond what it was expected when driving 
a high physical demanding vehicle, what showed that the whole ergonomics was very 
satisfactory (Figure 24). 

Figure 24 The single-seater at a race 
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5 Conclusions 

As a main conclusion, it can be said the characteristics of driving a single-seater are 
different from those of a conventional car. In addition, the lack of a clear bibliography 
and accessible data based on ergonomic single-seater cockpit design led to the 
development of a methodology that was meticulously documented at every stage. The use 
of a measuring table, the creation of a cockpit simulator and the use of ergonomics 
software enabled the designers to satisfy vehicle ergonomic and functional requirements 
at the same time. The data recorded, ranging from the anthropometric measurements  
of the possible drivers to the angles of greatest comfort and driving efficiency, have 
served as a basis for designing new vehicles. The methodology was very well scored by 
the competition judges. In addition, no driver reported discomfort or driver fatigue. 
Future work will study the effects of vibrations transmitted from the road to the driver 
through the suspension, and the possibility of introducing absorbent and elastic materials 
in the seat clamps. 
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