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Abstract – 

This paper details the development of an open-
source eye- and gaze-tracking mechanism designed 
for open, scalable, and decentralized Active and 
Assisted Living (AAL) ecosystems built on Wireless 
Sensor and Actuator Networks (WSANs). Said 
mechanism is deliberately conceived as yet another 
service-feature in an on-going implementation of an 
extended intelligent built-environment framework, 
one motivated and informed by both Information 
and Communication Technologies (ICTs) as well as 
by emerging Architecture, Engineering, and 
Construction (AEC) considerations. It is nevertheless 
designed as a compatible and subsumable service-
feature for existing above-characterized AAL 
frameworks. The eye- and gaze-tracking mechanism 
enables the user (1) to engage (i.e., open, shut, slide, 
turn-on/-off, etc.) with a variety of actuable objects 
and systems deployed within an intelligent built-
environment via sight-enabled identification, 
selection, and confirmation; and (2) to extract and 
display personal identity information from 
recognized familiar faces viewed by the user. The 
first feature is intended principally (although not 
exclusively) for users with limited mobility, with the 
intention to support independence with respect to 
the control of remotely actuable mechanisms within 
the built-environment. The second feature is 
intended to compensate for loss of memory and/or 
visual acuity associated principally (although not 
exclusively) with the natural aging process. As with 
previously developed service-features, the present 
mechanism intends to increase the quality of life of 
its user(s) in an affordable, intuitive, and highly 
intelligent manner. 
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1 Introduction 

The eye- and gaze-tracking mechanism detailed in 
this paper is situated within the Active and Assisted 
Living / Ambient Assisted Living (AAL) discourse [1–4]. 
Its objective is to enable the user (1) to open, shut, slide 
actuable windows and doors as well as to turn lights on 
or off within an intelligent built-environment via sight-
enabled identification, selection, and execution; and (2) 
to extract and display personal identity information 
from recognized familiar faces viewed by the user. 
Although this mechanism is designed to be compatible 
with existing AAL or AAL-pertinent ecosystems and 
frameworks (e.g., CASAS [5], The Aware Home [6], 
PlaceLab [7]; and more recently in the last three years: 
eServices [8], REACH [9], WITS [10], etc.), it is 
deliberately designed as a service-feature in an ongoing 
implementation of an intelligent built-environment 
framework inspired by what Oosterhuis has called a 
Society of Home, where users and their surrounding 
objects / systems communicate and thereby instantiate a 
home of Internet of Things and People; as well as a 
Society of Building Components, where the intelligent 
built-environment’s objects / systems act, react, and 
interact computationally as well as physically [11] 
towards user well-being. In order to realize this Society 
of Home, emerging trends in Architecture, Engineering, 
and Construction (AEC) research laboratories in 
academia and industry—such us robotic fabrication, 
computational design and optimization, etc.—are 
considered in conjunction with Information and 
Communication Technologies (ICTs) as well as allied 
and resulting technical services that typically dominate 
the AAL discourse. This dual consideration, while 
adopted from the early stages of conception and design, 
ascertains mutual complementarity [12] between ICTs 
and AEC features where neither requires retrofitting 
from or to the other. In such an intelligent built-
environment, both ICTs and AECs features serve to 
enhance—in conjunction—the user’s quality of life.  
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The eye- and gaze-tracking mechanism’s first 
objective / feature intends principally (although not 
exclusively) to assists users with limited mobility to 
control remotely actuable mechanisms within the built-
environment. The second objective / feature intends to 
compensate for the user’s loss of memory and/or visual 
acuity—with respect to recognition of familiar faces—
associated principally (although not exclusively) with 
the natural aging process. That is to say, these two 
features serve as extensions of the user’s physical and 
mental capabilities (with respect to the described 
contexts and scopes) in a way that enables the user to 
retain a degree of independence otherwise impossible 
without technical and technological assistance. This is 
in line with current trends where Computer Vision is 
integrated into assistive services and solutions (see, for 
example, [13]). 

The present mechanism is deployed within an 
inherited Wireless Sensor and Actuator Network 
(WSAN) [14]. This WSAN’s ecosystem is highly 
heterogenous in architecture, communication protocols, 
and network topology. Some of its nodes are embedded 
in the physical environment, while others are embedded 
in ambulant systems or in wearable devices. 
Capitalizing on the different levels of integration within 
the built-environment, all nodes work in conjunction to 
instantiate and to sustain a variety of intelligent service-
features. Some service-features are strictly 
computational in character, while others involve 
computation and physical action, reaction, interaction as 
input or output; some are completely localized (i.e., 
dependent strictly and solely on the local network) 
while others are either hybrid (i.e., relying on services 
present both in the local network as well as in 
distributed cloud-based services) or based entirely on 
free cloud-based services via their corresponding 
Application Program Interfaces (APIs). The hardware 
of the eye- and gaze-tracking mechanism is embedded 
in a wearable device, which works together with 
architecture-embedded nodes and systems, as well as 
with a variety of communication protocols, to instantiate 
the above-mentioned features. In order to center on the 
discussed mechanism, the systems and subsystems 
implemented in the inherited WSAN are presupposed 
without delving into their description and functionality 
details.   

This paper consists of four main sections. Section 2 
details the Concept and Approach, where the system is 
described and the implementation scope is defined. 
Section 3 explains the Methodology and Implementation, 
where the software and hardware implementations are 
described and the sequence of operation is detailed. 
Finally, Section 4 presents the Results that validate the 
present proof-of-concept implementation and provides a 
discussion on limitations, further work, and conclusions.  

2 Concept and Approach 

 

Figure 1. Concept and System Architecture of 
the Eye- and Gaze-Tracking Mechanism. 

 The eye- and gaze-tracking mechanism integrates 
the following hardware components into a generic 
eyeglass frame: a (i) Raspberry Pi Zero W (RPiZW); (ii) 
generic USB TFT Display; (iii) generic USB Camera 
(USBCam); (iv) and a CSI Raspberry Pi Camera v. 2.1. 
(RPiCam). The RPiCam is used to track the movement 
of the pupil corresponding to the right eye, while the 
USBCam captures the environment viewed and projects 
this scene back to the left eye via the TFT Display with 
a real-time update frequency. The position of the pupil 
is mapped on top of the captured scene, and gaze-
tracking is enabled by analyzing the position of the 
pupil—and its movements—in relation with 
recognizable objects captured in the scene (see Figure 1). 
The following recognizable objects are presently 
defined: a (1) sofa, (2) wall-light, (3) window, (4) 
ceiling-light, (5) bookcase, (6) lamp, (7) wall-art, and (8) 
a dining table (see Figure 2, Bottom). This represents a 
generic sampling of objects contained in a given built-
environment, where some actuate and others do not.   
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Figure 2. Top: Captured-gaze of generic sample 
built-environment. Bottom: Object-boundaries 
overlaid on top of objects represented. Both 
generated with PyGame. 

In this implementation, the engagement with 
actuable objects and systems (e.g., doors, windows, 
lights, etc.) is limited to their generic virtual 
representation (see Figure 2, Top). That is, while 
previous implementations have required the building of 
physical representations in real-scale, the present 
development only requires confirmation of engagement 
at a software level to ascertain its functionality. 
Accordingly, a black-box approach is adopted with 
respect to the other subsystems of the inherited WSAN. 
In this manner, the present mechanism is said to actuate 
a window, a door; or to turn on/off a light, etc., if the 
user is detected to be engaging with a given object / 
system and the eye- and gaze-tracking mechanism does 
indeed respond by sending a signal to actuate or to turn 
on/off. 

A caveat on the architecture / built-environment 
used as the captured scenes in this implementation: the 
type of architecture displayed intends to represent an 
average contemporary built-environment. As such, it is 
meant as a neutral representation, and not as an 
illustration of the type of environments to be generated 
by considering both ICTs and emerging AEC features. 
Nevertheless, as simple and reduced as representation as 
it may be, it does serve to illustrate the functionality of 
the present mechanism in a variety of existing AAL or 
AAL-compatible built-environments. 

As mentioned at the beginning of this section, the 
position of the tracked pupil is overlaid with frequently 
updated captured scenes. When the eye-target symbol 
representing the location of said pupil lands on a non-
defined region, its color remains black and no actuation 
options appear on the display (see Figure 2, Top). The 
eye-target symbol changes color whenever the system 
detects that it has entered any of the eight defined 
regions. N.B.: entering a region occurs when the overlap 
between the eye-target symbol’s area and a given 
object’s defined region is greater than 50% of the 
symbol’s overall area—that is, when the majority of the 
symbol representing the eye is inside a given object’s 
region.  

If the eye-target symbol’s color turns red (see Figure 
3), the console outputs confirmation of recognition of 
viewed object while warning that no actuations are 
associated with said object—as Kolarevic points out, an 
adaptive environment is more appropriately conceived 
as one containing both high-tech. and low-tech. objects 
[15], where the former are actuatable while the latter are 
fixed. If, however, the eye-target symbol’s color turns 
green (see Figure 4, Wall and Wall-Light), the console 
confirms object recognition and provides a list of 
actuation options associated with said object. The user 
is able to select any of the available actuation options by 
looking at it (i.e., by moving the eye-target symbol to sit 
on top of the preferred option) and then blinking twice 
to confirm selection and trigger actuation execution (i.e., 
sending a confirmation signal to the responsible node 
via which the actuatable object is controlled). Finally, if 
the eye-target symbol’s color turns yellow (see  Figure 4, 
Wall-Art) the console confirms object recognition and 
outputs a series of options pertaining not to physical 
actuation but to other kinds of engagement, namely 
information finding about the object, etc.—for example, 
in Figure 4, Wall-Art, which represents the user looking 
at a generic instance of wall-art, options to find 
information about said art on the web or to take, store, 
and share a picture of it are outputted by the console.  

This first feature concerns the recognition of 
actuatable and static objects and systems within the 
built-environment. In addition to this feature, and as 
mentioned in the Introduction, the mechanisms is 
equipped with a second feature that concerns the 
extraction of information corresponding to recognized 
familiar faces. In this second feature, recognized human 
faces—that is, faces that have already undergone 
Machine Learning (ML)-based training for identity 
recognition for a given user—are also a de facto defined 
region. If the eye-target symbol enters this region, the 
console outputs previously stored information about the 
recognized person (see Figure 5). Since this region is 
not of the same class as the previously listed eight 
regions corresponding to the actuatable / static objects 
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in the present generic built-environment, the eye-target 
symbol disappears to give way to a rectangular 
boundary that contains the recognized face. This change 
of representation explicitly distinguishes identified and 
viewed non-human and human objects. As illustrated in 
Figure 5, the probability of recognition of a face is 
overlaid on top of the captured scene. Accordingly, in 
this particular figure, the user is informed that the 
viewed person is “Alejandra” with a 77.98% 
probability—for simplicity, any probability higher than 
75% is accepted as accurate in this implementation.  

The console portion of the figure (Figure 5, Bottom) 
shows multiple console outputs, each of which 
represents the processing of a new instance of a 
captured scene. In this particular figure, it may be 
appreciated how the prediction probability fluctuates 
depending on lighting conditions, distance, etc. 
Nevertheless, all shown instances correctly and strongly 
indicate that the person viewed is “Alejandra”. 
Furthermore, in addition to successful prediction 
probabilities, the console also outputs other useful and 
pertinent information in order to compensate for loss of 
memory and/or visual acuity. For example, in this figure, 
the mechanism informs the user that this is “Alejandra”, 
and that she is: “24 years old”; an “Architecture 
student”; the user’s “daughter-in-law”; and the wife of 
“Luis Francisco”, who may be presumed to be the user’s 
son. All this information pertaining to this familiar face 
are previously stored for the user and will naturally 
differ from user to user. In the present setup, only a 
small set of data (i.e., Full name, Age, Profession, etc.) 
is provided to illustrate the mechanism’s functionality. 
However, the amount and type of data may be added or 
removed depending on the user’s preference and/or 
need. The principal purpose of this second feature is to 
enable to user to always recognize the people in her/his 
immediate surroundings.  

3 Methodology and Implementation 

3.1 Eye- and Gaze-Tracking for Object 
Actuation 

The eye- and gaze-tracking mechanism as a means 
to engage actuatable objects / systems is implemented 
via two Python programs: (1) main_eye_detector.py and 
(2) pygame_window.py. The first (built with OpenCV 
and Numpy) is responsible for identifying and tracking 
the pupil; while the second (built with Sys and PyGame) 
is responsible for generating and/or displaying the 
representation of a given captured built-environment 
scene. It is in this latter that the regions corresponding 
to the eight actuatable / static objects are defined; and 
where the overlapping between eye-target symbol and 
the defined objects’ boundary is calculated.  

3.2 Eye- and Gaze-Tracking for Human 
Identity Recognition 

The component of the eye- and gaze-tracking 
mechanism responsible for human identity recognition 
depends on the inherited facial-identity and -expression 
mechanism previously developed by the authors [16]. In 
the previous work as with the present, the facial identity 
recognition component is implemented in the local 
network via Google Brain®’s TensorFlow™ [17]. That 
is, TensorFlow™ is installed in the RPiZW’s Raspbian 
operating system and its cloud-based services are 
implemented via Python. The implementation of this 
service has two phases. In the first phase, and during 
execution of its Multi-task Cascaded Convolutional 
Networks (MTCNN) face detection model, the camera 
captures a given subject’s face from different positions, 
orientations, and angles. All the people to be added to 
the eye- and gaze-tracking mechanism’s users circle of 
familiar faces must undergo this phase. The second 
phase is the actual real-time execution of facial 
recognition, following the successful acquisition of 
analysed and stored faces from the first phase.  

4 Results and Conclusion 

With respect to the object actuation feature (see 
Section 3.1) of the present mechanism, three volunteers 
(with varying ages) (see Acknowledgements) in addition 
to the authors tested its functionality and performance 
via the following five steps: 

 

 

 

Figure 3. Pupil detected on object Sofa, with no 
available actuations.  
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1. At initialization of PyGame’s represented 
captured-scene, the eye-target symbol first appears 
in the upper-left corner. The user then moves 
her/his pupil in question (i.e., right-eye’s pupil) 
and blinks twice over defined objects in order to 
first calibrate the eye-tracking component.  

2. Once the eye-tracking component is calibrated the 
user is directed to look at the window, at which 
point the eye-target symbol changes colors to 
green, and the console first recognizes the 
actuatable object and the outputs the available 
actuation options: open or close (see Figure 4, 
Window). The user selects open and a confirmation 
of a corresponding execution signal sent is 
ascertained—the same, mutatis mutandis, for close. 

3. The user is then instructed to look at the sofa, 
which is a non-actuating / fixed object that is 
nevertheless recognized. At this point the eye-
target symbol turns red to indicate that no 
available actuation options exist for this object 
(see Figure 3). 

4. The user’s attention is turned to the wall-art, 
which is a non-actuatable object yet is nevertheless 
an object associated with non-physical actions. 
That is, after the eye-target symbol turns yellow 
(to indicate that the object in question is neither 
actuatable or fixed with no available options), the 
user is given the choice to search for more 
information on the art online or to take, store, and 
share a picture of the art (see Figure 4, Wall-Art).  
The user is instructed to engage in both, and a 
corresponding confirmation signal is ascertained. 

5. Finally, the user is instructed to look at any of the 
light fixtures (see Figure 4, Wall-Light). Any of 
these fixtures present the user with two options: 
turn on or turn off. The user is instructed to engage 
in both, sequentially, and corresponding 
confirmation signals are ascertained.  

Again, and as mentioned in Section 2, the present 
setup has its actuations act on virtual representations of 
generic objects found in an average built-environment. 
For the scope of the present implementation, it is only 
necessary to ascertain that a confirmation signal is sent 
to a respective enabling-node (enabling of the window, 
the lights, etc.) in order to demonstrate the successful 
functionality of the present proof-of-concept. In all of 
the above five steps mentioned, corresponding 
confirmation signals were indeed ascertained.  

In the present setup, only three types of responses / 
options have been considered: (1) actuatable object 
(green eye-target); (2) static object (red eye-target); and 
(3) static object associated with non-physical actions 
(yellow eye-target). However, other possible responses / 
options may be envisioned for subsequent iterations of 
this feature of the mechanism.    

 

 

 

 

 

 

Figure 4. Top-to-Bottom: Pupil on object 
Window (green target/text); Wall-Art (yellow 
target/text); and Wall-Light (green target/text). 
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Figure 5. Recognition of a familiar face and 
corresponding output of associated information 
pertaining to the identified person. 

With respect to the human identity recognition 
feature (see Section 3.2) of the present mechanism, a 
database of recognizable faces was first established, 
followed by a sequence of trials by the same three 
volunteers and the authors to gauge the feature’s human 
identity recognition capabilities. The feature performed 
as expected, where the prediction accuracy probabilities 
were consistently above 70%.  

In this paper an eye- and gaze-tracking mechanism 
has been presented. Said mechanism enables the user (1) 
to engage (i.e., open, shut, slide, turn-on/-off, etc.) with 
a variety of actuable objects and systems deployed 
within an intelligent built-environment via sight-enabled 
identification, selection, and confirmation; and (2) to 
extract and display personal identity information from 
recognized familiar faces viewed by the user. As with 
previously developed service-features, the present 
mechanism intends to increase the quality of life of its 

user(s) in an affordable, intuitive, and highly intelligent 
manner. Although the present setup is limited and not 
yet ready for widespread adoption (being in a 
Technology Readiness Level [18] of 5), the detailed 
proof-of-concept implementation’s validated 
functionality and performance indicates further potential 
for development, which is presently being undertaken. 
Furthermore, in order to explore facial recognition 
alternatives in order to enhance the efficiency—with 
respect to the performance of the local network—of  the 
mechanism, a subsequent version of the eye- and gaze-
tracking mechanism is being implemented with Keras 
[19].  
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