,		_				
A NI A I TOTO	1 7	\sim A T	α	DEI	$\mathbf{M} \cap \mathbf{T} \cap \mathbf{D}$	(2TD EE)
ANALISIS	Y	U.AI	スモロスフ	IJEJ.	WICHTOR	(ZIK-FF

Análisis y Cálculo del Motor (2TR-FE) 2.7 Litros VVT-i de la Camioneta Toyota Hilux

Fausto Geovanny Echeverría Meza

Universidad Internacional SEK

Nota de Autor

Fausto Geovanny Echeverría Meza, Facultad de Ingeniería Mecánica Automotriz, Universidad Internacional SEK; Director Ing. Santiago Celi.

Cualquier correspondencia concerniente a este trabajo puede dirigirse a: giovanni.meza12@gmail.com.

Declaración Juramentada

Yo, FAUSTO GEOVANNY ECHEVERRÍA MEZA, con cédula de identidad 172282109-5,

declaro bajo juramento que el trabajo aquí desarrollado es de mi autoría, que no ha sido

previamente presentado para ningún grado a calificación profesional; y, que se ha consultado las

referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, cedo mis derechos de propiedad intelectual correspondientes

a este trabajo, a la UNIVERSIDAD INTERNACIONAL SEK, según lo establecido por la Ley de

Propiedad Intelectual, por su reglamento y por la normativa institucional vigente.

FAUSTO GEOVANNY ECHEVERRRÍA MEZA

C.I.: 172282109-5

Agradecimientos

Este trabajo se lo dedico especialmente a mis padres, por ser mi ejemplo a seguir, por estar conmigo siempre en todos los éxitos y fracasos, les doy las gracias por todo su esfuerzo y sacrificio, por ustedes estoy aquí cumpliendo un sueño y un objetivo más en mi vida.

A mi hermano por ser mi amigo incondicional, por ser una guía en mi camino y por estar siempre cuidando de mí.

A Rafaela por tanto cariño y amor, por depositar toda su confianza en mí y estar conmigo con todo su apoyo incondicional.

A mi familia por sus bendiciones y buenos deseos.

Y sobre todo a Dios, por darme la vida y demostrarme a mí mismo que con constancia y perseverancia los sueños se hacen realidad.

Índice del Contenido

Introducción	1
Propuesta de Investigación	1
Tipo de Investigación	1
Objetivos	2
Objetivo general	2
Objetivos específicos.	2
Motivación	2
Marco Teórico	3
Motor Otto.	3
Admisión.	4
Compresión.	6
Explosión o Expansión	8
Escape	10
Toyota, Generalidades	11
Toyota Hilux motor (2TR-FE).	12
Características del motor (2TR-FE).	13
DOCH	13
Sistema VVT-i	14
Beneficios del VVT-i	14
Combustible en Ecuador.	15
Sistema de combustible	16
Tipo de combustible	16
Método	17
Cálculo Termodinámico del Motor de Combustión Interna	17
A Introducción	17
B Ciclo teórico.	17
Constitución y modo de trabajar	17
Ciclo de trabajo	
C - Ciclo práctico	19

Datos técnicos para el cálculo termodinámico del motor 2TR-FE del vehículo Toyota Hi	
Carácter de los procesos de admisión	19
Composición química de los combustibles.	20
Nociones sobre las propiedades de los combustibles.	21
Cantidad teórica de aire necesaria para la combustión de un kg de aire	21
Cantidad de aire teórico para la combustión de 1 kg de combustible	23
Coeficiente de exceso de aire (α)	23
Cantidad teórica total de mezcla (M1).	24
Cantidad teórica de cada uno de los componentes de la combustión	25
Diferencia de los productos de combustión.	27
Parámetros del proceso de admisión.	28
Densidad de la carga teórica en la admisión.	29
Presión teórica al final de la admisión (Pa).	29
Temperatura teórica de calentamiento de la carga (Δt)	30
Cantidad de gases residuales (γr).	31
Temperatura teórica al finalizar la admisión (Tr).	33
Coeficiente de llenado teórico (ηv).	34
Diversos factores que influyen sobre el coeficiente de llenado teórico	35
La figura 19., muestra la variación del coeficiente de llenado teórico (ηv) en función a las diferentes cargas suministradas al motor.	38
Compresión en el ciclo real	38
Relación de compresión (ε).	38
Coeficiente politrópico (n1)	40
Presión de compresión (Pc).	41
Temperatura de compresión (Tc)	41
Temperatura de combustión (Tz)	42
Presión en la combustión (Pz)	46
Expansión en el ciclo real	47
Proceso de expansión en el ciclo	47
Grado de expansión n?	48

Temperatura al final de la expansión (Tb)	49
Presión al final de la expansión (Pb)	50
Presión Media del Ciclo, Potencia y Rendimiento Económico del Motor 2TR-FE Teórico	50
A Introducción.	50
B Presión media indicada de un ciclo	51
1 Motor encendido por chispa (Pi)	51
2 Determinación en la presión indicada por el diagrama redondeado	51
C Potencia indicada de un motor = Ni	52
1 Trabajo indicado (Li)	53
2 Perdidas mecánicas en el motor (Nm)	53
D Potencia efectiva y rendimiento mecánico de un motor.	54
1 Potencia efectiva (Ne)	54
2 Rendimiento mecánico de un motor ideal	54
E Economía y rendimiento de un motor ideal del motor Toyota 2TR-FE teórico	56
1 Gasto específico indicado de combustible (gi)	56
2 El gasto de combustible = ge.	57
3 El rendimiento indicado = ηi	57
4 Rendimiento efectivo (ηe)	57
F Análisis de los factores que influyen en la economía y la potencia del motor	58
1 Factores que influyen en el rendimiento económico de un motor	58
2 Factores que influyen en la potencia del motor.	59
G Balance térmico del motor ideal para el motor 2TR-FE.	
1 Cantidad total de calor = Qo	62
2 Calor equivalente al trabajo efectivo (Qe) ideal para el motor 2TR-FE	63
3 Calor cedido al medio refrigerante (<code>gref</code>) ideal para el motor 2TR-FE	63
4 Calor que llevan del motor los gases de escape (Qg) ideal	65
5 Calor del combustible que se desaprovecha (Qci) ideal	66
6 Termino independienteQrest ideal	
Características y Estabilidad del Régimen de Funcionamiento de los Motores de Combustión Interna Teórico	
Conocimientos generales.	

Características mecánicas de un motor
1Características de la velocidad68
2 Característica externa de velocidad
3Condiciones para la obtención de las características externas70
Características parciales de velocidad
1Caracteristicas de la carga70
2Caracteristicas de la regulación71
3 Estabilidad del régimen de funcionamiento y reservas de un par de motor de un motor de automóvil
Construcción y Definición de las Medidas del Volante de Inercia
Cálculo Térmico y de Tensiones de Deformación del Pistón
Cálculos del pistón
Cálculo del bulón.
Cálculo de los segmentos89
Resortes de Válvulas
Cálculo general de las válvulas.
Fuerza, Aceleración, Desplazamiento, Velocidad, Presión del Mecanismo Biela-Manivela Teórico
Fórmulas y Resultados para el Diagrama Fuerza del Embolo-con respecto al Angulo de Giro del Cigüeñal97
Fórmula y Resultados para el Diagrama del Desplazamiento del Embolo -con respecto al Angulo de Giro del Cigüeñal102
Fórmula y Resultados para el Diagrama de Fuerza de la Manivela -con respecto al Angulo de Giro del Cigüeñal103
Fórmula y Resultados para el Diagrama de Fuerza Total -con respecto al Angulo de Giro del Cigüeñal
Fórmula y Resultados para el Diagrama de Fuerza Tangencial -con respecto al Angulo de Giro del Cigüeñal105
Resumen del Proceso de Admisión106
Resumen del Proceso de Compresión
Resumen del Proceso de Explosión
Análisis del Proceso de Escape109
Resumen del Proceso de Escape

Resultados	110
Conclusiones Generales	122
Recomendaciones	123
Bibliografía	124

Resumen

El presente trabajo busca realizar el cálculo y análisis del mecanismo biela-manivela de un motor de combustión interna tipo (2TR-FE) tomando en cuenta todas sus especificaciones técnicas para representar las gráficas características de funcionamiento.

Se realizó el cálculo de parámetros geométricos para caracterizar las dimensiones de los elementos más importantes del motor; se realiza cálculos del funcionamiento del motor y de los sistemas mecánicos y termodinámicos. Con los datos obtenidos se realiza las gráficas de fuerzas que influyen sobre el mecanismo biela-manivela y finalmente se analiza cada gráfica en base al funcionamiento del motor.

Introducción

Propuesta de Investigación

En la presente investigación se propone realizar el cálculo termodinámico del tipo de motor (2TR-FE) de combustión interna en base a la información investigada por los autores (Jovaj, 1982) (Payri, J.M. Desantes, 2011).

Se realizó una investigación a cerca de la composición química, nociones y propiedades del combustible, para obtener la cantidad teórica de aire necesario para la combustión del tipo de motor 2TR-FE.

Se necesita calcular la presión y temperatura final en los tiempos de admisión y compresión, para así poder determinar la presión y temperatura de combustión del motor. De igual forma se determina la presión final en el tiempo de expansión y su temperatura final, además se obtiene los datos de la presión inicial de escape. Con los datos obtenidos mediante los cálculos realizados se establece la presión media del ciclo, potencia y rendimiento económico del motor 2TR-FE.

Finalmente se realiza los cálculos respectivos para el mecanismo biela-manivela con ayuda de la información que proporciona el manual de (TOYOTA, 2010) y con los datos obtenidos representar las gráficas características de funcionamiento.

Tipo de Investigación

En el presente trabajo se realizará una revisión bibliográfica de los cálculos mecánicos y termodinámicos de un motor de combustión interna tipo (2TR-FE).

Objetivos

Objetivo general.

En el presente trabajo se obtiene las gráficas de funcionamiento del mecanismo bielamanivela de un motor de combustión interna tipo (2TR-FE) y se analiza cada una de las gráficas obtenidas.

Objetivos específicos.

- Investigar información bibliográfica sobre los motores de combustión interna alternativos, para analizar los parámetros base de funcionamiento.
- Determinar los valores de presión, temperatura, potencia, cantidad de mezcla airecombustible, rendimiento y trabajo mecánico del motor para encontrar variables de trabajo máximo.
- Encontrar la aceleración, desplazamiento, velocidad y fuerza del émbolo para determinar esfuerzos analíticos.
- Realizar el balance térmico del motor para medir la eficiencia y rendimiento del mismo, y saber cuál es la energía aportada para mover el cigüeñal.

Motivación

Esta investigación permite demostrar todos los conocimientos impartidos durante el estudio de la carrera de Ingeniería Mecánica Automotriz. Como se conoce la mayoría de los vehículos funcionan con combustibles líquidos y son de combustión interna.

La investigación trata acerca del cálculo termodinámico del motor, es decir todos los fenómenos que se producen en la combustión durante el ciclo de trabajo.

Mediante el estudio del presente trabajo, se pudo conocer sobre la presión media de un ciclo, potencia y rendimiento económico de un motor, que son importantes para definir los parámetros del ciclo real del motor para su correcto funcionamiento.

También se dio a conocer sobre las características y estabilidad del régimen de funcionamiento del motor de combustión interna, que es de importancia para que el motor funcione de manera estable a la mayor carga posible.

Es importante porque la investigación realizada menciona la cinemática del mecanismo biela-manivela, es decir las variaciones del movimiento y fuerzas que se producen en dicho mecanismo.

Marco Teórico

Motor Otto.

En los motores de combustión interna, la energía térmica para realizar un trabajo mecánico se obtiene entre el combustible introducido al cilindro y el oxígeno que proviene del aire. (Jóvaj M. S., Motores del automóvil, 1982).

En un motor de combustión interna (Motor Otto), se trata de obtener una mezcla lo más estequiométrica posible, es decir que tenga la cantidad correcta de aire y combustible (14,7:1) para poder realizar la mezcla. (Cascajosa, 2000)

En un Motor Otto no se puede obtener una mezcla estequiométrica perfecta, debido a la temperatura del aire que entra al llenado del cilindro, esto puede ser frio o caliente lo cual depende de las condiciones climáticas a las que estamos expuestas. (Cascajosa, 2000)

El funcionamiento de un Motor Otto se explica con cuatro fases llamados tiempos:

- Admisión
- Compresión
- Explosión
- Escape

Admisión.

Comienza cuando el pistón se encuentra en su punto más alto. La válvula de admisión se abre como se observa en la figura1., el pistón baja permitiendo la entrada de la mezcla (airecombustible) debido a la succión que provoca el pistón. (Jóvaj M. S., Motores del automóvil, 1982)

Cuando el pistón llega al punto muerto inferior como se puede observar en la figura 1, se cierra la válvula de admisión. El cigüeñal ha girado media vuelta. (Jóvaj M. S., Motores del automóvil, 1982)

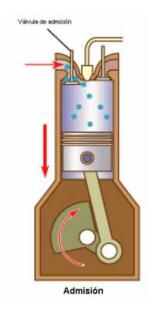


Figura 1. Tiempo de admisión

Fuente: (arcomariaje, 2000)

En la figura 2., horizontalmente se va a representar el desplazamiento del pistón, designando a PMS (como punto muerto superior), PMI (punto muerto inferior). (Jóvaj M. S., Motores del automóvil, 1982)

La recta AB de la figura 2., demuestra que la presión no varía. Esto se debe al llenado del cilindro, el cual se realiza a presión atmosférica, por lo tanto no existe variación de presión.

(Jóvaj M. S., Motores del automóvil, 1982).

Notaremos que la recta AB queda al nivel de la presión atmosférica (0.1 MPa). Verticalmente se añade la escala de presiones graduada hasta 25 bares. (Jóvaj M. S., Motores del automóvil, 1982)

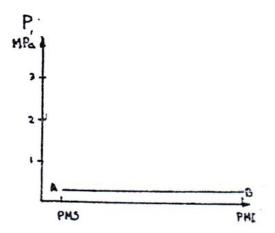


Figura 2. Desplazamiento del pistón durante la admisión

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Características.

- Pistón de PMS a PMI va abierta
- Depresión de 0.2 bar
- Entrada de mezcla inflamable y aire con 300 km/h
- Llenado de 50% a 80%
- La pared del cilindro se enfría. (Jóvaj M. S., Motores del automóvil, 1982)

Compresión.

El pistón sube del punto muerto inferior al punto muerto superior como se observa en la figura 3., las válvulas de admisión y escapen se encuentran cerradas, comprimiendo la mezcla (aire-combustible) de la cámara de compresión. El cigüeñal ha completado una vuelta. (Cascajosa, 2000)

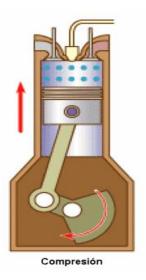


Figura 3. Tiempo de compresión

Fuente: (arcomariaje, 2000)

En la figura 4., se observa una curva que representa la disminución de volumen, debido a que el pistón sube comprimiendo la mezcla (aire-combustible), y un aumento de presión debido a la disminución de volumen y al calentamiento. (Jóvaj M. S., Motores del automóvil, 1982)

Figura 4. Curva de variación de volumen y aumento de presión

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Características.

- Pistón de PMI a PMS
- Válvulas de admisión y escape cerradas
- Compresión final de 10 a 15 bar
- Aumento de temperatura hasta 500 °C
- Relación de compresión 8:1 hasta 11:1 (Cascajosa, 2000)

Explosión o Expansión.

En la carrera anterior la mezcla quedó comprimida en la cámara de combustión. Una chispa producida en la bujía como se observa en la figura 5., enciende el combustible, los gases al expandirse producen una alta presión que actúa contra la cabeza del pistón, obligándolo a bajar desde el punto muerto superior al punto muerto inferior. El cigüeñal ha girado una vuelta y media. (Stuttgart, Tecnología del automovil, 1980)

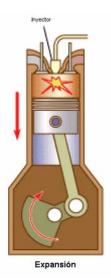


Figura 5. Tiempo de expansión

Fuente: (arcomariaje, 2000)

En la figura 6., la línea CD representa el aumento de presión producido por un aumento de temperatura debido a la explosión de la mezcla. La línea DE (curva de expansión) indica el aumento de volumen dentro del cilindro y la disminución de presión.

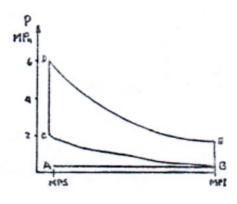


Figura 6. Curva de expansión

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Características.

- Las válvulas de admisión y escape se encuentran cerradas
- Velocidad de expansión del frente de llamas de 10 a 25m/s
- Presión máxima de combustión de10 bar
- Temperatura máxima 2000 °C
- Presión final de combustión 5 bar
- Temperatura final 800°C (Stuttgart, Tecnología del automovil, 1980)

Escape.

Como se puede ver en la figura 7, el pistón asciende desde el punto muerto inferior al punto muerto superior y se abre la válvula de escape, la cual permite la salida de los gases al exterior expulsados por el pistón. (Stuttgart, Tecnología del automovil, 1980)

Cuando el pistón llega al punto muerto superior se cierra la válvula de escape. El cigüeñal ha girado dos vueltas completando el ciclo de trabajo. (Stuttgart, Tecnología del automovil, 1980)

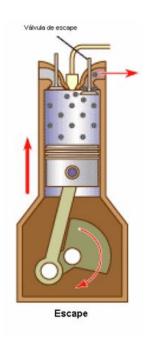


Figura 7. Tiempo de escape.

Fuente: (arcomariaje, 2000)

En la figura 8., la línea EF indica el descenso de presión cuando se abre la válvula de escape, mientras que la recta FG representa la expulsión de los gases quemados hacia el exterior. (Jóvaj M. S., Motores del automóvil, 1982)

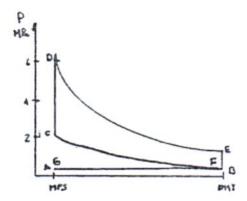


Figura 8. Expulsión de los gases quemados

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Toyota, Generalidades.

Toyota tiene sus raíces en una empresa de Japón. La historia de Toyota comienza a fines del siglo XIX, cuando Sakichi Toyoda inventa el primer telar automático, que revoluciona la industria textil del país. (http://www.toyota.com.ar, 2010)

Impulsado por el éxito de sus telares, la empresa se conocía en varios países como Toyada Automatic Loom Works. (motorhistoria, 2007)

El cambio de Toyada a Toyota venia justificado por la necesidad de simplificar la pronunciación con vistas al mercado internacional, así como para diferenciar las actividades de las dos empresas familiares. (diariomotor, 2009)

Kiichiro Toyoda, el hijo de Sakichi, realiza las investigaciones sobre motores de combustión interna a gasolina, y en 1932 funda la División Automotriz de Toyota Automatic Loom Works. Finalmente en 1936, Kiichiro produce el primer prototipo de automóvil, el Toyota

AA Figura 9, y establece los cimientos de Toyota Motor Company Ltd. (http://www.toyota.com.ar, 2010)

Figura 9. El primer modelo de Toyota AA de 1936

Fuente: (http://www.autobild.es, 1936)

Toyoda, fundador de Toyota, organizó un concurso público para diseñar el logo de la marca para promocionar sus autos. El símbolo actual fue introducido en 1989. (elemprendedor, 2003)

Toyota Hilux motor (2TR-FE).

Hilux es la denominación corta de "High Luxury", es decir Alto Lujo, la camioneta Toyota Hilux séptima generación que se observa en la Figura 10., trasmite gran potencia y agresividad, la séptima generación, inició su camino en 2005. (farrellones.cl, 2001)

Figura 10. Toyota Hilux Séptima generación

Fuente: (diariomotor, 2009)

Cuenta con un motor de 2.7 Litros VVT-i con una potencia de 160 caballos de fuerza y un torque máximo de 241 Nm con gran potencia y desempeño. (Toyota Ecuador, 2005).

El motor 2TR-FE es un motor de origen japonés. Hasta el año 2010 este vehículo fue ensamblado en Colombia, pero hubo varios problemas y quejas en los clientes, debido al sistema de suspensión, la cual era muy rígida. A partir del año 2011 esta camioneta fue ensamblada en Tailandia mejorando así todos los problemas de fabricación. (http://www.toyota.com.ar, 2010)

Características del motor (2TR-FE).

DOCH.

DOHC es un término relacionado con los motores de combustión interna. Son siglas con significado en inglés: Double Over Head Camshaft, cuya traducción al español es "doble árbol de levas en cabeza". (sistemas de distribución, 2009)

Los motores DOHC tienden a presentar una mayor potencia. Esto se debe al hecho de poder manejar por separado las válvulas de admisión y de escape, lo cual permite configurar de una manera más específica los tiempos de apertura y cierre, y por ende, tener mayor fluidez en la cámara de combustión. (sistemas de distribución, 2009)

Sistema VVT-i.

El sistema VVT-i (Variable Valve Timing Intelligence o Distribución Variable Inteligente de Válvulas) desarrollado por Toyota le brinda a la válvula de admisión, la libertad de aumentar o reducir el tiempo de apertura y cierre, según las condiciones de trabajo del auto. (todoautos, 2006).

El VVT-i proporciona un aumento de potencia en el motor, tanto a revoluciones bajas, como en altas aprovechando al máximo la mezcla de aire- combustible. Es un sistema electromecánico que utiliza un sistema hidráulico controlado por la ECU la cual ajusta continuamente la mayor o la menor apertura de las válvulas, dependiendo de las revoluciones por minuto (RPM) del auto. (Toyota Ecuador, 2005)

Esto lo hace a través de pequeños obturadores que controlan la presión de aceite que se aplica para adelantar o retrasar la apertura o cierre de las mismas. (Toyota Ecuador, 2005)

Beneficios del VVT-i.

- Obtención de una mayor potencia del vehículo.
- Mejora en el consumo de combustible.
- Funcionamiento más uniforme.
- Reducción del impacto ambiental.

• Reducción del ruido del motor. (TOYOTA, 2010)

Figura 11. Motor (2TR-FE) con sistema VVT-i

Fuente: (ociomotor, 2008)

Combustible en Ecuador.

Un motor de combustión interna puede trabajar con combustibles líquidos y gaseosos que son obtenidos de la destilación del petróleo. (cne.gob.sv, 2008)

Para el cálculo del motor 2TR-FE se va a utilizar un tipo de combustible (súper) con 92 octanos. El octanaje determina la calidad y la capacidad de consumo en la gasolina. Una gasolina con mayor grado de octanos mejora la potencia y el rendimiento del motor, además disminuye el consumo de combustible. (elcomercio, 2012)

Para distribuir este tipo de combustibles, Petroecuador debe importar grandes cantidades de naftas de alto octanaje. (calidad-del-combustible-en-ecuador)

La nueva gasolina no deja de ser contaminante porque produce emisiones de azufre. Sin embargo, a diferencia de la gasolina anterior, el porcentaje de emisión de azufre se reduce de 2000 a 600 partes por millón (ppm). (elcomercio, 2012)

El disminuir el azufre nos permite mejorar la combustión y reducir las emisiones contaminantes, logrando que el motor mejore su potencia y rendimiento. (ultimasnoticias, 2011)

Sistema de combustible.

Inyección electrónica multipunto (un inyector para cada cilindro). (TOYOTA, 2010).

Tipo de combustible.

- Vehículos con convertidor catalítico de tres vías: Gasolina sin plomo, número de octano
 91 o superior.
- Capacidad del depósito de combustible: 21 galones. (TOYOTA, 2010)

Método

Cálculo Termodinámico del Motor de Combustión Interna

A.- Introducción.

En el cálculo termodinámico del motor de combustión interna, la energía calorífica de la mezcla aire-combustible, se va a transformar en el proceso de combustión del motor, a lo largo de los cuatro tiempos del ciclo del motor. (Stuttgart, Tecnologia del automovil, 1980, pág. 206)

El motor de cuatro tiempos se emplea por lo general como máquina motriz de los automóviles de turismo y de las motocicletas pesadas. (Stuttgart, Tecnologia del automovil, 1980, pág. 206)

B.- Ciclo teórico.

Constitución y modo de trabajar.

Se denomina ciclo teórico porque tanto las válvulas de admisión como de escape se abren y se cierran en el punto muerto superior (PMS) y el en punto muerto inferior (PMI). (Stuttgart, Tecnologia del automovil , 1980, pág. 206)

El motor Otto de cuatro tiempos como se observa en la figura 12., tiene un accionamiento por mecanismo cigüeñal que consta de pistón, biela y cigüeñal. El mecanismo de accionamiento por cigüeñal está encerrado en el cuerpo del motor que a su vez está formado por la culata del cilindro, el cilindro y la caja o carter del cigüeñal. (Stuttgart, Tecnologia del automovil, 1980, pág. 206)

El pistón realiza su carrera dentro del cilindro, mientras que la biela transmite el movimiento al cigüeñal y así la biela transforma el movimiento alternativo del pistón, en un movimiento de rotación del cigüeñal. (Stuttgart, Tecnologia del automovil, 1980, pág. 206)

Las válvulas que son accionadas por el árbol de levas, hacen posible la entrada o salida de los gases en los cilindros. El árbol de levas tiene un accionamiento por el árbol cigüeñal a través de una cadena, y gira con la mitad del número de revoluciones como se presenta en la figura 12. (Stuttgart, Tecnologia del automovil, 1980, pág. 206)

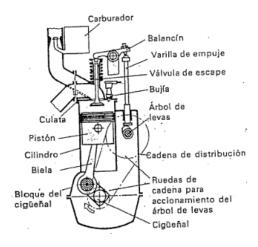


Figura 12. Constitución de un motor de cuatro tiempos

Fuente: (Stuttgart, Tecnologia del automovil, 1980)

Ciclo de trabajo.

El ciclo de trabajo se desarrolla en dos vueltas del cigüeñal en sus cuatro tiempos:

- Admisión.
- Compresión.
- Expansión.

• Escape

C.- Ciclo práctico.

En este ciclo cada uno de sus tiempos termina un grado antes del PMI y PMS, el diagrama de su ciclo no es puntual si no redondeado, y en este ciclo se consideran las pérdidas respectivas del ciclo. (Stuttgart, Tecnologia del automovil, 1980, pág. 207)

Datos técnicos para el cálculo termodinámico del motor 2TR-FE del vehículo Toyota Hilux 2.7 VVT-i.

Tabla 1.

Características del motor 2TR-FE

	CARACTERISTICAS DEL MOTOR 2TR-FE
Tipo de motor	4 cilindros en línea, 4 tiempos a gasolina
Mecanismo Valvular	16 válvulas DOCH con VVT-i (Tiempo valvular variable inteligente)
Cilindrada	2694 cc
Potencia máxima(HP)	158 a 5200 rpm
Torque máximo	241Nm a 3800 rpm
Diámetro del pistón	95 mm
Carrera del pistón	95 mm
Relación de	
compresión	9.6:1

Nota: La tabla 1., muestra las características del motor 2TR-FE indicadas por el fabricante. Fuente: (Toyota, 2010)

Carácter de los procesos de admisión.

La cantidad de aire - combustible, que se necesita para el llenado de los cilindros, depende de las siguientes consideraciones:

- a. Debido a resistencia hidráulica, ya que dificultan el paso de la carga fresca.
- b. Residuos de gases quemados (M_{ν}) de la anterior combustión.
- c. Elevamiento de la temperatura de la Carga fresca por medio de las paredes del cilindro y el sistema de admisión con una frecuencia (ΔT) de temperatura la misma que provoca la disminución de la densidad de la carga fresca. (Stuttgart, Tecnologia del automovil, 1980, pág. 207)

Composición química de los combustibles.

Los motores de combustión interna, trabajan con combustibles líquidos y gaseosos, estos combustibles son obtenidos de la destilación del petróleo, siendo estos combustibles como la gasolina, keroseno, aceite, diésel, gas-oíl, aceite solar, etc. (Stuttgart, Tecnologia del automovil, 1980, pág. 208)

El petróleo está formado, por un 84 – 85% de carbono y 12 a 14% de hidrocarburos, y los demás están formados por nitrógeno, oxígeno, y azufre. (Jóvaj, 1982, pág. 40)

La composición química de la combustión, se denomina al contenido macizo o volumétrico en el combustible, esta composición química se ha adoptado expresar en unidades de masa. (Jóvaj, 1982, pág. 40)

Para 1kg de combustible líquido compuesto de carbono (C), hidrógeno (H), y oxígeno (O_2) , con ausencia de azufre se puede escribir como la ecuación 1.

$$C + H + O_2 = 1Kg \tag{1}$$

21

Nociones sobre las propiedades de los combustibles.

1) Encendido rápido.

2) Características antidetonantes.

3) Asegurar una completa combustión.

4) No permitir la formación de carbonilla en la cámara de combustión. (Jóvaj, 1982, pág. 40)

Cantidad teórica de aire necesaria para la combustión de un kg de aire.

En este tipo de motor, el oxígeno que se necesita para la combustión, se halla en el aire que se admite al cilindrado en el primer tiempo (admisión), se considera que el volumen de masa de oxígeno en el aire es el 23% aproximadamente y en volumen de 2,7; así se obtiene la cantidad teórica de aire necesaria para la combustión de 1kg de combustible como se relaciona en la ecuación 2. (Jóvaj, 1982, pág. 43)

$$lo = \frac{1}{0.23} \left(\frac{8}{3C} + 84 - O_C \right) \tag{2}$$

Dónde:

lo = Cantidad teórica de aire

C= carbono

 O_C = C+ O_2 = Óxidos ácidos del carbono

Entonces:

C = 0.835

$$O_{C}$$
=0.145

Los valores de carbono (C) y de los óxidos ácidos del carbono (O_C) fueron tomados de la tabla 5., del libro: (Jovaj, 1982, pág. 62)

$$lo = \frac{1}{0.23} \left(\frac{8^{0.835}}{3} + 8^{0.145} \right)$$

$$lo = 15.739 kg$$

y en kmol la ecuación 3. (Jovaj, 1982, pág. 48)

$$Lo = \frac{1}{0.21} \left(\frac{C}{21} + \frac{H}{4} - \frac{OC}{32} \right) \tag{3}$$

$$Lo = \frac{1}{0.21} \left(\frac{0.835}{21} + \frac{0.145}{4} \right)$$

 $Lo = 0.3619 \ kmol$

Lo en kmol según la ecuación 4. (Jovaj, 1982, pág. 48)

$$Lo = \frac{lo}{Ma} \tag{4}$$

Dónde:

Ma = masa molecular aparente del aire

El valor de Ma fue tomado del libro: (Jovaj, 1982, pág. 46)

$$Lo = \frac{15.739}{28.97}$$

 $Lo = 0.543 \ kmol$

Cantidad de aire teórico para la combustión de 1 kg de combustible.

La cantidad real de aire que necesita el motor 2TR-FE viene determinado por el coeficiente de exceso de aire.

Coeficiente de exceso de aire (α) .

La relación entre la cantidad real de aire que ingresa al cilindro del motor (l, en kg o L en kmol) y la cantidad de aire teóricamente necesaria para la combustión de 1 kg de carburante. La ecuación (5) fue tomada del libro: (Jovaj, 1982, pág. 49)

$$\alpha = \frac{l}{lo} = \frac{L}{Lo} \tag{5}$$

Si α < 1. Se tiene una disminución de aire y por lo tanto una mezcla rica.

Si α > 1. Existe un aumento de aire y la mezcla por lo tanto se empobrece.

La máxima potencia de los motores en general se obtiene enriqueciendo la mezcla ligeramente para:

$$\alpha (0.85 - 0.90)$$

Para el prototipo se ha tomado un $\alpha=0.90$ ya que este valor permite un mejor llenado de aire como se presenta en la figura 13.

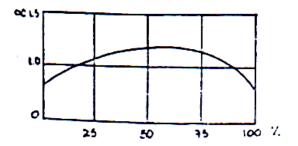


Figura 13. Límites de variación del coeficiente α en función de la carga

Fuente: (Jóvaj, 1982)

$$\alpha lo = 0.9 * 15.739$$

$$\alpha lo = 14.1651$$

$$\alpha lo = 0.9 * 0.543$$

$$\alpha lo = 0.4887$$

Cantidad teórica total de mezcla (M_1) .

Está constituida por la cantidad de vapores de combustible y aire. La ecuación (6) muestra la combustión completa de kg de carburante. (Jovaj, 1982, pág. 51)

$$M_1 = \alpha Lo + \frac{1}{\mu_c} \tag{6}$$

Dónde: μ_c es la masa molecular media ($\mu_c = 110$ - 120) y la admisible para el motor 2TR-FE se escogió de 120 para obtener un valor real, por lo tanto:

$$M_1 = 0.4887 + \frac{1}{120}$$

$$M_1=0.497\;kmol$$

Para cualquier combustible la masa de la mezcla (G1) en kg, de la ecuación (7) de (Jovaj, 1982,

pág. 51)

$$G_1 = 1 + \alpha lo \tag{7}$$

 $G_1 = 1 + 0.4887$

 $G_1 = 1.4887 \ kg$

Cantidad teórica de cada uno de los componentes de la combustión.

Viene dada por la suma total de los productos de combustión que se detalla en la ecuación 8. (Jovaj, 1982, pág. 51)

$$Mz = M_{CO} + M_{CO2} + M_{HZ} + M_{H2O} + M_{NZ}$$
 (8)

Dónde:

 M_{CO} = cantidad teórica de monóxido de carbono en el combustible.

 M_{CO2} = cantidad teórica de dióxido de carbono en el combustible.

 M_{HZ} = cantidad teórica de hidrógeno en el combustible.

 M_{H2O} = cantidad teórica de agua en el combustible.

 M_{NZ} = cantidad teórica de nitrógeno en el combustible.

Para la obtención de todos los componentes se necesita del coeficiente K, la misma que es la relación entre el número de moléculas de hidrógeno y del monóxido de carbono, la relación es:

$$K = (0.45 - 0.50)$$
 (Jovaj, 1982, pág. 63)

En el desarrollo de los cálculos se escoge K=0.5 para los componentes de la combustión del motor. (Jovaj, 1982, pág. 56)

$$Mco = 0.42 \left(\frac{1-\alpha}{1}\right) + K = Lo \tag{9}$$

$$Mco = 0.42 \left(\frac{0.1}{1.3}\right) + 0.5 = Lo$$

$$Mco = 0.0140$$

La ecuación (10) indica la cantidad teórica de dióxido de carbono en el combustible. (Jovaj, 1982, pág. 56)

$$M_{CO2} = \frac{c}{12} - Mco \tag{10}$$

Dónde:

C= 85% de carbono (Jovaj, 1982, pág. 62)

$$M_{CO2} = \frac{0.855}{12} - 0.0140$$

 $M_{CO2=}\,0.0572\;kmol$

La ecuación (11) indica la cantidad teórica de hidrógeno en el combustible. (Jovaj, 1982, pág. 56)

$$M_{HZ} = K * Mco (11)$$

 $M_{HZ} == 0.5 * 0.0140$

 $M_{HZ} = 0.007 \ kmol$

La ecuación (12) indica la cantidad teórica de agua en el combustible. (Jovaj, 1982, pág. 57)

$$M_{H2O} = \frac{H}{2} - MH2 \tag{12}$$

 $M_{H2O} = 0.0725 - 0.0072$

 $M_{H2O} = 0.0653kmol$

La ecuación (13) indica la cantidad teórica de nitrógeno en el combustible.

$$M_{NZ} = 0.79 * \alpha * Lo \tag{13}$$

 $M_{NZ} = 0.79 * 0.9 * 0.543$

 $M_{NZ}=0.386\ kmol$

Donde *Mz* (kmol) de la ecuación (8) es la cantidad total de la suma de todos los componentes de la combustión:

$$Mz = 0.0140 + 0.0572 + 0.007 + 0.0653 + 0.386$$

 $Mz = 0.529 \ kmol$

Diferencia de los productos de combustión.

También llamados incremento de volumen. Ecuación (14) (Jovaj, 1982, pág. 63)

$$\Delta M = Mz - M1 \tag{14}$$

Dónde:

 $\Delta M = 0.529 - 0.4971$

 $\Delta M = 0.0324 \text{ kmol}$

Parámetros del proceso de admisión.

Tabla 2.

Parámetros del proceso de admisión

Parámetros del proceso de admisión		
То	288°k	
Tr	1050 °K	
Pr	0.12 MPa	
$\beta^2 + \xi$	3	
wad	90 m/s	
Po	0.1 MPa	

Nota: La tabla 2., muestra los parámetros del proceso de admisión para un motor Otto; To= temperatura de inicio del motor; Tr= temperatura al finalizar la admisión; Pr= presión de los gases residuales; β^2 - ϵ = coeficiente sumario; wad= velocidad de la carga; Po= presión inicial. *Fuente*: (Jovaj, 1982)

La temperatura inicial (To) y la presión inicial (Po) son datos de condiciones de trabajo estándar; la temperatura al finalizar la admisión (Tr) se encuentra en el rango de (900-1050 °K) (Jovaj, 1982, pág. 91); la fórmula para la presión de los gases residuales es: Pr= (1.1 - 1.25)*Po (Jovaj, 1982, pág. 91), para este caso se escogió Pr= 1.2* Po; el rango para el coeficiente sumario es (2.5 - 4); la velocidad de la carga wad (Jovaj, 1982, pág. 108).

Densidad de la carga teórica en la admisión.

Los valores para el cálculo de la densidad de la carga en la admisión fueron tomados de la tabla 2., y se aplica en la ecuación 15. (Jovaj, 1982)

$$\rho_o = \frac{Po}{Ra*To} \tag{15}$$

$$Ra = \frac{R}{\mu a}$$

Dónde:

Po= presión de ingreso de aire

To= temperatura del proceso de admisión

Ra= constante universal de los gases para el aire

R= constante universal de los gases = 8319

 $\mu\alpha$ = masa molecular del aire= 28.96

$$\rho_o = \frac{0.1 * 28.96 * 10^6}{8319 * 288}$$

$$\rho_o = 1.209 \, k^8 / m^3$$

Presión teórica al final de la admisión (Pa).

Está determinado por la presión de ingreso de aire (Po) a los cilindros y menos algunos factores que influyen en esta presión sea neta tales como:

Los coeficientes de resistencia del sistema y de amortiguación de la velocidad de la carga (ωad) así como también de la densidad de la carga (Po). Ecuación (16) (Jovaj, 1982, pág. 88)

Dónde:

$$Pa = Po - (\beta^2 + \xi = 2.5 \dots 4)$$
 (16)

El motor 2TR-FE, requiere de los siguientes parámetros:

 $\omega ad = 90 \frac{m}{s}$ Debido a su régimen de revoluciones a 5200 rpm de acuerdo a la potencia máxima que indica el manual de (TOYOTA, 2010).

$$(\beta^2 + \xi = 3)$$

Dónde:

$$Pa = 0.1 - 3 * 90^2 * 1.209 * 10^6/2 = 0.085 MPa$$

Temperatura teórica de calentamiento de la carga (Δt).

Los gases entran por el conducto de admisión y cuando están dentro del cilindro, toman contacto con las paredes que se encuentran calientes y por lo tanto se incrementa la temperatura (ΔΤ). (Jóvaj, 1982)

El grado de temperatura de la carga depende:

- De la velocidad de su movimiento.
- De la velocidad de su admisión.
- Diferencia entre las paredes y la carga. (Jóvaj, 1982)

Si se aumenta la temperatura de la densidad de la carga crece, por lo tanto el calentamiento en el motor debe hacerse hasta un cierto límite. Un calentamiento excesivo hace que el llenado de los cilindros que haga en forma defectuosa. (Jóvaj, 1982)

Para los cálculos térmicos la temperatura (ΔT) se toma de datos experimentales y cálculos indirectos. (Jóvaj, 1982)

Los valores de (ΔT) para motores de combustión interna varían (ΔT =0...20 ° C) para el motor. (Jóvaj, 1982)

Cantidad de gases residuales (γ_r) .

En el tiempo de escape no se logra desalojar todos los gases quemados, ocupando éstos un cierto volumen de presión (Pr) y temperatura (Tr), respectivas. Dichos gases residuales se expanden y se mezclan con la carga fresca durante la admisión, por lo tanto hacen que se disminuya el llenado del cilindro. (Jóvaj, 1982)

La cantidad de gases residuales (Mr), depende de la calidad de limpiado del cilindro y como del barrido del cilindro por la carga fresca. (Jóvaj, 1982)

La cantidad de gases residuales, está determinada por una magnitud relativa llamada coeficiente de gases residuales, que se detalla en la ecuación 17. (Jóvaj, 1982, pág. 89)

$$\gamma_r = \frac{Mr}{M1} \tag{17}$$

El volumen (Vc) depende siempre de la relación de compresión (ε), disminuyendo este cuando (ε) aumenta.

En los motores a gasolina, a plena carga:

$$(\gamma = 0.06 - 0.10)$$
 (Jovaj, 1982, pág. 91)

Para el cálculo del coeficiente y se puede asumir la presión de los gases residuales Pr = (1, 1-1, 25)

Po y la temperatura Tr = (900 - 1050°K) (Jovaj, 1982, pág. 91)

Entonces:

$$\gamma_r \left(To + \frac{\Delta T}{Tr} \right) = \frac{Pr}{\varepsilon Pa} - Pr \tag{18}$$

Dónde:

 γ_r = cantidad de gases residuales

To= Temperatura del proceso de admisión

ΔT= Variación de temperatura

Tr= Temperatura al finalizar la admisión

Pr= Presión de los gases residuales

Pa= Presión al final de la admisión

Para el cálculo respectivo adoptamos una Pr = 0,12 MPa y Tr = 1050°k. (Tabla 2).

$$\gamma$$
 = ((288 + 15/1050) 0.12/ 9.6 * 0.085 - 12 = 0.055

$$\gamma$$
= 0.055= 0.06

Temperatura teórica al finalizar la admisión (Tr).

La temperatura (Tr) de la mezcla de la carga fresca con las fases residuales será mayor que la temperatura (Tr) del aire en la entrada pero menor que la temperatura (Tr) de los gases residuales. La temperatura (Tr) se detalla en la ecuación (19). (Jovaj, 1982, pág. 93)

$$Tr = Tr - \Delta T + \gamma_r + Tr/1 + \gamma_r \tag{19}$$

El valor para Tr-To es tomado de la tabla 2., y se relaciona la figura 14 y figura 15.

Entonces:

$$Tr - To = 288 \, ^{\circ}K$$

$$Ta = 15 + 15 + 273 + 0.06 * 1050/1 + 0.0 = 345$$
°k

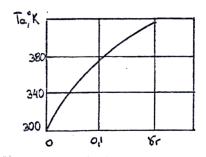


Figura 14. Variación de la temperatura Ta (To = 288°K) en función del coeficiente

Fuente: (Jóvaj, 1982)

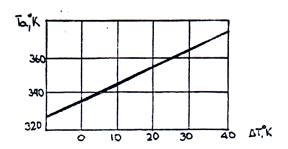


Figura 15. Variación de Ta = f (Δ T), (To = 288 °K), γ_r = 0.06 y Tr=1050

Fuente: (Jóvaj, 1982)

Coeficiente de llenado teórico (η_v) .

El índice o grado de perfección del ciclo de admisión, se determina por el coeficiente de llenado o rendimiento volumétrico (η_{ν}), que se detalla en la ecuación (20) y (21) (Jovaj, 1982, pág. 94) la misma que es la razón entre cantidad de carga fresca que se encuentra en el cilindro al inicio de la compresión real, es decir al momento en que se cierra los órganos de intercambio de gas (válvula) y aquella cantidad de carga fresca que podría llenar la cilindrada (volumen de trabajo del cilindro) en las condiciones de admisión y puede ser calculada por medio de cualquiera de estas 2 fórmulas.

$$\eta_v = \varepsilon / \varepsilon - 1 * Pa/Po * To/Ta (1 + \gamma_r)$$
 (20)

 $\eta_v = 9.6/9.6 - 1*0.085/0.1*288/342*(1+0.06)=0.76$

$$\eta_{v} = (\text{To/To-}\Delta\text{T}) (1/\varepsilon - 1) (\varepsilon \text{Pa/Po} - \text{Pr/Po})$$

$$\eta_{v} = (288/288+15) (1/9.6-1) (9.6*0.085/0.1-0.12/0.1) = 0.76$$
(21)

Diversos factores que influyen sobre el coeficiente de llenado teórico.

Sobre el valor del coeficiente de admisión influyen los siguientes parámetros:

- -Presión de admisión (Pa) y temperatura de admisión (Ta)
- -Calentamiento de la carga (ΔT)
- -El coeficiente de gases residuales (γ_r)
- La temperatura (Tr) y la presión (Pr)
- La relación de compresión $(\varepsilon \Sigma)$
- -Los coeficientes de recarga y barrido

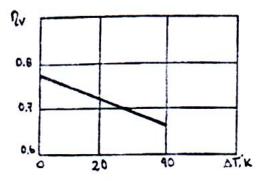


Figura 16. Variación del coeficiente η_v en función del calentamiento de la carga ΔT ; $\epsilon=7$; $\epsilon=7$; $\epsilon=0.12$ MPa; $\epsilon=0.085$ MPa.

Fuente: (Jóvaj, 1982)

La figura 16., muestra el diagrama de variación del coeficiente η_{ν} con un valor de 0.76 en función del calentamiento de la carga (ΔT).

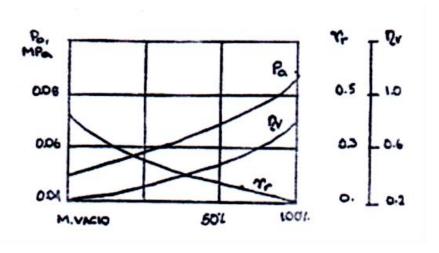


Figura 17. Variación de la presión Pa, los coeficientes η_v, γ_r en función de la carga del motor.

Fuente: (Jóvaj, 1982)

Los valores requeridos de la Figura 17., para el cálculo del motor 2TR-FE, se encuentran detallados en la tabla 3. La figura 17., indica el diagrama de variación de presión en la admisión (Pa) vs la carga del motor, para el coeficiente de gases residuales (γ_r) y para el coeficiente de llenado teórico (η_v).

Tabla 3. $Valores \ de \ presión \ (Pa), \ Coeficiente \ \gamma_r, \ Temperatura \ de \ admisión \ Ta \ y \ Coeficiente \ de \ llenado \\ \eta_v \ para \ el \ cálculo \ del \ motor \ 2TR-FE$

Parámetros	Motor gasolina teórico	Motor 2TR-FE calculado
P. admisión Pa	(0.08-0.09) MPa	0.085 MPa
Coeficiente γ_r	(0.06-0.1)	0.06
T. de admisión Ta	(370-900) °K	345°K
Coef. de llenado η_v	(0.75-0.85)	0.76

Fuente: (Jóvaj, 1982)

Influencia del régimen de velocidad (n) sobre el llenado de motor 2TR-FE

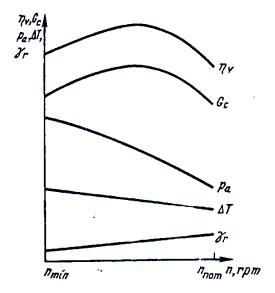


Figura 18. Variación de algunos factores que caracterizan el proceso de llenado en función de la frecuencia de rotación, siendo óptimas las fases de distribución de los gases.

Fuente: (Jóvaj, 1982)

La figura 18., indica la variación de algunos factores que caracterizan el proceso de llenado como la presión en la admisión (Pa); el coeficiente de llenado teórico (η_v); calentamiento de la carga (ΔT); el coeficiente de gases residuales (γ_r); cantidad de vapor evacuado en el cilindro (Gc) en función de la frecuencia de rotación del cigüeñal.

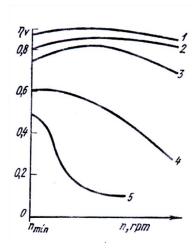


Figura 19. Influencia del régimen de velocidad del motor sobre el coeficiente η_{ν} para diferentes cargas.

Fuente: (Jóvaj, 1982)

La figura 19., muestra la variación del coeficiente de llenado teórico (η_v) en función a las diferentes cargas suministradas al motor.

Compresión en el ciclo real.

En el ciclo de compresión se elevan la presión y temperatura de la mezcla. Los valores de estos parámetros al finalizar el proceso, dependen fundamentalmente de los parámetros termodinámicos del ambiente al comenzar la compresión, de la realidad de compresión (ε) y del carácter del intercambio de calor. (Jóvaj, 1982, pág. 110)

Relación de compresión (ε).

La relación de compresión está determinada por la relación existente entre el volumen del cilindro más el volumen de la cámara de combustión, sobre el volumen de la cámara de combustión. (Stuttgart, Tecnologia del automovil, 1980, pág. 240)

Esta relación de comprensión puede ser a su vez:

Relación de comprensión geométrica. Ecuación 22 (Jovaj, 1982, pág. 112)

$$(\varepsilon) = \frac{Vh + Vc}{Vc} \tag{22}$$

Relación de comprensión real. Ecuación 23 (Jovaj, 1982, pág. 114)

$$C = \frac{Vh' + Vc}{Vc} \tag{23}$$

Dónde:

Vh= cilindrada del cilindro (cm³ o litros)

$$Vh = \frac{D^2 * \pi * S}{4}$$

$$Vh = \frac{9.5^2 * \pi * 9.5}{4}$$

$$Vh = 673.38 \text{ cm}^3$$

Vc= cámara de compresión (cm³ o litros)

$$Vc = \frac{Vh}{\varepsilon - 1}$$

$$Vc = \frac{673.38}{9.6 - 1}$$

$$Vc = 78.30 \text{ cm}^3$$

Una buena relación de compresión mejora el rendimiento del motor, conduciendo a esto a un incremento de la potencia y a una mejor combustión de la mezcla aire -gasolina. (Stuttgart, Tecnologia del automovil, 1980, pág. 281)

La reacción en los motores a gasolina va del rango de (ε) = (10-70). (Stuttgart, Tecnologia del automovil , 1980, pág. 283)

Coeficiente politrópico (n1).

El exponente politrópico (n1) influye en el sistema de refrigeración cuando el líquido refrigerante, y respectivamente, las superficies conductoras del calor están a baja temperatura, el calor se extrae de la carga más intensamente y ni será más bajo. (Jóvaj, 1982, pág. 116)

El empleo de pistones y culatas de aluminio, incrementan la conductividad del calor y ni tendrá valores más bajos debido a la mayor transferencia térmica del aluminio, comparada con la de fundición. (Toyota, 2010)

El exponente politrópico (n1) no depende de (ε) o insignificantemente se incrementa al elevar dicho parámetro, al elevar la frecuencia de rotación se reduce el tiempo de intercambio de calor de la mezcla con las superficies que transmite el calor como se presenta en la figura 20. (Jóvaj, 1982, pág. 217)

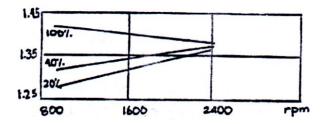


Figura 20. Variación de exp. Politrópico de compresión (n1) en función de la frecuencia de rotación. (Diferente apertura de la mariposa de gases).

Fuente: (Jóvaj, 1982)

El coeficiente politrópico tiene un rango de:

$$(n1) = (1.25...1.45)$$

Para el cálculo que se realiza del motor se adopta un n1 = 1.35, ya que este motor 2TR-FE es de aleación de aluminio e incrementa la transmisión de calor.

Presión de compresión (Pc).

Esta se obtiene en el PMS al final de la comprensión y es muy difícil de terminarla ya que ni varía, para lo cual se escogió un (n1) que servirá para todo cálculo en general. Ecuación (24) (Jovaj, 1982, pág. 112)

$$Pc=Pa\varepsilon^{n1}$$
 (24)

Dónde:

$$Pc = 0.085 \times 9.6^{1.35} = 1.80 \text{ MPa}$$

Temperatura de compresión (Tc).

Al igual que (Pc), se determinó un (ni) para todos los cálculos, siendo (Tc) la temperatura al final del proceso de compresión. Ecuación (25) (Jovaj, 1982, pág. 112)

$$Tc = Ta \, \varepsilon^{n_1 - 1} \tag{25}$$

Dónde:

$$Tc = 345 * 9.6^{1.35-1} = 761.40 \circ K$$

Temperatura de combustión (Tz).

La temperatura de combustión (Tz), se desarrolla a partir de la temperatura de compresión (Tc), y para obtenerla se debe seguir los siguientes pasos:

Coeficiente teórico de variación molecular (μ_o). Ecuación (26) (Jovaj, 1982, pág.
 120).

$$\mu_0 = M2/M1 = 0.5202/0.4821 = 1.08$$
 (26)

• Coeficiente real de variación molecular Ur. Ecuación (27) (Jovaj, 1982, pág. 120)

$$\mu_r = \frac{\mu_o + \gamma_r}{1 + \gamma_r} = (1.08 + 0.06)/(1 + 0.06) = 1.075$$
(27)

El calor no desprendido por efecto de la combustión incompleta cuando α< 1.
 Ecuación (28) (Jovaj, 1982, pág. 121).

$$(\Delta Hu) \text{ quim} = 114 * 10^6 (1-\alpha) \text{ Lo}$$
 (28)

 (ΔHu) quim = 114 * 10 $^{6}(1-0.9)$ 0, 4734 = 5396720 J/Kmol= 5,39 KJ/Kmol.

La ecuación de la combustión para los motores a gasolina cuando α< 1. Ecuación
 (29) (Jovaj, 1982, pág. 123).

$$\mu_r \mu_z = \xi z \, \frac{(Hu - (\Delta Hu)quim)}{M1(1+\gamma r)} + \frac{\mu c + \mu r \mu c}{1+\gamma r} \tag{29}$$

Dónde:

Hu= calor no desprendido por efecto de la combustión incompleta

ANÁLISIS Y CÁLCULO DEL MOTOR (2TR-FE)

43

 ξz Es el coeficiente de aprovechamiento del calor, se determina por medio de resultados experimentales, según el tipo de motor, su rapidez, su refrigeración y estructura de la cámara de combustión, este coeficiente depende de los regímenes de carga y velocidad del motor.

Valores de ξz a plena carga (0,85 - 0,9). Mientras bajo es ξz , no solo incia una fuerte emisión del calor a las paredes, sino un considerable tiempo que abarca la extensión de la combustión, en el proceso de expansión.

Para el cálculo de la (Tz) temperatura de combustión se ha tomado en valor del coeficiente de aprovechamiento del calor

$$(\xi z = 0, 88)$$

Se adopta que el calor específico de la mezcla fresca es igual al calor específico del aire. En la tabla 4.

Para Tc=465,6 °C encontramos que.

t = 1

 $\mu \text{Cv} = 21.674 \text{ KJ/Kmol}$

T=0

Donde la energía interna de la combustión se detalla en la ecuación (30). (Jovaj, 1982, pág. 125)

$$Uc = (Ucv) cTc$$
 (30)

UC = (21,674) (465.6) = 10091,41 KJ/Kmol

De la tabla 4., para Tc = 4656 °C, se obtiene los datos:

Tabla 4.

Datos tabulados para una Temperatura de combustión (Tc=4656 °C)

T°C	СО	CO_2	H ₂ O	N_2	H2
400	21.774	34.935	26.775	21.185	20.871
465.6	21.677	35.820	27.130	21.449	20.912
500	21.784	21.784	27.315	21.358	20.934

Nota: La tabla 4 muestra los valores de Co (monóxido de carbono), CO2 (dióxido de carbono), H2O, N2 (nitrógeno), y H2 (hidrogeno en estado gaseoso) para una temperatura de combustión (Tc)=456.6 °C. Fuente: (Jóvaj, 1982)

El calor específico de la mezcla es igual a la suma que resulta de multiplicar, los calores específicos de cada uno de los componentes de los parámetros de la combustión por sus fracciones volumétricas. Para la compresión química elemental adoptada, siendo $\alpha=0.7$ se obtiene la ecuación (31). (Jovaj, 1982, pág. 92)

$$\gamma i = \frac{M1}{M2} \tag{31}$$

$$\gamma CO = \frac{0.014}{0.520} = 0.0270$$

$$\gamma CO_2 = \frac{0.057}{0.520} = 0.1148$$

$$\gamma H_2 O = \frac{0.0653}{0.520} = 0.12$$

$$\gamma N_2 = \frac{0.3740}{0.520} = 0.720$$

$$\gamma H_2 = \frac{0.0072}{0.520} = 0.0140$$

Se aprovecha los datos de la tabla anterior

Ucv = 0.0270*21.677+0.1148*35.820+0.125*27.130+0.720*21.449+0.0140*20912

Ucv'' = 23,6745 KJ/Kmol

Entonces la energía externa de los productos. Ecuación (32) (Jovaj, 1982, pág. 154)

$$UC'' = (UCV'') \tag{32}$$

Tc=23, 6745*465, 6=11022,84 KJ/Kmol

Entonces el primer miembro de la ecuación. Ecuación (33) (Jovaj, 1982, pág. 155)

$$\varepsilon_z = \frac{[Hu + (\Delta Hu)quim]}{M1(1+\mu_r)} + \frac{Uc + \gamma_r * Uc''}{1+\mu_r} = \mu_r * \mu_z''$$
(33)

$$\mu_{r\mu z}{}^{\prime\prime} = \frac{[0.87 + (44000 - 5396)]}{0.4821(1 + 0.06)} + \frac{10091.41 + 0.06 * 1102284}{1 + 0.06} = 74621.27$$

Por lo tanto: Ecuación (34) (Jovaj, 1982, pág. 158)

$$Uc'' = (\mu_{cv}'') * T = \frac{74621.27}{\mu_r} = \frac{73650}{1.075} = 69.4151 \frac{kj}{kmol}$$
 (34)

De este modo se asume que Tz = 2300 °C.

En la tabla 5., se halla el valor de la energía interna (Uc) en los productos de combustión para α = 0.9 y Tz = 2300 °C.

Tabla 5.

Valores tabulados de energía interna

Tz °C	Uc''
2300	67.2127
	69.4151
2400	70.5432

En la tabla 5 se realiza un interpolación pata encontrar la Temperatura de expansión (Tz) a 69.4151 (UC)

Fuente: (Jóvaj, 1982)

$$Tz = 2300 + 66.12$$

$$Tz = 2366.12$$

Donde la temperatura de expansión (Tz):

$$Tz = 2366 \, ^{\circ}C = 2639 \, ^{\circ}K$$

Presión en la combustión (Pz).

La presión de combustión es la fuerza con que se realiza la combustión, sobre el área de la cámara de combustión y está determinada por la ecuación (35). (Jovaj, 1982, pág. 156)

$$Pz = \mu_r * \frac{Tz}{Tc} * Pc \tag{35}$$

$$Pz = 1.075 * 2639 * \frac{1.80}{761.40}$$

$$Pz = 6.70 MPa$$

El grado de elevación de la presión (λ) es igual a la ecuación (36). (Jovaj, 1982, pág. 156)

$$\lambda = \frac{Pz}{Pc} \tag{36}$$

$$\lambda = \frac{6.70}{1.80}$$

$$\lambda = 3.8$$

Tabla 6.

Resumen de datos del proceso de compresión

Parámetros	Motor Gasolina Teórica	Datos calculados
Coeficiente de aprovechamiento del calor ɛz	0.85 – 0.9	0.88
Temperatura de combustión Tz	$2300 - 2400 ^{\circ}\text{C}$	2639°C
Presión de combustión Pz	-	6.70 MPa
Coeficiente de grado de expansión λ	1.4 - 4.2	3.8

Nota: La presión de combustión Pz, se obtiene experimentalmente

Fuente: (Jóvaj, 1982)

Expansión en el ciclo real.

Proceso de expansión en el ciclo.

En el ciclo de expansión o carrera de trabajo se realiza todo el trabajo mecánico, debido a la energía térmica que se desprende de la combustión. En este ciclo la expansión comienza durante la combustión (punto c) como se puede observar en la figura 21., y termina cuando comienza el proceso de escape de los gases. Se puede decir que el proceso de cuatro tiempos termina en el punto muerto inferior (punto b). (Jóvaj, 1982, pág. 79)

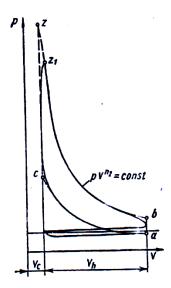


Figura 21. Expansión en el ciclo real

Fuente: (Jóvaj, 1982)

Grado de expansión n₂.

El exponente politrópico de expansión n_2 se determina por una serie de factores, por eso n_2 se dene elegir considerando los resultados, que se han obtenido durante la investigación del motor. (Jóvaj, 1982, pág. 138)

Un buen proceso de combustión se determina por la velocidad en que se queman los combustibles en la fase principal. Al arder tanto Pz y Tz se incrementan y n_2 crece. Cuando se aumenta el régimen de revoluciones, n_2 disminuye debido a menos emisión de calor al exterior. (Jóvaj, 1982, pág. 138)

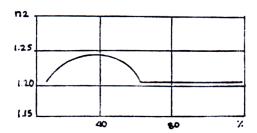


Figura 22. Variación del exponente politrópico de expansión n_2 en función de la carga.

Fuente: (Jóvaj, 1982)

Los valores del exponente politrópico de expansión oscilan entre (1.23-1.30), mientras que para los cálculos del motor 2TR-FE hemos tomado el valor de n_2 =1.25

Temperatura al final de la expansión (Tb).

Está determinada por la cantidad de temperatura que se detecta en el PMI al final de este ciclo y se determina por la formula. Ecuación (37) (Jovaj, 1982, pág. 159)

$$Tb = Tz * \frac{1}{\epsilon^{n_2 - 1}} \tag{37}$$

Dónde:

Tb= Temperatura al final de la expansión

Tz= Temperatura de combustión

ε= Relación de compresión

 n_2 = Exponente politrópico de expansión

$$Tb = 2639 * \frac{1}{9.6^{1.25-1}}$$

$$Tb = 1499 \, {}^{\circ}K$$

Presión al final de la expansión (Pb)

La ecuación (38) indica la presión al final de la expansión. (Jovaj, 1982, pág. 159)

$$Pb = \frac{Pz}{\epsilon^{n2}} \tag{38}$$

$$Pb = \frac{6.70}{9.6^{0.25}}$$

Pb = 0.38 MPa

Tabla 7.

Datos del resumen del proceso de expansión comparativo

Parámetros	Motor gasolina teórica	Motor Calculado 2TR-FE
Coeficiente Politrópico de exp. N ₂	1.23 - 1.30	1.25
Temperatura de exp. Tb	$1200 - 1500^{\circ} \text{K}$	1499 °K
Presión de exp. Pb	0.35 - 0.50 MPa	0.38 MPa

Fuente: (Jóvaj, 1982)

Presión Media del Ciclo, Potencia y Rendimiento Económico del Motor 2TR-FE Teórico

A.- Introducción.

En este capítulo se va a observar el comportamiento y funcionamiento del motor 2TR-FE, tomando en cuenta todos los parámetros del ciclo real, se debe tomar en cuenta varios factores que influyen para un correcto funcionamiento del motor, como es la presión media indicada, la potencia efectiva e indicada, así como su rendimiento mecánico y la economía y potencia del motor 2TR-FE.

B.- Presión media indicada de un ciclo.

1.- Motor encendido por chispa (Pi).

La magnitud es la presión manométrica convencional de acción constante con la cual el trabajo realizado por los gases durante una carrera del émbolo es igual al trabajo indicado correspondiente al ciclo. Ecuación (39) (Jovaj, 1982, pág. 169)

Dónde:

$$Pi = \frac{(Pa*\varepsilon^{n1})}{(\varepsilon-1)} - \left[\left(\frac{\lambda}{n_{2-1}} \right) \left(1 - \left(\frac{1}{\varepsilon^{n2-1}} \right) \right) - \left(\frac{1}{n_1-1} \right) \left(1 - \left(\frac{1}{\varepsilon^{n1-1}} \right) \right) \right]$$
(39)

 $Pi = 0.99 \approx 1.0 MPa$ (Jovaj, 1982, pág. 170)

2.- Determinación en la presión indicada por el diagrama redondeado.

La desviación de los valores de Pi, con respecto a los cálculos se evalúa a través del coeficiente de redondeamiento (plenitud).

La presión media indicada del ciclo es $= P_i$. Ecuación (40) (Jovaj, 1982, pág. 170).

$$Pi = \varphi_1 * Pi_{(an)}n_r \tag{40}$$

Alguno datos experimentales muestran que φ_1 = (0.92-0.97) (Jovaj, 1982). La desviación del ciclo real respecto al teórico en los motores a gasolina donde sus valores de φ_1 se aproximan al límite superior.

$$Pi = 0.97 * 1.0 = 0.97 MPa$$

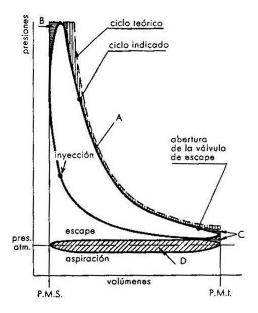


Figura 23. Diagramas teórico y real de un motor con encendido por chispa

Fuente: (blogspot, 2015)

C.- Potencia indicada de un motor = Ni.

La potencia indicada de un motor, está determinada por la presión media del ciclo por la cilindrada del motor. Ecuación (41) (Jovaj, 1982, pág. 171)

$$Ni = \frac{Pi*Vh*n}{30} \tag{41}$$

Dónde:

n = 5200 RPM a 160 HP (TOYOTA, 2010)

Pi= Presión media indicada del ciclo (MPa)

Vh= Cilindrada del cilindro (cm³o litros)

$$Ni = \frac{0.97 * 673.38 * 5200}{30}$$

 $Ni = 113.22 \ KW$

1.- Trabajo indicado (Li).

El trabajo indicado por un cilindro en un ciclo. Ecuación (42) (Jovaj, 1982, pág. 171)

$$Li = Pi * Vh (42)$$

Li = 0.97 * 673.38

Li = 653.18 Nm

2.- Perdidas mecánicas en el motor (Nm).

Parte del trabajo indicado se gasta en vencer el rozamiento en las piezas móviles, en el intercambio de gases y en el accionamiento de los mecanismos auxiliares. Ecuación (43) (Jovaj, 1982, pág. 209)

$$Nm = \frac{Pm*Vh*n}{30} \tag{43}$$

Dónde:

Pm= Potencia media del ciclo para el rango de trabajo de (0.145-0.150) (Jovaj, 1982, pág. 210)

$$Nm = \frac{0.145 * 673.38 * 5200}{30}$$

 $Nm = 16.92 \ Kw$

D.- Potencia efectiva y rendimiento mecánico de un motor.

1.- Potencia efectiva (Ne).

La potencia que puede obtenerse en el cigüeñal del motor y se aprovecha para accionar cualquier máquina, se llama potencia efectiva y se designa (Ne). Ecuación (44) (Jovaj, 1982, pág. 176)

$$Ne = Ni - Nm \tag{44}$$

Ne = 113.22 - 16.92

 $Ne = 116.3 \ Kw$

2.- Rendimiento mecánico de un motor ideal.

La potencia indicada correspondiente a las perdidas mecánicas se determina por el rendimiento mecánico n_m . Ecuación (45) (Jovaj, 1982, pág. 176)

$$\eta_m = \frac{Pe}{Pi} \tag{45}$$

Donde el valor de Pe se obtuvo de la figura 24.

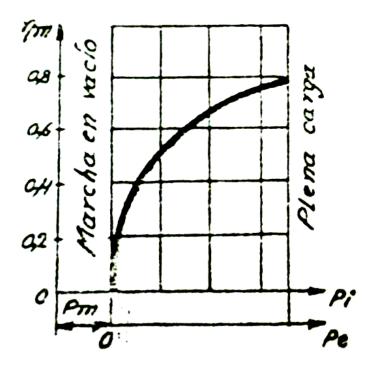


Figura 24. Variación del rendimiento mecánico en función de la carga

Fuente: (Jóvaj M. S., Motores del automovil, 1982)

Pe= Potencia efectiva en función de Pe

Pi= Presión media indicada del ciclo

$$\eta_m = \frac{0.825}{0.97}$$

$$\eta_m = 0.85$$

E.- Economía y rendimiento de un motor ideal del motor Toyota 2TR-FE teórico.

Una de las características fundamentales es la calidad de un motor es el consumo de combustible o la economía que proporciona el mismo.

1.- Gasto específico indicado de combustible (gi).

La ecuación (46) fue tomada del libro: (Jovaj, 1982, pág. 174)

$$gi = \frac{3600*Nv*go}{Pi*\alpha*lo} \tag{46}$$

Dónde:

Nv= Coeficiente de llenado (tabla 3).

go=Po=Presión de ingreso de aire

Pi= Presión media indicada

 α =coeficiente de exceso de aire

lo=cantidad teórica de aire

Entonces:

$$gi = \frac{3600 * 0.76 * 1.209}{0.97 * 0.9 * 15.739}$$

$$gi = 240.74 \frac{g}{Kwh}$$

2.- El gasto de combustible = ge.

La ecuación (47) fue tomada del libro: (Jovaj, 1982, pág. 179)

$$ge = \frac{gi}{\eta_m} \tag{47}$$

$$ge = \frac{240.74}{0.85}$$

$$ge = 283.22 \frac{g}{Kwh}$$

3.- El rendimiento indicado = η_i .

Este es menor que el rendimiento térmico, a causa de las pérdidas adicionales debidas a la imperfección del ciclo. Ecuación (48) (Jovaj, 1982, pág. 175)

$$\eta_i = \frac{3600}{gi*Hu} \tag{48}$$

$$\eta_i = \frac{3600}{240.74 * 44}$$

$$\eta_i = 0.34$$

4.- Rendimiento efectivo (η_e).

La parte del calor que se transforma en trabajo efectivo se aprecia por el rendimiento efectivo. Si Hu se expresa en (MJ/Kg) y ge en (g/Kwh). Ecuación (49) (Jovaj, 1982, pág. 176).

$$\eta_e = \frac{3600}{Hu*ge} \tag{49}$$

$$\eta_e = \frac{3600}{44 * 283.22}$$

$$\eta_e = 0.29$$

También se le puede calcular por la expresión de la ecuación (50) (Jovaj, 1982, pág. 176).

$$\eta_e = \eta_{i} * \eta_m \tag{50}$$

$$\eta_e = 0.34 * 0.85$$

$$\eta_e = 0.29$$

F.- Análisis de los factores que influyen en la economía y la potencia del motor.

1.- Factores que influyen en el rendimiento económico de un motor.

El consumo de combustible depende de los siguientes parámetros.

Densidad de la carga brusca (ρ o), que penetra en el sistema de admisión, del coeficiente de llenado (α), de la cantidad de carga fresca (α lo) y de la presión media efectiva Pe o indicada Pi. (Jóvaj M. S., Motores del automovil, 1982, pág. 236)

Estos parámetros no se pueden estudiar por separado, porque influyen de una manera muy importante en el rendimiento económico del motor, ya que la variación de uno de ellos hace que los demás cambien. (Jóvaj M. S., Motores del automovil, 1982, pág. 236)

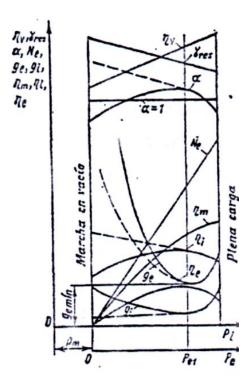


Figura 25. Carácter de la variación de los índices principales de un motor en función de la carga n=const.

Fuente: (Jóvaj M. S., Motores del automovil, 1982)

2.- Factores que influyen en la potencia del motor.

Las cualidades de un motor se aprecian por su potencia por litro de cilindrada en la ecuación (51) y (52) (Jovaj, 1982, pág. 217) se deduce:

$$N1 = \frac{Ne}{i*Vh} = \frac{1}{30} * \frac{Hun}{10\alpha} i * n_{v*nm*} p_{o^{\frac{n}{T}}} \left[\frac{Kw}{1} \right]$$
 (51)

$$N1 = 0.0431 \frac{Hun}{10\alpha \propto T} * i\eta_v \eta_m * p_o \frac{n}{\tau} \left[\frac{\text{CV}}{\text{L}} \right]$$
 (52)

Por medio de la ecuación 52., se puede analizar la potencia por litro del motor.

a.- Para los combustibles líquidos se utiliza en el motor el valor de Hu/lo el cual tiene límites pequeños y no influyen en N1.

$$N1 = \frac{Ne}{i * Vh}$$

$$N1 = \frac{116.3}{4 * 673.38}$$

$$N1 = 0.04 \, Kw/cm^3$$

b.- El valor de η_i/α caracteriza la perfección del proceso que tiene el motor. El rendimiento indicado influye en el aprovechamiento del calor, la relación η_i/α debe ser lo mayor posible, y su valor máximo cuando:

$$\alpha = (0.85 - 0.9)$$
. Figura 13.

Entonces:

$$\frac{\eta_i}{\alpha} = \frac{0.34}{0.9}$$

$$\frac{\eta_i}{\alpha} = 0.38$$

c.- Para obtener mayor potencia posible hay que aumentar el coeficiente de llenado η_v (Tabla 3).

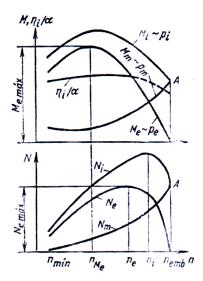


Figura 26. Influencia de la composición de la mezcla de combustible en el rendimiento económico y en la potencia del motor

Fuente: (Jóvaj M. S., Motores del automovil, 1982)

G.- Balance térmico del motor ideal para el motor 2TR-FE.

Para determinar la cantidad del aprovechamiento del calor, los datos para el diseño y cálculo de enfriamiento, se debe establecer en que se gasta el calor introducido al motor. Por tal razón en la investigación del motor 2TR-FE, se determinan los diferentes componentes térmicos por separado.

La ecuación del balance térmico se detalla en la ecuación 53; (Jovaj, 1982, pág. 260) (la cantidad del calor está referida a la unidad de tiempo):

$$Qo = Qe + Qref + Qg + Qc.i + Q1 + Qr$$
(53)

1.- Cantidad total de calor = Qo.

La ecuación 54., determina la cantidad total de calor introducido en el combustible y fue tomada del libro: (Jovaj, 1982, pág. 260)

$$Qo = Hu * Gc (54)$$

Dónde:

 Q_o = cantidad total de calor introducido con el combustible.

Gc= cantidad de calor evacuado del cilindro (Kg/s)

Hu= calor no desprendido en la combustión (J/kg)

La ecuación 55., determina la cantidad de vapor evacuado en el cilindro y fue tomada del libro: (Jovaj, 1982, pág. 263)

$$Gc = giNi$$
 (55)

$$Gc = 240.74 * 113.22$$

$$Gc = 27.25 \; \frac{Kg}{h}$$

Entonces:

$$Qo = 44 * 27.25$$

$$Qo = 1199.28 \ \frac{MJ}{h} = 333 \frac{KJ}{s}$$

qo = 100% del calor introducido

2.- Calor equivalente al trabajo efectivo (Qe) ideal para el motor 2TR-FE.

Es el calor aprovechado en forma efectiva, para entregar su máxima potencia real y se calcula mediante la ecuación (56) y (57). (Jovaj, 1982, pág. 261)

$$Qe = Ne (56)$$

 $Qe = 116.3 \, Kw$

$$qe = \frac{Qe}{Qo} \tag{57}$$

$$qe = \frac{116.3}{333}$$

qe = 0.34

3.- Calor cedido al medio refrigerante (ϱ_{ref}) ideal para el motor 2TR-FE.

Es el calor transmitido al medio refrigerante, a través de las paredes del cilindro, culata y pistón y se determina por la ecuación 58. (Jovaj, 1982, pág. 261)

$$\varrho_{ref = G_{ref} * C_{ref}} (Tg - To) \tag{58}$$

Dónde:

 G_{ref} = Gasto del refrigerante

 C_{ref} = Calor específico del refrigerante

Tg= salida de temperatura del motor

To = Temperatura del motor

Los valores para el cálculo de calor cedido al medio refrigerante (ϱ_{ref}), son considerados de forma general para todos los motores de combustión interna. La ecuación (59) y (60) fueron tomadas del libro: (Jóvaj, 1982, pág. 262)

$$G_{ref} = V_{bom}A \tag{59}$$

Dónde:

A= Área de la bomba

$$G_{ref} = 2.6 * \pi \frac{(0.03)^2}{4}$$

$$G_{ref} = 1.837 \frac{Kg}{s}$$

Entonces:

Calor específico refrigerante (C_{ref})

$$C_{ref} = 4.186 \frac{Kj}{Kg^{o}K}$$

Temperatura del motor = To

$$To = 87^{\circ}C$$

Salida de temperatura del motor = Tg

$$Tg = 90^{\circ}$$

$$Q_{ref} = 1.837 * 4.186(4) = 30.758 \, Kj/s$$

Dónde:

$$q_{ref} = \frac{Qref}{Qo} \tag{60}$$

$$q_{ref} = \frac{30.758}{333}$$

$$q_{ref} = 0.09$$

4.- Calor que llevan del motor los gases de escape (Qg) ideal.

Es el calor que arrastran los gases de escape. La ecuación (61) y (62) fueron tomadas del libro: (Jovaj, 1982, pág. 263).

$$Qg = Gc \left[M_z \left(\mu C p'' \right) T g - M_1 \left(\mu c p \right) T o \right]$$

$$\tag{61}$$

$$Qg = 27.25[0.5202(1.44 * 10^{3})90 - 0.4821(1.30 * 10^{3}) * 87]$$

$$Qg = 73.13 \frac{KJ}{s}$$

$$qg = \frac{Qg}{Qo} \tag{62}$$

$$qg = \frac{73.13}{333}$$

$$qg = 0.22$$

5.- Calor del combustible que se desaprovecha (Qci) ideal.

Este calor es cedido por las combustiones incompletas. Ecuación (63) y (64) (Jovaj, 1982, pág. 264)

$$Qci = (\Delta Hu)_{quim} Gc \tag{63}$$

Dónde:

$$(\Delta Hu)_{quim} = 119852(1 - \alpha Lo)$$

$$(\Delta \, Hu)_{quim} = \, 119852(1-0.9(0.526))$$

$$(\Delta Hu)_{quim} = 6304.2 \, KJ/K$$

Por lo tanto:

$$Qci = 6304.2 * 27.25$$

$$Qci = 171789.45 \frac{KJ}{h} = 47.71 \frac{KJ}{s}$$

$$qci = \frac{Qci}{Qo} \tag{64}$$

$$qci = \frac{47.71}{333}$$

$$qci = 0.143$$

6.- Termino independiente (Qrest) ideal.

Es el término independiente que determina las pérdidas no incluidas en las demás correspondientes del balance. Ecuación (65) y (66) (Jovaj, 1982, pág. 264)

$$Q_{rest} = Q_u - \left(Q_C + Q_{ref} + Q_q + Q_{ci}\right) \tag{65}$$

$$Q_{rest} = 333 - (70.74 + 30.76 + 73.13 + 47.71)$$

$$Q_{rest} = 29.27 \frac{KJ}{s}$$

$$q_{rest} = \frac{Q_{rest}}{Q_0} \tag{66}$$

$$q_{rest} = 0.122$$

Características y Estabilidad del Régimen de Funcionamiento de los Motores de Combustión Interna Teórico

Conocimientos generales.

Una de las características en los motores de combustión interna de un automóvil, es el cambio de régimen de velocidades, donde el motor debe funcionar establemente con todas las cargas posibles. (Jóvaj M. S., Motores del automóvil, 1982)

El motor debe vencer con su potencia el rozamiento en la transmisión, la resistencia al rodamiento y la resistencia al aire, debe tener potencia adicional para vencer resistencias adicionales como:

- Cuestas
- Arranque
- Toma de velocidad. (Jóvaj M. S., Motores del automóvil, 1982)

Características mecánicas de un motor.

1.-Características de la velocidad.

Están dadas por las características internas de velocidad, y características paralelas de velocidad, las cuales son dadas por el fabricante y con características individuales para el tipo de motor. (Jóvaj M. S., Motores del automóvil, 1982)

2.- Característica externa de velocidad.

Se denomina característica externa de velocidad a la variación en función del mínimo de revoluciones (n), de la potencia efectiva (Ne), del par motor efectivo (Me), del consumo de combustible, horario (Gc) y específico (ge), cuando la mariposa de gases está completamente abierta. (Jóvaj M. S., Motores del automóvil, 1982)

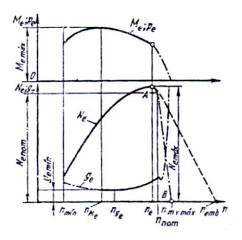


Figura 27. Característica externa de la velocidad de un motor

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

En la característica externa de velocidad (figura 27) se destacan los regímenes de velocidad siguientes:

- Rev. min, durante el cual el motor funciona establemente con la mariposa de gases completamente abierta.
- Rev.me, correspondiente al máximo par motor.
- Rev.ge, en caso del cual se obtiene el mínimo consumo específico de combustible.
- Rev.nom, correspondiente a la potencia efectiva nominal.
- Rev.e, correspondiente a la máxima potencia efectiva del motor.
- Rev.emb, frecuencia de rotación máxima, en caso de que la potencia se gaste en fricción. (Jóvaj M. S., Motores del automóvil, 1982)

Las piezas mecánicas del motor, en cuanto a su resistencia térmica, no están calculadas para el régimen de Rev.emb, por eso durante el "embalamiento" del motor puede suceder alguna avería. (Jóvaj M. S., Motores del automóvil, 1982)

3.-Condiciones para la obtención de las características externas.

El motor de un automóvil no puede experimentar cargas cuando el régimen de velocidad es pequeño. Esto sucede cuando el motor trabaja a revoluciones bajas, la intensa transmisión de calor, los gases de escape a través de los segmentos del pistón y el desacuerdo en la fase de variación de los gases de escape, causan una disminución de masa en el llenado del cilindro lo que hace imposible la combustión. (Jóvaj M. S., Motores del automóvil, 1982)

Características parciales de velocidad.

1.-Caracteristicas de la carga

Se denomina así a la variación de los principales índices del motor, en función de la carga, siendo constante el régimen de velocidad. (Jóvaj M. S., Motores del automóvil, 1982)

La característica de la carga queda determinada por tres parámetros importantes, los cuales definen los regímenes de carga del motor:

- Consumos horarios de combustible a plena carga.
- Carga correspondiente al consumo especifico de combustible (gemin).
- Consumo horario de combustible cuando el motor funciona en marcha al vacío (Jóvaj M. S., Motores del automóvil, 1982).

Las características de la carga n=const., pueden ser construidas a partir de las características externas y parciales de velocidad, como se visualiza en la Figura 28. (Jóvaj M. S., Motores del automóvil, 1982)

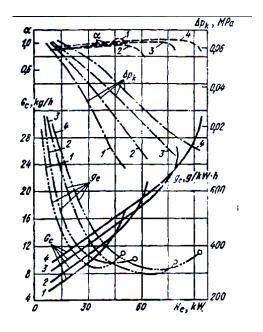


Figura 28. Características de la carga

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

2.-Caracteristicas de la regulación.

En la característica de regulación los parámetros del motor están construidos en base a la potencia que el motor desarrolla, como se observa en la figura 29. (Jóvaj M. S., Motores del automóvil, 1982)

Figura 29. Característica de regulación

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

La curva AB caracteriza el funcionamiento del motor en la norma de regulación cuando la mariposa de gases disminuye la cantidad de combustible suministrado al motor. La curva BC representa el funcionamiento del motor siguiendo la curva característica externa de velocidad. (Jóvaj M. S., Motores del automóvil, 1982)

3.- Estabilidad del régimen de funcionamiento y reservas de un par de motor de un motor de automóvil.

El par motor que desarrolla el motor en el régimen estacionario, es igual al momento total de las resistencias al movimiento del vehículo. En las condiciones de explotación el momento de resistencia, depende de una serie de factores (el perfil y estado de la carretera, la variación de la resistencia del aire, etc.) y puede variar dentro de amplios límites. (Jóvaj M. S., Motores del automóvil, 1982)

Para mantener un régimen estable de marcha es importante que, al variar la resistencia del movimiento se establezca la igualdad entre el par motor y el momento de resistencia, variando lo menos posible el régimen de velocidad del motor. (Jóvaj M. S., Motores del automóvil, 1982)

En el régimen nominal de todos los motores tienen igual momento torsor.

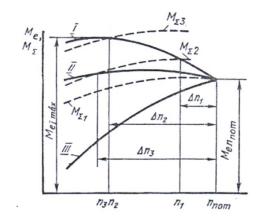


Figura 30. Influencia de la variación del par motor en función de la velocidad de rotación sobre la estabilidad de funcionamiento del motor.

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

La estabilidad del régimen del motor 2TR-FE, se puede evaluar partiendo de la reserva de par motor máximo y el par que desarrolla el motor, en el régimen nominal. Esta relación se denomina coeficiente de adaptación (K). Ecuación (67) (Jóvaj M. S., Motores del automóvil, 1982, pág. 240)

$$k = Me_{max}/Ne_{non} (67)$$

El par motor es proporcional a la presión media efectiva. Ecuación (68) (Jóvaj M. S., Motores del automóvil, 1982, pág. 240)

$$k = Pe_{max}/Pen_{non} \tag{68}$$

La frecuencia de rotación (n) Me_{max} con la cual se obtiene el máximo par motor, es un parámetro que muestra entre que limites de variación del régimen de velocidad del motor,

funciona establemente siguiendo la característica externa, estos límites se evalúan por la magnitud. Ecuación (69) (Jóvaj M. S., Motores del automóvil, 1982, pág. 241)

$$Kv = E M e_{max} / n_{non} (69)$$

Los motores a gasolina tienen un régimen estable, donde su coeficiente de adaptación se detalla en la ecuación (70). (Jovaj, 1982, pág. 241)

$$k = (1.25 - 1.35) y Kv = (0.45 - 0.55)$$
 (70)

Construcción y Definición de las Medidas del Volante de Inercia

Tabla 8.

Datos Iniciales del Fabricante para la Construcción del Volante de Inercia del Motor 2TR-FE

Datos iniciales del fabricante
D = 95 mm = 0.0095 m
d = 75.6 mm = 0.0756 m
w = 300 rad/s.
H = 14.7 mm = 0.147 m
b = Numero de cavidades en un muñón (b = 1).
R = 52.77 mm = 0.0527 m
lb = 208.63 mm= 0.208 m
<u> </u>

Fuente: (TOYOTA, 2010)

a) El momento de inercia de todas las masas reducidas al eje del cigüeñal. Ecuación (71)
 (Jovaj, 1982, pág. 382)

$$Io = 1.25 * 10^{-5} R^{3} D (b)^{1/2} / [1.4D (b)^{1/2} + R] (KD(b)^{1/2} + Hd)$$
(71)

Dónde:

D = Diámetro del cilindro.

d = Diámetro del muñón de bancada.

H = Distancia entre los cilindros.

b = Numero de cavidades en un muñón. (b = 1).

R = Radio de la manivela.

K = Coeficiente del cálculo de la longitud de la biela que se analiza. Ecuación (72) (Jovaj, 1982, pág. 382).

lb = Longitud de la biela.

Ni = Potencia indicada.

$$K = 0.38 * lb - 0.17 * D (b)^{1/2}$$

$$K = 0.38 (20.86 cm) - 0.17 * 9.5 cm (1)^{1/2}$$

$$K = 6.31$$
(72)

Entonces:

$$Io = (1.25*10^{-5}) (5.27cm)^{3} (9.5 cm) (1)^{1/2} / [1.4 (9.5 cm) (1)^{1/2} + 5.27cm] (6.31*9.5cm (1)^{1/2} + 14.7 * 7.56cm)$$

$$Io = 0.16 \text{ [kg/m.]}$$

b) Se toma la expresión:

$$L_{exc} / L_{med} = 0.17 = L_{sol}$$

76

Dónde:

 L_{exc} = Exceso de trabajo del momento torsor

 $L_{med} = Trabajo medio$

c) El coeficiente de desequilibrio. Ecuación (73) (Jovaj, 1982, pág. 384)

$$\partial = 2\pi \text{ Ni } L_{\text{sol}} / (\text{Io}\omega^3 L_{\text{med}})$$
 (73)

Dónde:

Io= momento de inercia de todas las masas reducidas

 ω = velocidad angular

Entonces:

$$\partial = 2 * 3.14 * 113220 * 0.17 / 0.16 * (300)^3$$

∂ = 0.0279

d) Diámetro medio del volante. Ecuación (74) (Jovaj, 1982, pág. 385)

$$Iv = 0.25 \text{ my Dm}^2$$
 (74)

Dónde:

mv= masa del volante = 9.8 kg;

Iv =momento de inercia del volante.

Entonces:

$$Iv = 0.9 * Io$$

$$Iv = 0.9 * 0.16 = 0.144$$

$$Dm = \left(Iv/0.25 \ mv\right)^{1/2} = \left((0.144 \ / \ 0.25)(9.8)\right)^{1/2}$$

Dm = 0.242m.

Velocidad circunferencial del volante. Ecuación (75) (Jovaj, 1982, pág. 386)

$$Vv = \pi \text{ Dm n /60} \tag{75}$$

Vv = (3.14) (0.242) (4600) / 60 = 58.39 m/s

Vv = Rango de (70-110) m/s (Jovaj, 1982, pág. 382)

Cálculo Térmico y de Tensiones de Deformación del Pistón

La cabeza del pistón es la parte más sobrecargada térmicamente. En los motores muy solicitados, en las cabezas del pistón suele disponerse una especie de artesa o depresión para la combustión. (Stuttgart, Tecnología del automovil, 1980)

Al aumentar el diámetro del cilindro, la temperatura de la cabeza del pistón se incrementa. Esto se debe al crecimiento del momento de transmisión de calor. (Jóvaj M. S., Motores del automóvil, 1982)

La tabla 9., muestra los pistones de aleación Aluminio-Silicio con su respectiva densidad; estas aleaciones son más resistentes y dúctiles que las aleaciones de Aluminio-Cobre.

Tabla 9.

Pistones de aleación Aluminio-Silicio

Pistones de aleación Aluminio-Silicio			
Grupo de aleación	Densidad Kg/dm	Observaciones	
Al Si 12		Cuanto mayor es el contenido de Si, la dilatación	
CU Ni	2,7	térmica es menor y tanto menos es el desgaste, pero	
Al Si 18		mayor es la dificultad del mecanizado, fabricación,	
Cu Ni	2,68	fundición de casquillo, prensado y tratamiento	
Al Si 25		Térmico.	
Cu NI	2,65		

Fuente: (Stuttgart, Tecnología del automovil, 1980)

La cantidad de calor que recibe el fondo del pistón, se transmite por los segmentos y por la falda a las paredes de las camisas refrigeradas, se transmite a los fluidos circulantes, al aceite proveniente del interior del carter, así como al medio exterior por radiación como se observa en la Figura 32. (Jóvaj M. S., Motores del automóvil, 1982)



Figura 31. Distribución de las temperaturas del pistón

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Para realizar el cálculo del pistón, se necesita los siguientes datos:

Tabla 10.

Datos del Pistón calculados y del Fabricante

Datos del pistón		
Diámetro del cilindro (D)	95 mm	
Carrera del pistón (S)	95 mm	
Potencia efectiva de un cilindro (Nei)	29.075 Kw	
Área del pistón (Fp)	$7.08*10^{-3}m^2$	
Consumo específico del combustible (ge)	0.2832 Kg/Kwh	
Presión en la combustión (Pz)	6.70 MPa	
Cantidad total de calor introducido en el combustible (Qo)	44.000KJ/Kg	
Diámetro 1 del pistón	80.384 mm	
Diámetro de la falda del pistón (Ó)	7.307 mm	

Nota: La tabla 10., muestra los datos necesarios para el cálculo del pistón; la potencia efectiva de un cilindro (Nei); consumo especifico del combustible (ge); presión en la combustión (Pz); y la cantidad total de calor introducido en el combustible (Qo), son datos calculados; mientras que el diámetro del cilindro (D); carrera del pistón (S); área del pistón (Fp); diámetro de la falda del pistón (Ó); y diámetro 1 del pistón , son datos del fabricante. Fuente: (TOYOTA, 2010)

Cálculos del pistón.

a.-Tensión de la cabeza del pistón.

La figura 33., muestra las concentraciones de tensión en la cabeza del pistón. El literal (a) indica la tensión en la zona del orificio para el bulón; el literal (b) muestra la tensión en los bordes externos del agujero del bulón; el literal (c) muestra la tensión a lo largo del pistón. (Jóvaj, 1982, pág. 471)

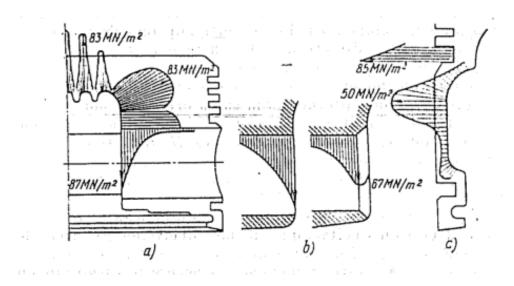


Figura 32. Concentraciones de tensiones en el pistón

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

ori=
$$3 ri^2 * pz/4 \acute{o}^2$$
 (76)
ori= $3(40.192)^2(6.70)/4(7.307)^2$
ori= $152.03 N/mm^2$
ori= varia de (50-155) N/mm^2 (Jovaj, 1982).

b.- Para el cálculo del esfuerzo específico de combustible sobre la cabeza del pistón, se asume una fracción que irradia por la cabeza del pistón.

La ecuación (77) fue tomada del libro: (Jovaj, 1982, pág. 489)

$$Qo = 0.1$$

$$qp = \frac{Qp * Nei * ge * Qo}{Fp * 3600} \tag{77}$$

 $qp = (29.075)(0.2923)(44000)(0.1)/7.08*10^{-3}m^2(3600)$

$$qp=1467.11Kw/m^2$$

c.- La altura de la parte cilíndrica de la cabeza del pistón hasta la primera ranura de aro de fuego.

La ecuación (78) fue tomada del libro: (Jovaj, 1982, pág. 489)

$$h = \acute{0} + \left(\frac{D}{2}\right) - ri$$

$$h = 7.307 + \frac{95}{2} - 40.192$$
(78)

 $h = 14.615 \ mm$

El coeficiente de poisson µ=0.26

d.- Por lo tanto el coeficiente que caracteriza la unión de la superficie del extremo de la cabeza del pistón se detalla en la ecuación (79). (Jovaj, 1982, pág. 490)

$$k = (\acute{O}/h) \left(\left(\frac{D^2}{4} + ri^2 \right) / \left(\frac{D^2}{4} - ri \right) + \mu \right)$$
 (79)

$$k = \frac{9}{9} \left[\frac{\frac{95^2}{4} + 40.192^2}{\frac{95^2}{4} - 40.192^1} + 0.26 \right]$$

k = 2.007

e.- La tensión en la superficie de la cabeza recibida por la caída de temperatura para los pistones refrigerados σt^{enf} .

El coeficiente de dilatación lineal de la aleación de aluminio Al25 es $\dot{\alpha}$ =22 * 10⁻⁶ 1/°K, el modulo de elasticidad E=0.75 * 10⁵ N/mm², el coeficiente de conductividad térmica $\dot{\alpha}$ =0.162 w/m°k. (Jovaj, 1982, pág. 487)

$$\sigma t^{enf} = \frac{qp * \dot{\alpha} * E * \dot{0}}{1 - \mu} * \dot{\Lambda}$$

$$\sigma t^{enf} = (22 * 10^{-6})(0.75 * 10^{5})(1467.11)(0.0073)/2(1 - 0.26)(0.162)$$

$$\sigma t^{enf} = 73.70 N/mm^{2}$$
(80)

f.- La sumatoria de las tensiones $\Sigma \sigma$ en la superficie de la cabeza del pistón.

La ecuación (81) fue tomada del libro: (Jovaj, 1982, pág. 488)

$$\Sigma \sigma = \sigma ri - \sigma t^{enf}$$

$$\Sigma \sigma = 152.03 \ N/mm^2 - 73.70 \ N/mm^2$$

$$\Sigma \sigma = 78.33 \ N/mm^2$$
(81)

La presión específica permisible por acción de la fuerza normal N varía entre:

$$\Sigma a = (90.3 - 1.0) \text{ MPa}$$

g.- Para el cálculo de la resistencia de tensión (σTen) en la sección II-II.

La ecuación (82) fue tomada del libro: (Jovaj, 1982, pág. 489)

$$d_r = D - 2(A + \Delta A)$$

$$dr = 95 - 2(1.86 + 0.21)$$

$$dr = 90.86mm$$
(82)

Dónde:

A= Espesor radial del aro.

△A= Holgura dial entre el aro y el pistón.

h.- La superficie longitudinal de la sección diametral del canal de lubricación.

La ecuación (83) fue tomada del libro: (Jovaj, 1982, pág. 490)

$$F' = [(dr - di)/2]dm$$

$$F' = [(90.86 - 80.384)/2]*3$$

$$F' = 15.71 \ mm^2$$
(83)

i.- La superficie de la sección II (número de canales de lubricación n_a =10)

La ecuación (84) fue tomada del libro: (Jovaj, 1982, pág. 490)

$$F_{II} = \frac{\pi}{4(dr^2 - di^2)} - n_a F'$$

$$F_{II} = \frac{3.14}{4(90.86^2 - 80.384^2)} - 10(15.71)$$

$$F_{II} = 1251.15 \, mm^2$$
(84)

j.- Fuerza máxima de presión del pistón

La ecuación (85) fue tomada del libro: (Jovaj, 1982, pág. 491)

$$Pz_{max} = Pz * Fp$$
 (85)
 $Pz_{max} = 6.70(7.08 * 10^{-3})$
 $Pz_{max} = 0.047$

k.- Entonces la tensión de compresión en la sección II es:

La ecuación (86) fue tomada del libro: (Jovaj, 1982, pág. 492)

$$\sigma_{comp} = Pz_{max} / F_{II} \tag{86}$$

 $\sigma_{comp}{=}0.047/1251.15$

 $\sigma_{comp} = 34.36 \ N/mm^2$

Para disminuir la tensión de ruptura o corte (σ corte) en la sección II por la acción de las fuerzas de inercia que actúan en las masas en movimiento en el régimen máximo de Rpm de ralentí se encuentra las fuerzas Pj. (Jóvaj M. S., Motores del automóvil, 1982)

Las masas de la cabeza del pistón con fines ubicados sobre la sección II. Ecuación (87) y (88) (Jovaj, 1982, pág. 492).

$$mp = 155(Fp) \tag{87}$$

 $mp = 115(7.08 * 10^{-3})$

 $mp=0.814\,Kg$

$$m_{II} = 0.5(mp) \tag{88}$$

 $m_{II} = 0.5 (0.814)$

 $m_{II}=0.407\,Kg$

l.- La velocidad angular en ralentí:

La ecuación (89) fue tomada del libro: (Jovaj, 1982, pág. 493)

$$w = \pi n/30 \tag{89}$$

w = 3.14(5200)/30

 $w = 544.26 \, S^{-1}$

m.- Entonces:

La ecuación (90) fue tomada del libro: (Jovaj, 1982, pág. 493)

$$Pj = m_{II II} Rw^{2} (1 + \Lambda)$$

$$Pj = 0.407(0.043)(544.26^{2})(1 + 0.162)$$

$$Pj = 6023.95 N$$
(90)

n.- La tensión de corte en la sección II (σc).

La ecuación (91) fue tomada del libro: (Jovaj, 1982, pág. 493)

$$\sigma c = Pj/F_{II}$$
 (91)
 $\sigma c = (\frac{6023.95}{1251.15})$
 $\sigma c = 4.81 \text{ N/mm}^2$

o.- Para la definición de la presión entre el bulón y las orejas del pistón (qo) se toma las siguientes medidas de construcción del pistón.

Diámetro exterior del bulón. Ecuación (92) (Jovaj, 1982, pág. 498)

$$db=0.29 D$$
 $db=0.29 (95)$
(92)

db=27.55 mm

Distancia entre las superficies internas de las orejas del pistón. Ecuación (93) (Jovaj, 1982, pág. 498)

$$b=0.37 D$$
 (93)

b=0.37 (95)

b=35.15 mm

Longitud de trabajo de las orejas. Ecuación (94) (Jovaj, 1982, pág. 499)

$$Lo = (lp - b)/2 \tag{94}$$

$$Lo = (83.81 - 35.15)/2$$

 $Lo = 24.33 \ mm$

Longitud del bulón. . Ecuación (95) (Jovaj, 1982, pág. 499)

$$Lb = 0.8(D) \tag{95}$$

Lb = 0.8(95)

Lb = 76 mm

Entonces:

La ecuación (96) fue tomada del libro: (Jovaj, 1982, pág. 499)

$$qo = \frac{Pz_{max}}{2Lo*db} \tag{96}$$

$$qo = \frac{0.047}{2 * 0.0243 * 0.02755}$$

$$qo = 34.87 \, Mpa$$

qo varía de (15-50) MPa

Holgura entre la pared del cilindro y la cabeza del pistón en estado frio. Ecuación (97) (Jovaj,

1982, pág. 500)

$$\Delta c = 0.008 D \tag{97}$$

Dónde:

D= diámetro del cilindro (Tabla 10).

 $\triangle c = 0.008(95)$

∆c=0.76 *mm*

Holgura entre la pared del cilindro y la falda del pistón. Ecuación (98) (Jovaj, 1982, pág. 500)

$$\Delta f = 0.002 D \tag{98}$$

 $\Delta f = 0.002(95)$

 $\Delta f = 0.19 \ mm$

Diámetro de la cabeza (Dc) y de la falda del pistón (Df).

La ecuación (99) y (100) fueron tomadas del libro: (Jovaj, 1982, pág. 501)

$$Dc = D - \Delta c \tag{99}$$

Dc = 95 - 0.76

 $Dc = 94.24 \ mm$

$$Df = D - \Delta f \tag{100}$$

Df = 95 - 0.19

 $Df = 94.81 \, mm$

Cálculo del bulón.

El material que se emplea es, Acero 12Cr Mo; E= 2.2x10⁵N/mm² (Jovaj, 1982, pág. 493).

De los cálculos anteriores:

db = 27.55 mm

Lb=76 mm

a) Diámetro interior del bulón (d). Ecuación (101) (Jovaj, 1982, pág. 489)

$$d = 0.7(db) \tag{101}$$

d = 0.7(27.55)

 $d = 19.29 \, mm$

b) Longitud de casquillos de la biela. Ecuación (102) (Jovaj, 1982, pág. 490)

$$Lp. b = 0.3D \tag{102}$$

Lp.b = 0.3(95)

Lp.b = 28.5 mm

c) Longitud del bulón entre la oreja del pistón. Ecuación (103) (Jovaj, 1982, pág. 491)

$$Lt = Lb - Lb.b/2 \tag{103}$$

$$Lt = (76 - 28.5)/2$$

 $Lt = 23.75 \, mm$

d) Relación entre los diámetros S. Ecuación (104) (Jovaj, 1982, pág. 492)

$$S = d/db ag{104}$$

S = 19.29/27.55

$$S = 0.7$$

La tensión de flexión en la sección intermedia es la parte más importante, σ f y varía entre los (100 -250) N/ mm^2 (Jóvaj, 1982, pág. 68), y por esto el bulón se estudia como una viga libre que se apoya en dos soportes.

Cálculo de los segmentos.

Los aros o segmentos del pistón se fabrican en tornos copiadores siguiendo la forma requerida en estado libre y por último se hace la ranura cortando una parte del perímetro, igual a la abertura (Sa) de cierre. (Jóvaj M. S., Motores del automóvil, 1982)

Los aros deben asegurar la estanqueidad del espacio sobre el embolo, trasmitir a las paredes del cilindro, gran parte del calor que recibe del fondo del pistón, evitan la penetración del aceite del cárter a la cámara de combustión. (Jóvaj M. S., Motores del automóvil, 1982)

La fuga de gases de la cámara de combustión al cárter varía de (0.5-1.0) % pero cuando aumentamos la potencia del motor esta disminuye. (Jóvaj M. S., Motores del automóvil, 1982)

Los materiales para su construcción deben ser de gran resistencia y fácil maquinabilidad, poseer alta solidez y elasticidad a las temperaturas de trabajo, y desgastar lo menos posible la superficie del cilindro, el material más empleado es la fundición de estructura perlítica por una cantidad reducida de pequeños módulos de grafito distribuido regularmente, también las fundiciones de aleación con pequeñas cantidades de cromo, níquel, molibdeno, cobre y wolframio. (Jóvaj M. S., Motores del automóvil, 1982)

Tabla 11.

Dimensiones estructurales de los segmentos teóricos para un motor a gasolina.

Dimensiones estructurales de los segmentos			
Segmentos	D/t	b.mm	Sa/t
De compresión De lubricación	20-25 23-26	1,5-6,5	3,2-4,0

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Cálculo de los segmentos:

La ecuación (105) fue tomada del libro: (Jovaj, 1982, pág. 493)

$$t = D/25 \tag{105}$$

t = 95/25

 $t = 3.8 \, m$

b1=1.83 mm de fuego

b2=1.84 mm de compresión

b3 = 4.21 mm de aceite

El segmento se calcula como una barra curvilínea, cargado uniformemente a lo largo de la periferia. (Jóvaj M. S., Motores del automóvil, 1982)

a) La presión media del segmento sobre la pared del cilindro $E=1.2 \times 10^5 \text{ N/mm}^2$

La ecuación (106) fue tomada del libro: (Jovaj, 1982, pág. 494)

$$Pm = 0.152 E \frac{sa}{t} / \left\{ \left[\left(\frac{D}{t} - 1 \right) \right]^3 * \left(\frac{D}{t} \right) \right\}$$
 (106)

$$Pm = \frac{0.152(1.2 * 10^5)(3.6)}{(23 - 1)^3 * 23}$$

$$Pm = 0.268 \ N/mm^2$$

b) La tensión de flexión de los aros al ser instalados en el émbolo.

La ecuación (107) fue tomada del libro: (Jovaj, 1982, pág. 494)

$$\sigma f = \frac{4\left[1 - 0.114\left(\frac{Sa}{t}\right)\right]}{m_2\left[\left(\frac{D}{t}\right) - 1.4\right]*\left(\frac{D}{t}\right)}$$

$$\sigma f = \frac{4\left[1 - 0.114(3.6)\right]}{2\left[(23) - 1.4\right]*(23)}$$

$$\sigma f = 2.37 * 10^{-3} \text{N/mm}^2$$
(107)

m2: Coeficiente que depende del método usado al insertar rines en el pistón con la ayuda de pinzas m=2.

Resortes de Válvulas

Los muelles o resortes de válvulas tienen la misión de mantener firmemente asentada a la válvula contra su alojamiento en la cámara de combustión y mantener la hermeticidad del cilindro. (Jóvaj M. S., Motores del automóvil, 1982)

Los resortes valvulares están construidos con aceros aleados al silicio y magnesio debido a que tienen que ser lo suficientemente tensos para cerrar la válvula cuando el motor se encuentra a altas revoluciones y al mismo tiempo tener una tensión baja en la apertura de válvulas para no crear esfuerzos excesivos. (Jóvaj M. S., Motores del automóvil, 1982)

El diámetro de las espiras de los resortes, deberá ser equivalente al diámetro de la cabeza de la válvula y la longitud de estos no debe sobrepasar de 1,5 a 2 veces el diámetro de la cabeza de válvulas. (Jóvaj M. S., Motores del automóvil, 1982)

Los arboles de leva no deben sobrepasar los 2000 ciclos por minuto, teniendo en cuenta que la frecuencia de los resortes es muy elevada y oscilan entre 1200 y 1800 revoluciones por minuto. (Jóvaj M. S., Motores del automóvil, 1982)

Para contrarrestar los efectos de inercia producidos por el efecto de las masas que constituyen el tren de empuje se debe aumentar la carga del resorte en un 60%, tomando en cuenta que la tensión máxima de carga en los resortes es 0,085 kg/cm³ por cilindrada unitaria. (Jóvaj M. S., Motores del automóvil, 1982)

Cilindrada Unitaria = 675 cm³

$$(675 \text{ cm}^3) (0.085 \text{ kg/cm}^3) = 57.38 \text{ kg}$$

$$[57,38 \text{ kg} + 60\%(57,38\text{kg})] = 91,80 \text{ kg}$$

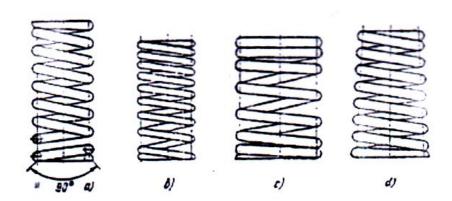


Figura 33. Resorte de válvulas

Fuente: (Jóvaj M. S., Motores del automóvil, 1982)

Cálculo general de las válvulas.

El área de sección de las válvulas de determina por la velocidad de paso de las válvulas de admisión y escape.

 V_{VA} = (60-90) m/s admisión

 V_{VE} = (80-120) m/s escape

Esto es a velocidad del émbolo de (8-16) m/s

Para un ángulo de bisel de 45° el área de sección de paso de válvula se determina por la ecuación (108). (Jovaj, 1982, pág. 385)

$$f_{VA45^{\circ}} = \pi h (0,702 d_2 + 0,53 h)$$
 (108)

De donde,

d₂, diámetro menor de la superficie de la válvula

h, altura máxima a la que se eleva la válvula

α, ángulo de nivel del asiento a 45°

por lo tanto:

a) Válvula de admisión -> D=95mm.

$$d_2 = 0.42 (95) = 39.90 \text{ mm}$$

$$d_1 = 1,12 (39,90) = 44,69 \text{ mm}$$

$$h = d1/4 = 11, 17 \text{ mm}$$

$$dvv = 0.25 (d_2) = 0.25 (39.90) = 9.98 \text{ mm}$$

$$e = 0.08 (d_2) = 0.08 (39.90) = 3.19 \text{ mm}$$

De =
$$0.72$$
 (d₂) = 0.72 (39,90) = 28,73 mm

$$Di = 0.5 (d2) = 0.5 (39.90) = 19.95 \text{ mm}$$

b) Válvula de escape

$$d_2 = 0.33 (95) = 31.35 \text{ mm}$$

$$d_1 = 1,12 (31,35) = 35,11 \text{ mm}$$

$$h = 11,17 \text{ mm}$$

$$e = 0.08 (d_2) = 0.08 (31.35) = 2.51 \text{ mm}$$

De =
$$0.72$$
 (d₂) = 0.72 (31,35) = 22,57 mm

$$Di = 0.5 (d2) = 0.5 (31.35) = 15.68 \text{ mm}$$

c) El área de la sección de paso de la válvula de admisión es:

$$f_{v45^{\circ}} = (3,14) (11,17) [0,702 (39,90) + 0,53 (11,17)]$$

$$f_{v45^{\circ}} = 1190,65 \text{ mm}^2$$

d) El área de la sección de paso de la válvula de escape es:

$$f_{v45^{\circ}} = (3,14) (11,17) [0,702 (31,35) + 0,53 (11,17)]$$

$$f_{v45^{\circ}} = 980,03 \text{ mm}^2$$

Fuerza, Aceleración, Desplazamiento, Velocidad, Presión del Mecanismo Biela-Manivela Teórico

Análisis del Diagrama Presión-Volumen.

Tabla 12.

Fórmulas y Resultados para el Diagrama Presión-Volumen para el Motor 2TR-FE de Toyota

FÓRMULA VOLUMEN	VOLUMEN (cc)	FORMULA PRESIÓN	PRESIÓN (MPa)
$Vc = \frac{Vh}{\varepsilon - 1}$	78,30	Condición estándar de trabajo	0,1
Va = Vh + Vc	362,3931	$Pa = po - (\beta^2 + \varepsilon) \left(\frac{W_{ad}^2}{2}\right) * \rho_o * 10^{-6}$	0,0605
V = Se * A * Vc	43,2107	$Pc = Pa * \varepsilon^{n1}$	1,1158
$Vc = \frac{Vh}{\varepsilon - 1}$	78,30	$Pz = U_r * \frac{Tz}{Tc} * Pc$	4,1389
Va = Vh + Vc	362,3931	$P_b = \frac{Pz}{\varepsilon^{n2}}$	0,2791
$Vc = \frac{Vh}{\varepsilon - 1}$	78,30	Condición estándar de trabajo	0,1

Nota: La tabla 12., indica las fórmulas de Presión y Volumen, que fueron necesarias para representar gráficamente el diagrama Presión (MPa) vs Volumen del ciclo real Otto(cm³); para el volumen; Vc= volumen muerto; Vh= cilindrada del cilindro; ε= relación la compresión; Va= volumen total del cilindro; V= volumen; Se= desplazamiento del embolo; A= área del pistón, y para la Presión; Pa= presión de admisión; Po= presión inicial; β² + ε= coeficiente sumario; Wad= velocidad de la carga; Pc= presión al final de la compresión; Pz= presión calculada al final de la compresión; Ur= coeficiente real de variación molecular; Tz= temperatura de compresión máxima; Pc= presión al final de la compresión; Tc= temperatura al final de la compresión; Pb= presión al final de la expansión; n1= exponente politrópico de compresión, n2= exponente politrópico de expansión. *Fuente:* (Payri, J.M. Desantes, 2011).

La tabla 12., muestra las fórmulas de volumen y presión para cada uno de los tiempos del ciclo Otto. Estas fórmulas fueron tomadas del libro: (Jovaj, 1982)

Análisis del Diagrama Presión-Angulo de giro del cigüeñal.

Tabla 13.

Fórmulas y Resultados para el Diagrama Presión-con respecto al Angulo de Giro del Cigüeñal

FORMULA PRESIÓN	ÁNGULO (Θ)	PRESIÓN
FORWIOLA PRESION	ANGULU (U)	(MPa)
Condición estándar de trabajo	0	0,1
$Pa = po - (\beta^2 + \varepsilon) \left(\frac{W_{ad}^2}{2}\right) * \rho_o * 10^{-6}$	180	0,0853
$Pc = Pa * E^{n1}$	352	1,5726
$Pz = U_r * \frac{Tz}{Tc} * Pc$	360	6.65
$P_b = \frac{Pz}{E^{n2}}$	540	0,3775
Condición estándar de trabajo	720	0,1

Nota: La tabla 13., muestra las fórmulas de Presión necesarias para representar el diagrama de Presión(MPa) con respecto al ángulo de giro del cigüeñal; Pa= presión de admisión; Po= presión inicial; β² + ε= coeficiente sumario; Wad= velocidad de la carga; Pc= presión al final de la compresión; ε= relación de compresión; Pz= presión calculada al final de la compresión; Ur= coeficiente real de variación molecular; Tz= temperatura de compresión máxima; Pc= presión al final de la compresión; Tc= temperatura al final de la compresión; Pb= presión al final de la expansión; n1= exponente politrópico de compresión, n2= exponente politrópico de expansión. *Fuente:* (Payri, J.M. Desantes, 2011)

En la tabla 13., se escoge los puntos que dan tendencia a la gráfica; 0° y 720° son el inicio y el final del proceso de combustión; en 360° se da la mayor elevación de presión en la gráfica, con un valor de 6.65 MPa que corresponde al tiempo final de compresión.

Análisis del Diagrama Fuerza del embolo- Angulo de giro del cigüeñal.

Tabla 14.

Fórmulas y Resultados para el Diagrama Fuerza del Embolo-con respecto al Angulo de Giro del Cigüeñal

FÓRMULA Fe (N)	ÁNGULO DEL	FUERZA DEL EMBOLO Fe
	CIGÜEÑAL (Θ)°	(N)
Fo = A * Po (Ec. 109)	0	284,8750
Fa = A * Pa (Ec. 110)	180	243,0341
Fc = A * Pc (Ec. 111)	340	4479,859
Fz = A * Pz (Ec. 112)	360	16618,2276
Fb = A * Pb (Ec. 113)	540	1120,5370

Nota: La tabla 14., muestra las fórmulas que la Fuerza del embolo produce, para representar el diagrama de fuerza del embolo Fe(N) vs ángulo de giro del cigüeñal; Fo= fuerza inicial del embolo; Fa= fuerza del embolo en el tiempo de admisión, Fc= fuerza del embolo al final de la compresión, Fz= fuerza calculada para el final de la combustión; Fb= fuerza final del trabajo. Fuente: (Jovaj, 1982)

En la tabla 14., se utiliza las ecuaciones 109, 110, 111,112 y 113 para analizar la fuerza del embolo con respecto al ángulo de giro del cigüeñal, se selecciona los valores que dan tendencia a la gráfica; existe un incremento de fuerza (Fe) desde 180° a 360° debido a la compresión de la mezcla aire-combustible, en 360° con un valor de 16618.2276 (N) se tiene el pico más alto , a partir de este punto disminuye (Fe) considerablemente hasta 540°, donde se produce el final de la explosión y el inicio del tiempo de escape.

Análisis del Diagrama Velocidad del embolo- Angulo de giro del cigüeñal.

Tabla 15.

Fórmula y Resultados para el Diagrama de Velocidad del Embolo-con respecto al Angulo de
Giro del Cigüeñal del Motor 2TR-FE de Toyota.

FÓRMULA	ÁNGULO DEL CIGÜEÑAL (θ)	VELOCIDAD DEL EMBOLO (Ve)
	(°)	(cm/seg)
	0	0,0000
	90	350
$Ve = R * W * \left[sen(\theta) + \frac{\lambda}{2} * sen 2\theta\right] $ (Ec. 114)	180	0,0000
	270	-350
	360	0,0000
	450	350
	540	0,0000
	630	-350
	720	0,0000

Nota: La tabla 15., muestra la fórmula de velocidad del embolo, y los ángulos de giro del cigüeñal; Ve= velocidad del embolo; R= radio del cigüeñal; w= velocidad angular; λ= relación (R/L); θ= ángulo. Fuente: (Jovaj, 1982, pág. 385)

En la tabla 15., la ecuación 114 analiza la velocidad del embolo, se muestra los valores representativos de la gráfica, en 90°, 270°, 450° y 630° se tiene la máxima velocidad del embolo; en 0°, 180°, 360°, 540° y 720° la velocidad de embolo es cero cm/s, que corresponde al inicio y final de cada tiempo en el proceso de combustión.

Análisis del Diagrama Fuerza normal- Angulo de giro del cigüeñal.

Tabla 16.

Fórmula y Resultados para el Diagrama de Fuerza Normal-con respecto al Angulo de Giro del Cigüeñal

FÓRMULA	ÁNGULO DEL CIGÜEÑAL (Θ)	Ne
	(°)	(N)
	0	0,000
	130	60,1329
$Ne = Fe * tan\{arsen\{[\lambda * sen(\theta)]\}\}$ (Ec. 115)	180	0,0000
	290	-886,5317
	360	0,0000
	440	3009,0855
	540	0,0000
	610	-233,7545
	720	0,0000

Nota: La tabla 16 muestra la fórmula para representar gráficamente el diagrama de la fuerza normal Ne(N) vs ángulo de giro del cigüeñal; Ne= fuerza normal; Fe=fuerza del embolo; λ = relación (R/L); θ = ángulo. Fuente: (Payri, J.M. Desantes, 2011)

En la tabla 16., se utiliza la ecuación 115 para analizar la fuerza normal, se indica los valores que dan tendencia a la gráfica; en 290° que está dentro del tiempo de compresión, se tiene el primer pico de elevación con un valor de 886.53(N), y en 440° con un valor de 3009.08(N) el máximo valor de Ne que se encuentra dentro del tiempo de explosión.

Análisis del Diagrama de Aceleración del embolo- Angulo de giro del cigüeñal.

Tabla 17.

Fórmula y Resultados para el Diagrama de Aceleración del Embolo -con respecto al Angulo de Giro del Cigüeñal

FÓRMULA	ÁNGULO DEL CIGÜEÑAL (Θ)	ACELERACIÓN DEL EMBOLO (We)
	(°)	(cm/seg²)
	0	36495,5886
	150	-20101,3605
	180	-19651,4708
$We = R * W^2 * [cos(\theta) + \lambda * cos(2\theta)]$ (Ec. 116)	210	-20101,3605
	360	36495,5886
	510	-20101,3605
	540	-19651,4708
	570	-20101,3605
	720	36495,5886

Nota: La tabla 17., muestra la fórmula de la aceleración del embolo y los ángulos de giro del cigüeñal; We= velocidad del embolo; R= radio del cigüeñal; w= velocidad angular; λ= relación (R/L); θ= ángulo. Fuente: (Jovaj, 1982, pág. 385)

En la tabla 17., se utiliza la ecuación 116 para analizar la aceleración del embolo con respecto al ángulo de giro del cigüeñal, se escoge los datos más relevantes para el análisis de la gráfica, donde muestra los valores máximos de la aceleración del embolo en 0°, 360° y 720°, como también el ciclo repetitivo cada 360° completando las dos vueltas del cigüeñal.

Análisis del Diagrama de Fuerza de la biela- Angulo de giro del cigüeñal.

Tabla 18.

Fórmula y Resultados para el Diagrama de Fuerza de la Biela -con respecto al Angulo de Giro del Cigüeñal

FÓRMULA	ÁNGULO DEL CIGÜEÑAL	Ke
	(0)	N
	0	284,8750
	180	243,0341
$Ke = \frac{Fe}{cos\{arsen\{[\lambda*sen(\theta)]\}\}}$ (Ec. 117)	350	4536,5582
cos(ar sen([n·sen(o)]))	360	16618,2276
	540	1120,5370
	720	284,8750

Nota: La tabla 18., muestra la fórmula para el cálculo de la fuerza que ejerce la biela vs el ángulo de giro del cigüeñal; Ke= fuerza de la biela; Fe=fuerza del embolo; λ= relación (R/L); θ= ángulo. Fuente: (Payri, J.M. Desantes, 2011)

En la tabla 18., se utiliza la ecuación 117 para analizar la fuerza que ejerce la biela, se indica los datos más representativos que dan forma a la gráfica, de 180° a 360° se produce un incremento de la fuerza de la biela debido al tiempo de compresión con un valor máximo de 16618.22768(N); mientras que en 0° y 720° la fuerza de la biela es mínima, porque corresponde al principio y al final de la combustión,

Análisis del Diagrama del Desplazamiento del embolo- Angulo de giro del cigüeñal. Tabla 19.

Fórmula y Resultados para el Diagrama del Desplazamiento del Embolo -con respecto al Angulo de Giro del Cigüeñal

	ÁNGULO DEL	DESPLAZAMIENTO
FORMULA	CIGÜEÑAL (θ)	DEL EMBOLO (Se)
	(°)	cm
	0	0,000
a = a = a = a = a = a = a = a = a = a =	180	8,0000
$SE = R * \left[\left(1 + \frac{\lambda}{4} \right) - \cos(\theta) - \frac{\lambda}{4} * \cos(2\theta) \right] $ (Ec. 118)	360	0,0000
	540	8,0000
	720	0,0000

Nota: La tabla 19., muestra la fórmula para calcular el desplazamiento del embolo; Se= desplazamiento del embolo; R=radio del cigüeñal; λ= relación (R/L); θ= ángulo. Fuente: (Jovaj, 1982)

En la tabla 19., se utiliza la ecuación 118 para analizar el desplazamiento del embolo, se indica los valores que dan tendencia a la gráfica; en 0° empieza el desplazamiento del embolo con un valor de 0 (cm), en 180° el embolo tiene su mayor desplazamiento 8 (cm) debido a que se encuentra en el PMI y en 360° el embolo regresa a la posición de partida y el desplazamiento vuelve hacer 0 (cm), completando la primera vuelta del cigüeñal, este proceso se repite hasta completar el ciclo de combustión.

Análisis del Diagrama de Fuerza de la Manivela- Angulo de giro del cigüeñal.

Tabla 20.

Fórmula y Resultados para el Diagrama de Fuerza de la Manivela -con respecto al Angulo de

Giro del Cigüeñal

	ÁNGULO DEL	Ze
FORMULA	CIGÜEÑAL (Θ)	N
	(°)	
	0	284,8750
	10	275,6984
$Ze = Fe * \frac{\cos(\theta + arsen\{[(\lambda) * sen(\theta)]\})}{\cos(arsen\{[(\lambda) * sen(\theta)]\})} $ (Ec. 119)	180	-243,0341
	350	4420,5332
	352	8393,4875
	360	16618,2276
	480	-4607,9634
	540	-1120,5370
	720	284,8750

Nota: La tabla 20., muestra la fórmula de la fuerza de la manivela para calcular los valores de Ze (fuerza de la manivela), de acuerdo al ángulo de giro del cigüeñal; Ze= fuerza de la manivela; Fe= fuerza del embolo; λ= relación (R/L); θ= ángulo. Fuente: (Payri, J.M. Desantes, 2011)

En la tabla 20., se utiliza la ecuación 119 para analizar la fuerza de la manivela, se detallan los valores más importantes que dan tendencia a la gráfica; de 180° a 360° existe un incremento de la fuerza de la manivela, debido a la presión de la mezcla aire-combustible en el tiempo de compresión, con un valor máximo de 16618.2276 (N); de 360° a 540° existe otro incremento de la fuerza de la manivela.

Análisis del Diagrama de Fuerza Total-Angulo de giro del cigüeñal.

Tabla 21.

Fórmula y Resultados para el Diagrama de Fuerza Total -con respecto al Angulo de Giro del Cigüeñal

FÓRMULA	ÁNGULO DEL CIGÜEÑAL (Θ)	Pe
	(°)	(N)
	0	-4098,068248
D D D W (D 10 0)	230	2603,03014
Pe = Pg + PW (Ec. 120)	350	-2933,95129
	480	3650,187218
	720	-4098,068248

Nota: La tabla 21., muestra la fórmula para el cálculo de la fuerza total, de acuerdo al ángulo de giro del cigüeñal; Pe= fuerza total; Pg= presión de los gases; Pw= fuerza de inercia. *Fuente*: (Jovaj, 1982)

En la tabla 21., se utiliza la ecuación 120 para analizar la fuerza total del embolo de acuerdo al ángulo de giro del cigüeñal, se muestra los valores más representativos para la obtención de la gráfica; en 0° y 720° se encuentra la mayor fuerza total para el inicio y el final de la combustión; en 480° está el segundo valor más alto; mientras que en 230° se encuentra el mínimo valor de la fuerza total calculada.

Análisis del Diagrama de Fuerza Tangencial- Angulo de giro del cigüeñal.

Tabla 22.

Fórmula y Resultados para el Diagrama de Fuerza Tangencial -con respecto al Angulo de Giro del Cigüeñal

FÓRMULA	ÁNGULO DEL CIGÜEÑAL (Θ)	Te
	(°)	(N)
	0	0,0000
	300	-3271,2027
$sen(\theta + R_{o})$	360	0,0000
$Te = Fe * \frac{sen(\theta + \beta_0)}{cos(\beta_0)}$ (Ec. 121)	420	11458,6145
	540	0,0000
	630	-702,7060
	720	0,0000

Nota: La tabla 22., muestra la fórmula para el cálculo de la fuerza tangencial, acorde al grado de giro del cigüeñal; Te= fuerza tangencial; Fe= fuerza del embolo; θ = ángulo de giro del cigueñal; β_o = $arsen(\lambda * sen * \theta)$ dónde: λ = relación (R/L). Fuente: (Payri, J.M. Desantes, 2011)

En la tabla 22., se utiliza la ecuación 121 para analizar la fuerza tangencial acorde al grado de giro del cigüeñal, los valores que se muestra corresponde a los puntos que dan la tendencia a la gráfica, existen dos picos de elevación que tienen el mayor valor para la fuerza tangencial en 300° y 420°, con un valor de -3271,20 (N) y 11458,61 (N) respectivamente.

Análisis del Proceso de Admisión.

Tabla 23.

Resumen del Proceso de Admisión

Parámetros	Motor gasolina teórico	Fórmula	Motor 2TR-FE calculado
P. admisión(Pa)	(0.08-0.09) MPa	$Pa = po - (\beta^2 + \varepsilon) \left(\frac{W_{ad}^2}{2}\right) * \rho_o$ $* 10^{-6}$	0.085 MPa
Coeficiente γ_r	(0.06-0.1)	$\gamma_r \left(To + \frac{\Delta T}{Tr} \right) = \frac{Pr}{\varepsilon Pa} - Pr$	0.06
T. de admisión(Ta)	(340-900) °K	$\mathrm{Tr} = \mathrm{Tr} - \Delta \mathrm{T} + \gamma_r + \mathrm{Tr}/1 + \gamma_r$	345°K
Coef. de llenado η_v	(0.75-0.85)	$η_v = ε / ε-1* Pa/Po * To/Ta (1+γ_r)$	0.76

Nota: Tabla de resultados de presión de admisión (Pa); Coeficiente γ_r ; Temperatura de admisión (Ta); Coeficiente de llenado (η_v). *Fuente:* (Jovaj, 1982)

La tabla 23., muestra la tabla resumen del proceso de admisión con los datos calculados del motor 2TR-FE y los datos para un motor a gasolina teórico.

Análisis del Proceso de Compresión.

Tabla 24.

Resumen del Proceso de Compresión

Parámetros	Fórmula	Datos calculados
Presión de compresión (Pc)	Pc=Paε ⁿ¹	1.80 MPa
Temperatura de compresión (Tc)	$Tc = Ta \epsilon^{n1-1}$	761.40 °K
Exponente politrópico n1	(1.25-1.45)	1.35

Nota: Tabla de resultados de presión de compresión (Pc); Temperatura de compresión (Tc); exponente politrópico (n1).

La tabla 24., muestra la tabla resumen del proceso de compresión con los datos calculados del motor 2TR-FE.

Análisis del Proceso de Explosión o Expansión.

Tabla 25.

Resumen del Proceso de Explosión

Parámetros	Fórmula	Datos calculados
Presión al final de la expansión (Pb	$Pb = \frac{Pz}{\epsilon^{n2}}$	0.27 MPa
Temperatura al final de la expansión (Tb).	$Tb = Tz * \frac{1}{\epsilon^{n2-1}}$	1499°K
Coeficiente Politrópico de exp. N ₂	1.23 – 1.30	1.25

Nota: Tabla de resultados de presión al final de la expansión (Pb); temperatura al final de la expansión(Tb); coeficiente politrópico(N2).

La tabla 25., muestra la tabla resumen del proceso de explosión o expansión con los datos calculados del motor 2TR-FE.

Análisis del Proceso de Escape.

Tabla 26.

Resumen del Proceso de Escape

Parámetros	Fórmula	Datos calculados
Presión de escape	$Pe = \frac{Pb}{\epsilon^{n2}}$	0.1 MPa
Temperatura de escape	$Te = Tz * \frac{1}{\epsilon^{n2-1}}$	749.5°K

Nota: Tabla de resultados de presión de escape (Pe); Temperatura de escape (Te).

La tabla 26., muestra la tabla resumen del proceso de escape con los datos calculados del motor 2TR-FE.

Resultados

Diagrama del Balance Térmico

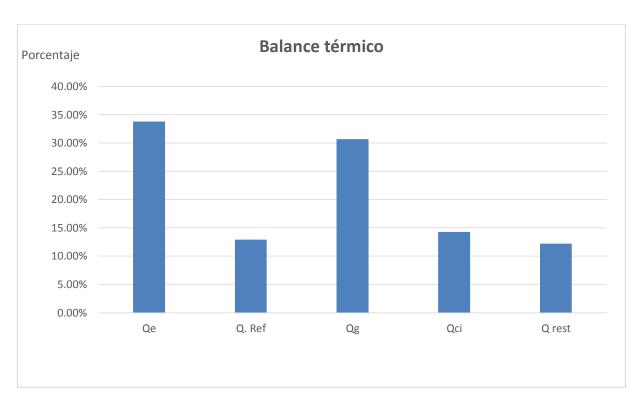


Figura 34. Diagrama del balance térmico del motor 2TR-FE

En la figura 34., se observa el diagrama del balance térmico del motor realizado, Qe tiene un porcentaje de 33.8 % de calor efectivo transformado en trabajo mecánico; Qref cede 12.9 % de calor al medio refrigerante; Qg tiene un porcentaje de 30.7 %, y es el calor que se expulsa del motor los gases de escape; Qci tiene un porcentaje de 14.3 % es el calor de combustible que se desaprovecha del motor; Qrest tiene un porcentaje de 12.2 %, y es el término independiente, que determina las pérdidas no incluidas en las demás correspondientes del balance.

Diagrama Presión-Volumen para el Motor 2TR-FE

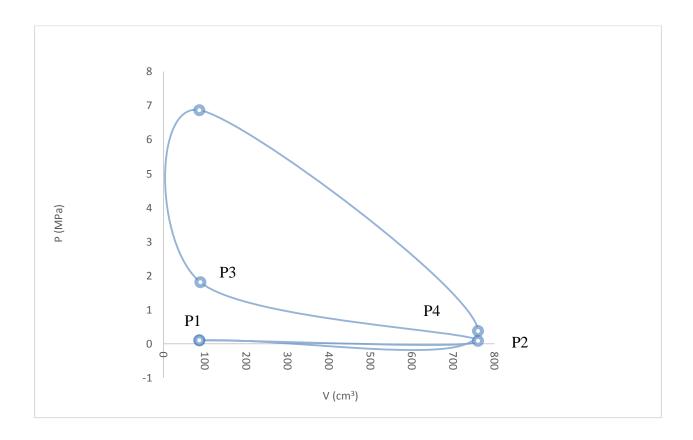


Figura 35. Diagrama Presión-Volumen para el motor 2TR-FE

La figura 35., muestra el diagrama Presión (MPa) vs Volumen del ciclo real Otto (cm³), en la cual se tienen los cuatro tiempos de funcionamiento del motor, de (P1-P2) se tiene el tiempo de admisión y se observa que no existe variación de presión, de (P2-P3) está el tiempo de compresión, en donde la presión aumenta debido al aumento de temperatura en el cilindro, (P3-P4) tiempo de expansión o explosión, la presión sigue elevada, pero disminuye al final del tiempo de explosión en P4, (P4-P1) está el tiempo de escape, con una presión de cero debido a la liberación de presión cuando se abre la válvula de escape. Completando las dos vueltas del cigüeñal. La presión máxima graficada es de 6.65 MPa al final del tiempo de compresión y al inicio del tiempo de expansión.

Diagrama de Presión con respecto al Angulo

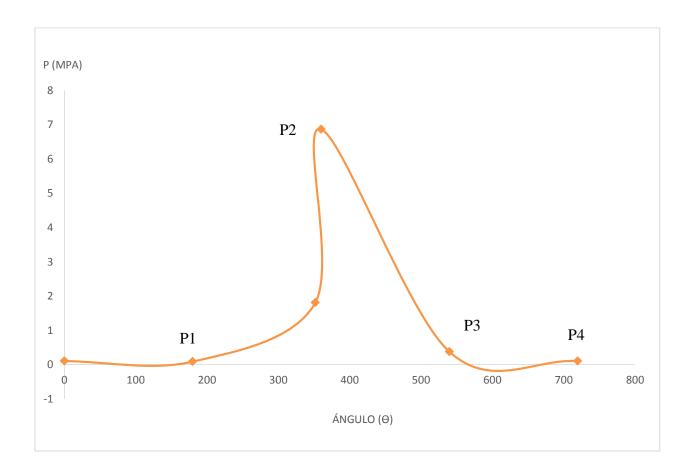


Figura 36. Diagrama de Presión con respecto al ángulo

La figura 36., muestra presión inicial P (MPa) vs ángulo de giro del cigüeñal, P1 representa el tiempo de admisión de 0 a 180° recorriendo medio giro del cigüeñal; P2 representa el tiempo de compresión de 180° a 360° donde el valor de la presión es mayor debido a la compresión de la mezcla aire-combustible, completando una vuelta del cigüeñal; P3 representa el tiempo de explosión de 360° a 540°, recorriendo una vuelta y media del cigüeñal; P4 representa el tiempo de escape de 540° a 720°, liberando presión debido a la apertura de la válvula de escape, completando dos vueltas del cigüeñal y terminando los cuatro tiempos del ciclo Otto.

Diagrama de la Fuerza del Embolo

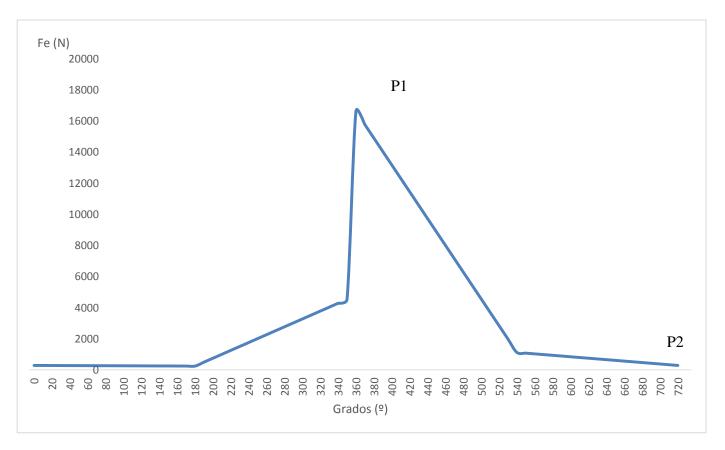


Figura 37. Diagrama de la fuerza del embolo

La figura 37., representa la fuerza del embolo Fe (N) vs ángulo de giro del cigüeñal, en P1 se observa el tiempo de compresión de 180° a 360° donde el valor de la fuerza es mayor debido a la compresión de la mezcla aire-combustible y tiende a disminuir la fuerza hasta P2 porque se libera presión en la válvula de escape.

Diagrama de la Velocidad del Embolo

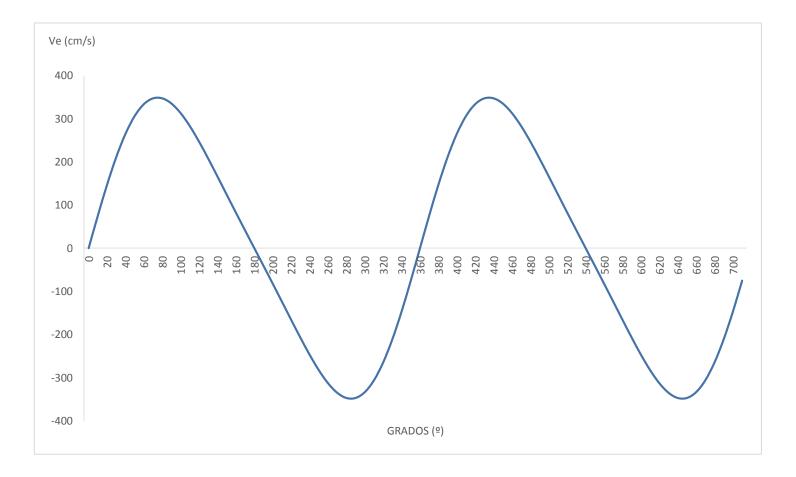


Figura 38. Velocidad del émbolo teórica

La figura 38., muestra la velocidad del émbolo Ve (cm/s) vs ángulo de giro del cigüeñal, de 0° a 180° el embolo se mueve desde el PMS iniciando con una Ve de 0 (cm/s), y alcanzando la Ve máxima a los 90° con un valor de 350 (cm/s), hasta llegar al PMI con una Ve de 0 (cm/s), completando el tiempo de admisión, dicho recorrido se repite para los 4 tiempos del ciclo Otto cada 180° empezando con la admisión, compresión explosión y escape, considerando que en los tiempos de compresión y escape el recorrido inicia desde el PMI al PMS.

Diagrama de la Fuerza Normal del Embolo

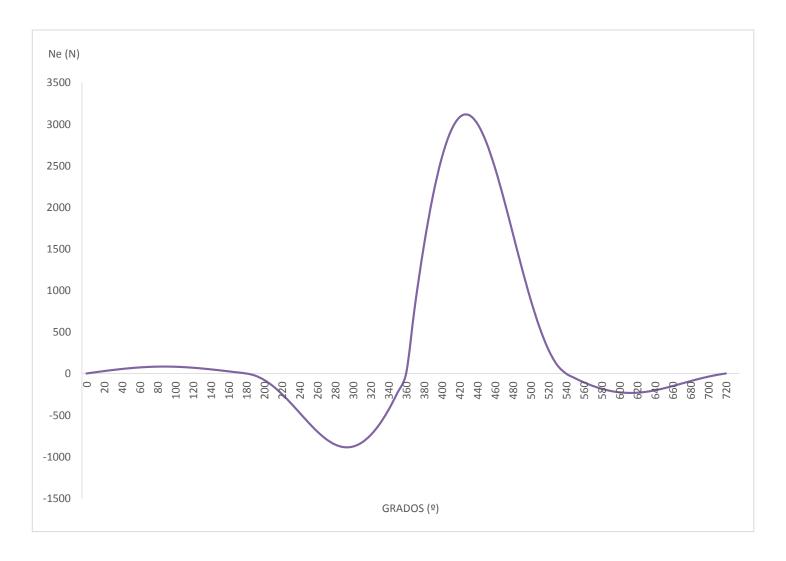


Figura 39. Fuerza normal del embolo

En la figura 39., se observa la fuerza normal Ne (N) vs ángulo de giro del cigüeñal, de 360° a 540° se tiene el tiempo de explosión del ciclo Otto, en donde se puede observar un pico en el cual se da la mayor elevación de la Fuerza normal, producido por un aumento de temperatura en el cilindro debido a la explosión de la mezcla aire-combustible.

Diagrama de la Aceleración del Embolo

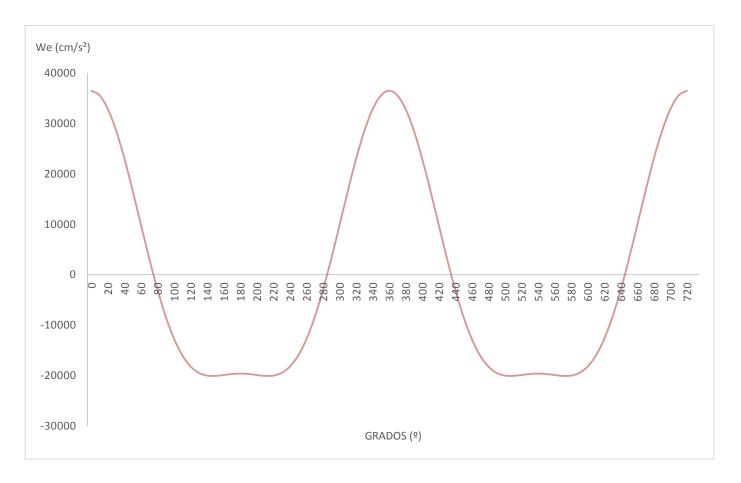


Figura 40. Aceleración del embolo teórica

La figura 40., muestra la aceleración del émbolo We (cm/s²) vs ángulo de giro del cigüeñal, cuando la velocidad es máxima el valor de la aceleración es 0 por la derivada de la velocidad del pistón con respecto al tiempo, la máxima aceleración en la parte positiva de la gráfica se da en el PMI que es casi el doble que en el PMS, pero en la parte negativa de la gráfica la aceleración máxima se tiene unos 30° aproximadamente antes y después del PMS.

Diagrama de Fuerza de la Biela

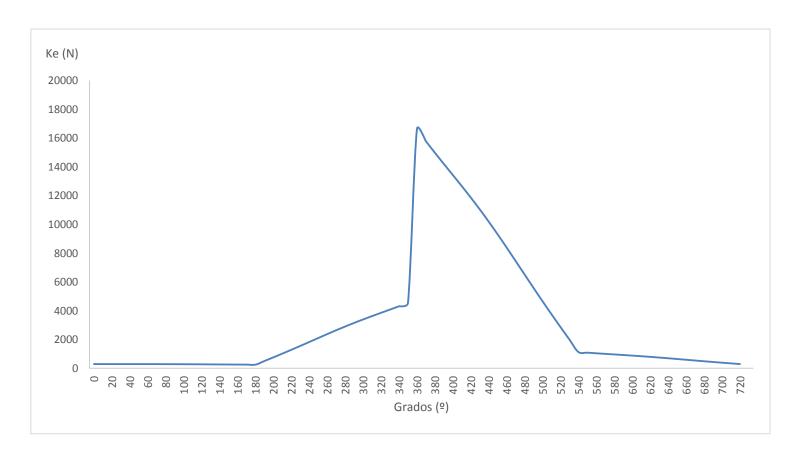


Figura 41. Fuerza de la biela teórica

La figura 41., representa la fuerza que ejerce la biela Ke (N) vs ángulo de giro del cigüeñal, a partir de 180 ° la fuerza que ejerce la biela se incrementa hasta llegar a su punto más alto a los 360° que es donde justamente termina el tiempo de compresión de la mezcla airecombustible e inicia el tiempo de explosión, desde este punto la fuerza de la biela disminuye hasta completar los 720° de las dos vueltas del cigüeñal.

Diagrama del Desplazamiento del Embolo

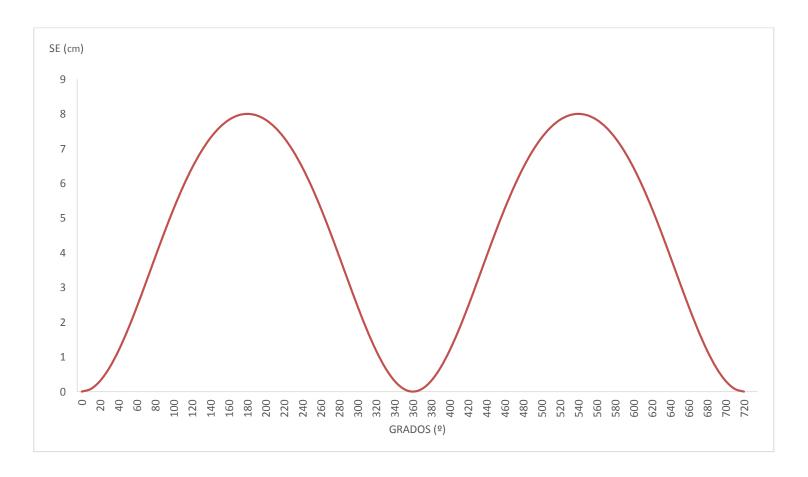


Figura 42. Desplazamiento del embolo teórico

La figura 42., representa el desplazamiento del embolo SE (cm) vs ángulo de giro del cigüeñal, como se observa cada 360° el émbolo completa una vuelta que va desde el PMS hasta el PMI, y regresa desde el PMI hasta el PMS, desarrollando el tiempo de admisión y compresión, el ciclo del embolo se repite para los tiempos de explosión y escape, completando la segunda vuelta que va desde 360° a 720°.

Diagrama de Fuerza de la Manivela Analítica del Motor 2TR-FE

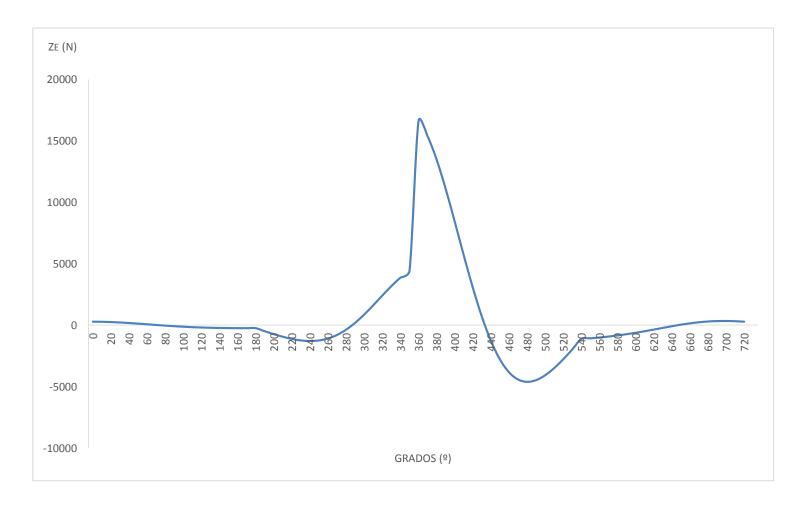


Figura 43. Fuerza de la manivela analítica del motor 2TR-FE

En la figura 43., se observa la Fuerza de la manivela Ze (N) vs ángulo de giro del cigüeñal, en los 360° se tiene el mayor punto de elevación de la gráfica por lo tanto la máxima fuerza desarrollada por la manivela, esta elevación se debe al inicio de la explosión que es el tiempo donde la presión en el cilindro está en su máximo nivel, para nuestro análisis de 16.61 KN o 16618.2276(N) con respecto a 25 Nm calculados del motor.

Diagrama de la Fuerza Total

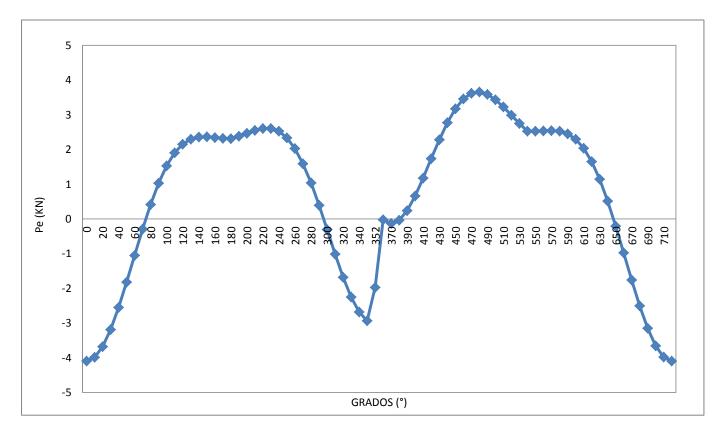


Figura 44. Fuerza total

La figura 44., representa la fuerza total Pe (KN) vs ángulo de giro del cigüeñal, de 0° a 180° se desarrolla 2.30 KN debido a una presión constante en el tiempo de admisión, de 180° a 230° está el inicio de la compresión y se observa en la gráfica que existe un aumento de la fuerza total, esto se debe a un aumento de presión y disminución de volumen en la cámara de combustión, de 230° a 350° existen un decremento de la fuerza total al inicio del tiempo de explosión, en 480° se desarrolla la suma mayor de las fuerzas que actúan en la combustión de la mezcla aire-combustible, y de 480° a 720° la fuerza disminuye debido a la liberación de presión en el tiempo de escape.

Diagrama de la Fuerza Tangencial del Embolo

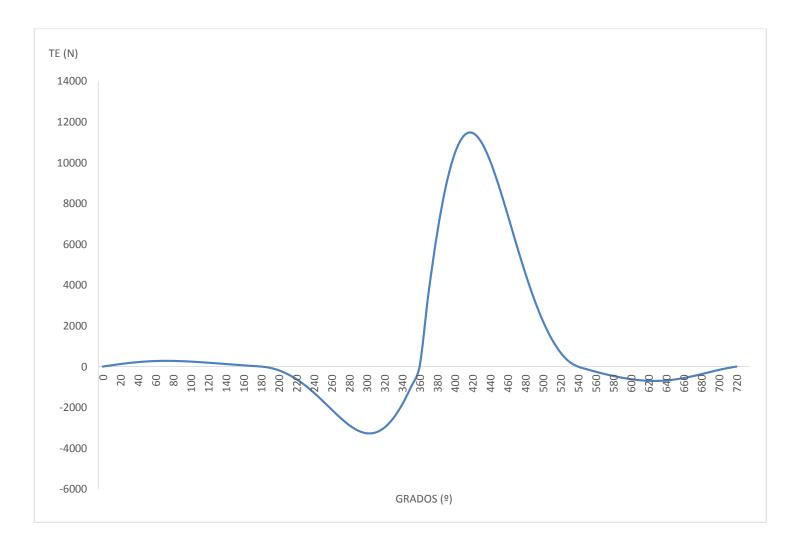


Figura 45. Fuerza tangencial del embolo

La figura 45., representa la fuerza tangencial vs ángulo de giro del cigüeñal, a los 420° se tiene el mayor punto de elevación de la Fuerza tangencial, que está dentro del rango del tiempo de explosión de la mezcla aire-combustible, a los 300° se tiene el segundo punto de elevación de la gráfica que corresponde al rango donde se desarrolla el tiempo de compresión de la mezcla aire-combustible.

Conclusiones Generales

- Los datos obtenidos de la potencia indicada (Ni) con un valor de 133.22 KW y potencia efectiva (Ne) con un valor de 116.3 KW, concuerdan para una potencia de 118 KW (160HP), según el manual de Toyota.
- El diagrama de la fuerza total, indica que a los 480° se desarrolla la mayor suma total de las fuerzas desarrollada en el ciclo del pistón teórico para el motor 2TR-FE.
- El motor 2TR-FE tiene una mezcla rica de aire-combustible 14,3:1, lo que favorece a un mejor llenado de aire en el cilindro según los cálculos realizados.
- Dentro de los cálculos del pistón, la tensión obtenida mediante los cálculos realizados de la cabeza del pistón es de 152.09 N/mm²; este valor se encuentra dentro del rango moderado (50-155) N/mm² (Jovaj, 1982), ya que es la parte más sobrecargada térmicamente.
- Mediante el análisis y cálculo del motor 2TR-FE, se obtuvo las gráficas respectivas de fuerzas que actúan en el mecanismo biela- manivela, las cuales se analizaron detenidamente para observar las variaciones de fuerza, presión, aceleración, velocidad, desplazamiento que se producen en dicho mecanismo.
- Se determina que del 100% de energía aportada por el combustible al motor, solo el 34% de la energía se usa para mover el cigüeñal, y el resto se reparte en el circuito de refrigeración, en los gases de escape y pérdidas mecánicas.

Recomendaciones

- Para en análisis y cálculo del motor 2TR-FE se recomienda utilizar el libro de (Jovaj, 1982) (Payri, J.M. Desantes, 2011) ya que son libros referentes a nivel mundial, del cálculo y construcción de motores.
- El estudio del presente trabajo es muy extenso, debido a que abarca un 75 % de las partes y sistemas de un motor de combustión interna, por lo que se debe tener varias fuentes de información, que ayuden con el desarrollo y análisis del cálculo del motor, ahorrando tiempo en el desarrollo del mismo.
- Se recomienda esta camioneta para las personas que buscan un vehículo todo terreno, ya
 que la Toyota Hilux 2.7 VVT-i puede soportar una carga de hasta 705 Kg con un eficiente
 rendimiento de combustible de 30 Km por galón.
- Para tener una combustión con una mezcla aire combustible lo más estequiométrica
 posible, es recomendable utilizar bujías de Iridio, para tratar de quemar la mayor parte de
 la mezcla, mejorando el consumo y potencia del motor.
- Se podría implementar en la facultad algún tipo de software para el cálculo de motores,
 con la finalidad de ahorrar tiempo en el presente trabajo.

Bibliografía

Libros

- Billet, W. (1979). Entretenimiento y reparación de motores de automóvil. México-Mexico.D.F: Reverté, S.A.
- Cascajosa, M. (2000). Ingenieria de Vehículos. Madrid-España: Tébar Flores, S.L.
- González Calleja, M. (2015). *Mantenimiento de sistemas auxiliares del motor del ciclo Otto*. Madrid-España: Ediciones Paraninfo, S.A.
- Jóvaj, M. S. (1982). *Motores del automóvil*. Lima-Perú: MIR-MOSCU.
- Max, B. (2009). Matematic GTZ. En B. Max, *Matematica aplicada GTZ* (pág. 110). Barcelona-España: Reverte.
- Stuttgart, H. G. (1980). Tecnologia del automovil. Mexico-Mexico D.F: Reverté, S.A.
- Payri, J. M. Desantes (2011). Motores de combustión interna alternativos. Valencia-España: Reverté, S.A

Manuales

- Bosch, R. (1996). Manual de la técnica del automovil. Reverté, S.A.
- TOYOTA. (2010). *Manual del propietario HILUX*. Quito, Pichincha, Ecuador: TOYOTA MOTOR CORPORATION.

Otras fuentes

http://www.autobild.es. (1936). Obtenido de http://www.autobild.es/sites/default/files/imce/u63966/1936_toyota_model_aa_sedan_pri mermodelo_0.jpg

blogspot. (2000). Obtenido de http://1.bp.blogspot.com/-OYzYvz5BZqI/VH-UK6hGwDI/AAAAAAAKqok/aJeJSO2VbJo/s1600/logos-adictamente%2B%282%29.jpg

farrellones.cl. (2001). Recuperado el Domingo de Octubre de 2015, de http://www.camionetas-farellones.cl/blog/toyota-hilux-historia-de-una-leyenda/

elemprendedor. (2003). Obtenido de http://www.elemprendedor.ec/toyota/

tutallermecanico. (2004). Obtenido de http://www.tutallermecanico.com.mx/Templates/basic/Images/estudiantes/4004/4004.pdf

- Toyota Ecuador. (2005). Obtenido de http://www.toyota.com.ec/?q=toyota-hilux
- todoautos. (2006). Recuperado el 25 de 10 de 2015, de http://www.todoautos.com.pe/portal/auto/mecanica/2325-sistema-vvt-i-motor-toyota
- *motorhistoria*. (2007). Obtenido de http://motorhistoria.blogspot.com/2011/01/la-historia-detoyota.html
- cne.gob.sv. (2008). Obtenido de
 http://www.cne.gob.sv/index.php?option=com_content&view=article&id=118&Itemid=1
 60
- conceptodefinicion. (2008). Obtenido de http://conceptodefinicion.de/mecanica/
- ociomotor. (2008). Recuperado el 25 de 10 de 2015, de http://www.ocio.net/wp-content/uploads/2008/11/motor-133-vvti-1108-00-480x373.jpg
- angelfire. (2009). Obtenido de http://www.angelfire.com/nd/mingopage/ciguenal.htm
- diariomotor. (2009). Recuperado el 25 de Octubre de 2015, de http://www.diariomotor.com/imagenes/coches/big/toyota-hilux.jpg
- sistemas de distribución. (2009). Obtenido de http://sistemasdedistribucion.blogspot.com/2009/02/dohc.html
- http://www.toyota.com.ar. (2010). Obtenido de http://www.toyota.com.ar/experience/the_company/historia_toyota_index.aspx
- motorgiga. (20 de 8 de 2010). Obtenido de http://diccionario.motorgiga.com/diccionario/asiento-de-valvula-definicion-significado/gmx-niv15-con311.htm
- *slideshare*. (2010). Obtenido de http://es.slideshare.net/broncano.augusto/la-culata-y-el-bloque-del-motor-13545081
- todoautos. (2010). Obtenido de http://www.todoautos.com.pe/portal/autos/200-especiales/2339-historia-logo-nombre-toyota
- *automotriz.* (2011). Obtenido de http://www.automotriz.biz/coches/auto-repair/diagnosing-car-problems/63721.html
- *ultimasnoticias*. (2011). Obtenido de 8020-gasolinas-en-ecuador-cambian.html: http://www.ultimasnoticias.ec/noticias/8020-gasolinas-en-ecuador-cambian.html
- elcomercio. (2012). Recuperado el 2012, de http://especiales.elcomercio.com/2012/04/gasolina/

- *mecanicabasicacr*. (2012). Obtenido de http://www.mecanicabasicacr.com/inyeccion/el-orden-de-encendido-en-los-motores.html
- definicionabc. (2013). Obtenido de http://www.definicionabc.com/general/estatica.php
- blogspot. (2015). Obtenido de http://2.bp.blogspot.com/-pm30iYk0vgg/UI5j7el5IBI/AAAAAAAAAAAAW/wPz_w6BpS7k/s1600/ciclo+real.jpg
- *fierrosclasicos*. (8 de Enero de 2015). Obtenido de http://www.fierrosclasicos.com/las-valvulas-que-son-y-como-funcionan/
- Angelfire. (s.f.). *angelfire.com*. Recuperado el 26 de Noviembre de 2015, de angelfire.com: http://angelfire.com
- arcomariaje. (2000). *wordpress.com*. Obtenido de https://arcomariaje2000.files.wordpress.com/2015/04/ciclodieseleu9.gif
- automotor. (24 de Enero de 2015). *Partes Automoviles*. Obtenido de https://sites.google.com/site/partesautomovil/home/biela
- Billet, W. (1979). Entretenimiento y reparación de motores de automóvil. México: Reverté, S.A.
- Bosch, R. (1996). Manual de la técnica del automovil. Reverté, S.A.
- calidad-del-combustible-en-ecuador. (s.f.). Recuperado el 2011, de http://es.slideshare.net/marcelmid/calidad-del-combustible-en-ecuador
- Cascajosa, M. (2000). *Ingenieria de Vehículos*. Madrid: Tébar Flores, S.L.
- González Calleja, M. (2015). *Mantenimiento de sistemas auxiliares del motor del ciclo Otto*. Madrid: Ediciones Paraninfo, S.A.
- Imgoldaracena. (28 de Abril de 2005). *UCLM.es*. Recuperado el 22 de Noviembre de 2015, de UCLM.es: https://www.uclm.es
- Jóvaj. (1982). Motores del automovil. Moscú: Mir.
- Jovaj, M. (1982). Motores del Automovil. Moscu: MIR.
- Jóvaj, M. S. (1982). Motores del automovil. Moscu: MIR.
- Jóvaj, M. S. (1982). Motores del automóvil. Lima: MIR-MOSCU.
- Max, B. (2009). Matematic GTZ. En B. Max, *Matematica aplicada GTZ* (pág. 110). Barcelona: Reverte.

- Motores, R. d. (14 de Junio de 2014). *SlideShare*. Recuperado el 23 de Noviembre de 2015, de SlideShare: http://es.slideshare.net
- Payri, J.M. Desantes, F. (2011). *Motores de combustión interna alternativos*. Valencia-España: Editorial reverté, S.A.
- Rodríguez, A. (15 de Marzo de 2015). *AldrodpulF1*. Recuperado el 27 de Noviembre de 2015, de https://albrodpulf1.wordpress.com/2015/03/25/analisis-tecnico-arbol-de-levas/
- Stuttgart, H. G. (1980). Tecnologia del automovil. Mexico: Reverté, S.A.
- Stuttgart, H. G. (1980). Tecnología del automovil. Mexico: Reverté, S.A.
- Stuttgart, H. G. (1980). Tecnologia del automovil . Mexico: Reverté , S.A.
- TOYOTA. (2010). *Manual del propietario HILUX*. Quito, Pichincha, Ecuador: TOYOTA MOTOR CORPORATION.
- Toyota. (2010). Manual del propietario. Ecuador: Toyota Motor Corporation.
- Virtual, T. (23 de Octubre de 2012). *Actualidad Motor*. Recuperado el 24 de Noviembre de 2015, de Actualidad Motor: http://www.actualidadmotor.com

Anexos

Á	NGULO DEL	VOLUMEN	VELOCIDAD	RADIO DEL	ÁREA DEL	RELACIÓN	PRESIÓN	Во	Fe	Ne	Ke	Ze	Te	TORQUE	ELOCIDAD DE	ELERACION D	SPLAZAMI
C	IGÜEÑAL (e	MUERTO	NGULAR (₩	IGÜEÑAL (R	PISTÓN (A	(R/L)(\(\lambda\)	C/10*	•	N	N	N	N	N	J	PISTON (Ve)	PISTON (₩e)	EL PISTON
	(*)	(cc)	(rad/seg)	(cm)	(cm³)		(MPa)								(cm/seg)	(cm/seg*)	cm
18	0	78.30	83.78	4	70.882	0.3000	0.1000	0.0000	708.8217	0.0000	708.8217	708.8217	0.0000	0.0000	0.0000	36495.5886	0.0000
0	10	78.30	83.78	4	70.882	0.3000	0.0992	2.9861	703.0379	36.6742	703.9938	685.9888	158.1983	632.7931	75.3819	35561.1763	0.0789
0	20	78.30	83.78	4	70.882	0.3000	0.0984	5.8893	697.2542	71.9221	700.9537	630.6058	306.0596	1224.2385	146.9220	32832.1602	0.3114
0	30	78.30	83.78	4	70.882	0.3000	0.0976	8.6269	691.4704	104.9075	699.3832	546.3772	436.5877	1746.3510	211.0827	28523.4194	0.6859
.2	40	78.30	83.78	4	70.882	0.3000	0.0967	11.1184	685.6866	134.7545	698.8025	438.6479	543.9788	2175.9152	264.9020	22968.0466	1.1837
0	50	78.30	83.78	4	70.882	0.3000	0.0959	13.2861	679.9029	160.5479	698.6011	314.0463	624.0340	2496.1359	306.2057	16582.8419	1.7809
0	60	78.30	83.78	4	70.882	0.3000	0.0951	15.0586	674.1191	181.3694	698.0913	179.9890	674.4890	2697.9559	333.7390	9825.7354	2.4500
0	70	78.30	83.78	4	70.882	0.3000	0.0943	16.3741	668.3353	196.3736	696.5879	44.0534	695,1935	2780.7740	347.2040	3150.0412	3.1617
25	80	78.30	83.78	4	70.882	0.3000	0.0935	17.1841	662.5516	204.8920	693,5094	-86.7284	688.0651	2752.2602	347.2040	-3039.2293	3.8873
0	90	78.30	83.78	4	70.882	0.3000	0.0927	17.4576	656.7678	206.5439	688.4797	-206.5439	656.7678	2627.0712	335.1031	-8422.0589	4.6000
0	100	78.30	83.78	4	70.882	0.3000	0.0918	17.1841	650.9840	201.3148	681.4014	-311.2986	606.1362	2424.5447	312.8204	-12789.0639	5.2765
0	110	78.30	83.78	4	70.882	0.3000	0.0910	16.3741	645.2003	189.5759	672.4748	-398.8146	541.4512	2165.8046	282.5839	-16053.3841	5.8979
)8[120	78.30	83.78	4	70.882	0.3000	0.0902	15.0586	639.4165	172.0328	662.1546	-468.6930	467.7345	1870.9381	246.6767	-18247.7943	6.4500
0	130	78.30	83.78	4	70.882	0.3000	0.0894	13.2861	633.6327	149.6219	651.0585	-521.9083	389.2157	1556.8629	207.2021	-19507.7923	6.9232
0	140	78.30	83.78	4	70.882	0.3000	0.0886	11.1184	627.8490	123.3879	639.8585	-560.2725	309.0529	1236.2116	165.8983	-20043.0963	7.3121
0	150	78.30	83.78	4	70.882	0.3000	0.0878	8.6269	622.0652	94.3776	629.1838	-585.9131	229.2992	917,1969	124.0204	-20101.3605	7.6141
11	160	78.30	83.78	4	70.882	0.3000	0.0869	5.8893	616.2814	63.5697	619.5514	-600.8572	151.0447	604.1787	82.3020	-19928.8173	7.8290
0	170	78.30	83.78	4	70.882	0.3000	0.0861	2.9861	610.4977	31.8468	611.3278	-606.7530	74.6488	298,5954	40.9982	-19732.8831	7.9573
0	180	78.30	83.78	4	70.882	0.3000	0.0853	0.0000	604.7139	0.0000	604.7139	-604.7139	0.0000	0.0000	0.0000	-19651.4708	8.0000
0	190	78.30	83.78	4	70.882	0.3000	0.1738	-2.9861	1232.2290	-64.2796	1233.9045	-1224.6707	-150.6713	-602.6852	-40.9982	-19732.8831	7.9573
13	200	78.30	83.78	4	70.882	0.3000	0.2624	-5.8893	1859.7441	-191.8335	1869.6118	-1813.1987	-455.8055	-1823.2218	-82.3020	-19928.8173	7.8290
0	210	78.30	83.78	4	70.882	0.3000	0.3509	-8.6263	2487.2592	-377.3583	2515.7221	-2342.7088	-916.8277	-3667.3109	-124.0204	-20101.3605	7.6141
0	220	78.30	83.78	4	70.882	0.3000	0.4394	-11.1184	3114.7743	-612.1306	3174.3540	-2779.5255	-1533.2191	-6132.8764	-165.8983	-20043.0963	7.3121
0	230	78.30	83.78	4	70.882	0.3000	0.5280	-13.2861	3742.2894	-883.6799	3845.2075	-3082.4354	-2298.7415	-9194.9660	-207.2021	-19507.7923	6.9232
16	240	78.30	83.78	4	70.882	0.3000	0.6165	-15.0586	4369.8045	-1175.6809	4525.1981	-3203.0718	-3196.5213	-12786.0851	-246.6767	-18247.7943	6.4500
0	250	78.30	83.78	4	70.882	0.3000	0.7050	-16.3741	4997.3196	-1468.3369	5208.5715	-3088.9693	-4193.7436	-16774.9745	-282.5839	-16053.3841	5.8979
0	260	78.30	83.78	4	70.882	0.3000	0.7935	-17.1841	5624.8348	-1739,4629	5887.6563	-2689.7788	-5237.3263	-20949.3053	-312.8204	-12789.0639	5.2765
0	270	78.30	83.78	4	70.882	0.3000	0.8821	-17.4576	6252.3499	-1966.2731	6554.2435	-1966.2731	-6252.3499	-25009.3994	-335.1031	-8422.0589	4.6000
17	280	78.30	83.78	4	70.882	0.3000	0.9706	-17.1841	6879.8650	-2127.5771	7201.3281	-900.5784	-7144.7942	-28579.1770	-347.2040	-3039,2293	3.8873

	RELACIÓN		Во	Fe	Ne	Ke	Ze	Te	TORQUE			ESPLAZAMIEN1	VOLUMEN
PISTÓN (A	(R/L(\(\lambda\))	C/10*	•	N	N	N	N	N	J	PISTON (Ve)		EL PISTON (Se	C/10•
(cm²)		(MPa)								(cm/seg)	(cm/seg*)	cm	cc
70.882	0.3000	0.1000	0.0000	708.8217	0.0000	708.8217	708.8217	0.0000	0.0000	0.0000	36495.5886	0.0000	78.30
70.882	0.3000	0.0992	2.9861	703.0379	36.6742	703.9938	685.9888	158.1983	632.7931	75.3819	35561.1763	0.0789	83.89
70.882	0.3000	0.0984	5.8893	697.2542	71.9221	700.9537	630.6058	306.0596	1224.2385	146.9220	32832.1602	0.3114	100.37
70.882	0.3000	0.0976	8.6269	691.4704	104.9075	699.3832	546.3772	436.5877	1746.3510	211.0827	28523.4194	0.6859	126.92
70.882	0.3000	0.0967	11.1184	685.6866	134.7545	698.8025	438.6479	543.9788	2175.9152	264.9020	22968.0466	1.1837	162.21
70.882	0.3000	0.0959	13.2861	679.9029	160.5479	698.6011	314.0463	624.0340	2496.1359	306.2057	16582.8419	1.7809	204.54
70.882	0.3000	0.0951	15.0586	674.1191	181.3694	698.0913	179.9890	674.4890	2697.9559	333.7390	9825.7354	2.4500	251.96
70.882	0.3000	0.0943	16.3741	668.3353	196.3736	696.5879	44.0534	695.1935	2780.7740	347.2040	3150.0412	3.1617	302.41
70.882	0.3000	0.0935	17.1841	662,5516	204.8920	693.5094	-86.7284	688.0651	2752.2602	347.2040	-3039.2293	3.8873	353.84
70.882	0.3000	0.0927	17.4576	656.7678	206.5439	688.4797	-206.5439	656.7678	2627.0712	335.1031	-8422.0589	4.6000	404.36
70.882	0.3000	0.0918	17.1841	650.9840	201.3148	681.4014	-311.2986	606.1362	2424.5447	312.8204	-12789.0639	5.2765	452.31
70.882	0.3000	0.0910	16.3741	645.2003	189.5759	672.4748	-398.8146	541.4512	2165.8046	282.5839	-16053.3841	5.8979	496.36
70.882	0.3000	0.0902	15.0586	639.4165	172.0328	662.1546	-468.6930	467.7345	1870.9381	246.6767	-18247.7943	6.4500	535.49
70.882	0.3000	0.0894	13.2861	633.6327	149.6219	651.0585	-521.9083	389.2157	1556.8629	207.2021	-19507.7923	6.9232	569.03
70.882	0.3000	0.0886	11.1184	627.8490	123.3879	639.8585	-560.2725	309.0529	1236.2116	165.8983	-20043.0963	7.3121	596.60
70.882	0.3000	0.0878	8.6269	622.0652	94.3776	629.1838	-585.9131	229.2992	917.1969	124.0204	-20101.3605	7.6141	618.00
70.882	0.3000	0.0869	5.8893	616.2814	63.5697	619.5514	-600.8572	151.0447	604.1787	82.3020	-19928.8173	7.8290	633.23
70.882	0.3000	0.0861	2.9861	610.4977	31.8468	611.3278	-606.7530	74.6488	298.5954	40.9982	-19732.8831	7.9573	642.33
70.882	0.3000	0.0853	0.0000	604.7139	0.0000	604.7139	-604.7139	0.0000	0.0000	0.0000	-19651.4708	8.0000	645.36
70.882	0.3000	0.1738	-2.9861	1232.2290	-64.2796	1233.9045	-1224.6707	-150.6713	-602.6852	-40.9982	-19732.8831	7.9573	642.33
70.882	0.3000	0.2624	-5.8893	1859.7441	-191.8335	1869.6118	-1813.1987	-455.8055	-1823.2218	-82.3020	-19928.8173	7.8290	633.23
70.882	0.3000	0.3509	-8.6269	2487.2592	-377.3583	2515.7221	-2342.7088	-916.8277	-3667.3109	-124.0204	-20101.3605	7.6141	618.00
70.882	0.3000	0.4394	-11.1184	3114.7743	-612.1306	3174.3540	-2779.5255	-1533.2191	-6132.8764	-165.8983	-20043.0963	7.3121	596.60
70.882	0.3000	0.5280	-13.2861	3742.2894	-883.6799	3845.2075	-3082.4354	-2298.7415	-9194.9660	-207.2021	-19507.7923	6.9232	569.03
70.882	0.3000	0.6165	-15.0586	4369.8045	-1175.6809	4525.1981	-3203.0718	-3196.5213	-12786.0851	-246.6767	-18247.7943	6.4500	535.49
70.882	0.3000	0.7050	-16.3741	4997.3196	-1468.3369	5208.5715	-3088.9693	-4193.7436	-16774.9745	-282.5839	-16053.3841	5.8979	496.36
70.882	0.3000	0.7935	-17.1841	5624.8348	-1739.4629	5887.6563	-2689.7788	-5237.3263	-20949.3053	-312.8204	-12789.0639	5.2765	452.31
70.882	0.3000	0.8821	-17.4576	6252.3499	-1966.2731	6554.2435	-1966.2731	-6252.3499	-25009.3994	-335.1031	-8422.0589	4.6000	404.36
70.882	0.3000	0.9706	-17.1841	6879.8650	-2127.5771	7201.3281	-900.5784	-7144.7942	-28579.1770	-347.2040	-3039.2293	3.8873	353.84

360	78.30	83.78	4	70.882	0.3000	6.23652	0.0000	44205.7793	0.0000	44205.7793	44205.7793	0.0000	0.0000	0.0000	36495.5886	0.0000
370	78.30	83.78	4	70.882	0.3000	5.91102	2.9861	41898.5613	2185.6504	41955.5301	40882.4938	9428.0543	37712.2171	75.3819	35561.1763	0.0789
380	78.30	83.78	4	70.882	0.3000	5.58552	5.8893	39591.3433	4083.8654	39801.4123	35806.9289	17378.6151	69514.4605	146.9220	32832.1602	0.3114
390	78.30	83.78	4	70.882	0.3000	5.26001	8.6269	37284.1254	5656.6178	37710.7853	29460.6908	23540.8374	94163.3496	211.0827	28523.4194	0.6859
400	78.30	83.78	4	70.882	0.3000	4.93451	11.1184	34976.9074	6873.8321	35645.9481	22375.4514	27748.3836	110993.5345	264.9020	22968.0466	1.1837
410	78.30	83.78	4	70.882	0.3000	4.60901	13.2861	32669.6894	7714.4085	33568.1502	15090.0918	29985.1602	119940.6409	306.2057	16582.8419	1.7809
420	78.30	83.78	4	70.882	0.3000	4.28351	15.0586	30362.4715	8168.9189	31442.1836	8106.7444	30379.1311	121516.5243	333,7390	9825.7354	2.4500
430	78.30	83.78	4	70.882	0.3000	3.95801	16.3741	28055.2535	8243.3315	29241.2340	1849.2640	29182.7001	116730.8005	347.2040	3150.0412	3.1617
440	78.30	83.78	4	70.882	0.3000	3.63251	17.1841	25748.0355	7962.5010	26951.1179	-3370.4332	26739.5388	106958.1552	347.2040	-3039.2293	3.8873
450	78.30	83.78	4	70.882	0.3000	3.30701	17.4576	23440.8176	7371.7961	24572.6536	-7371.7961	23440.8176	93763.2703	335.1031	-8422.0589	4.6000
460	78.30	83.78	4	70.882	0.3000	2.98151	17.1841	21133.5996	6535.5008	22121.0715	-10106.0229	19677.6549	78710.6198	312.8204	-12789.0639	5.2765
470	78.30	83.78	4	70.882	0.3000	2.65601	16.3741	18826.3816	5531.6594	19622.2298	-11637.0612	15799.0730	63196.2919	282.5839	-16053.3841	5.8979
480	78.30	83.78	4	70.882	0.3000	2.33051	15.0586	16519.1637	4444.4244	17106.5975	-12108.5663	12083.8032	48335.2128	246.6767	-18247.7943	6.4500
490	78.30	83.78	4	70.882	0.3000	2.00501	13.2861	14211.9457	3355.9166	14602.7935	-11706.0439	8729.8404	34919.3616	207.2021	-19507.7923	6.9232
500	78.30	83.78	4	70.882	0.3000	1.67951	11.1184	11904.7278	2339.5751	12132.4422	#########	5859.9930	23439.9721	165.8983	-20043.0963	7.3121
510	78.30	83.78	4	70.882	0.3000	1.35401	8.6269	9597.5098	1456.1008	9707.3387	-9039.7377	3537.7346	14150.9385	124.0204	-20101.3605	7.6141
520	78.30	83.78	4	70.882	0.3000	1.02851	5.8893	7290.2918	751.9970	7328.9736	-7107.8315	1786.7806	7147.1226	82.3020	-19928.8173	7.8290
530	78.30	83.78	4	70.882	0.3000	0.70301	2.9861	4983.0739	259.9435	4989.8493	-4952.5085	609.3074	2437.2294	40.9982	-19732.8831	7.9573
540	78.30	83.78	4	70.882	0.3000	0.37751	0.0000	2675.8559	0.0000	2675.8559	-2675.8559	0.0000	0.0000	0.0000	-19651.4708	8.0000
550	78.30	83.78	4	70.882	0.3000	0.36209	-2.9861	2566.5762	-133.8862	2570.0660	-2550.8333	-313.8291	-1255.3165	-40.9982	-19732.8831	7.9573
560	78.30	83.78	4	70.882	0.3000	0.34667	-5.8893	2457.2965	-253.4713	2470.3348	-2395.7957	-602.2598	-2409.0393	-82.3020	-19928.8173	7.8290
570	78.30	83.78	4	70.882	0.3000	0.33126	-8.6269	2348.0169	-356.2330	2374.8863	-2211.5587	-865.5016	-3462.0066	-124.0204	-20101.3605	7.6141
580	78.30	83.78	4	70.882	0.3000	0.31584	-11.1184	2238.7372	-439.9675	2281.5599	-1997.7779	-1101.9978	-4407.9914	-165.8983	-20043.0963	7.3121
590	78.30	83.78	4	70.882	0.3000	0.30042	-13.2861	2129.4575	-502.8363	2188.0205	-1753.9838	-1308.0422	-5232.1686	-207.2021	-19507.7923	6.9232
600	78.30	83.78	4	70.882	0.3000	0.28501	-15.0586	2020.1778	-543.5219	2092.0169	-1480.7927	-1477.7644	-5911.0574	-246.6767	-18247.7943	6.4500
610	78.30	83.78	4	70.882	0.3000	0.26959	-16.3741	1910.8982	-561.4694	1991.6776	-1181.1743	-1603.6230	-6414.4922	-282.5839	-16053.3841	5.8979
620	78.30	83.78	4	70.882	0.3000	0.25417	-17.1841	1801.6185	-557.1450	1885.7995	-861.5285	-1677.5006	-6710.0025	-312.8204	-12789.0639	5.2765
630	78.30	83.78	4	70.882	0.3000	0.23875	-17.4576	1692.3388	-532.2159	1774.0531	-532.2159	-1692.3388	-6769.3552	-335,1031	-8422.0589	4.6000
640	78.30	83.78	4	70.882	0.3000	0.22334	-17.1841	1583.0591	-489.5562	1657.0279	-207.2234	-1644.0194	-6576.0777	-347.2040	-3039.2293	3.8873
650	78.30	83.78	4	70.882	0.3000	0.20792	-16.3741	1473.7794	-433.0331	1536.0806	97.1443	-1533.0057	-6132.0228	-347.2040	3150.0412	3.1617
660	78.30	83.78	4	70.882	0.3000	0.19250	-15.0586	1364.4998	-367.1140	1413.0224	364.3198	-1365.2485	-5460.9938	-333,7390	9825.7354	2.4500
670	78.30	83.78	4	70.882	0.3000	0.17709	-13.2861	1255.2201	-296.3995	1289.7403	579.7847	-1152.0763	-4608.3053	-306.2057	16582.8419	1.7809
680	78.30	83.78	4	70.882	0.3000	0.16167	-11.1184	1145.9404	-225.2058	1167.8600	733.0818	-909,1139	-3636.4557	-264.9020	22968.0466	1.1837
690	78.30	83.78	4	70.882	0.3000	0.14625	-8.6269	1036.6607	-157.2786	1048.5237	819.1352	-654.5376	-2618.1504	-211.0827	28523.4194	0.6859