
36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Development of an Eye- and Gaze-Tracking Mechanism in

an Active and Assisted Living Ecosystem

A. Liu Chenga,b, N. Llorcab,c, and G. Latorred

aFaculty of Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands
bFacultad de Arquitectura e Ingenierías, Universidad Internacional SEK, Quito, Ecuador

cEscuela de Arquitectura, Universidad de Alcalá, Madrid, Spain
dCentro de Educación Continua, Escuela Politécnica Nacional, Quito, Ecuador

E-mail: a.liucheng@tudelft.nl, nestor.llorca.arq@uisek.edu.ec, galoget.latorre@epn.edu.ec

Abstract –

This paper details the development of an open-
source eye- and gaze-tracking mechanism designed
for open, scalable, and decentralized Active and
Assisted Living (AAL) ecosystems built on Wireless
Sensor and Actuator Networks (WSANs). Said
mechanism is deliberately conceived as yet another
service-feature in an on-going implementation of an
extended intelligent built-environment framework,
one motivated and informed by both Information
and Communication Technologies (ICTs) as well as
by emerging Architecture, Engineering, and
Construction (AEC) considerations. It is nevertheless
designed as a compatible and subsumable service-
feature for existing above-characterized AAL
frameworks. The eye- and gaze-tracking mechanism
enables the user (1) to engage (i.e., open, shut, slide,
turn-on/-off, etc.) with a variety of actuable objects
and systems deployed within an intelligent built-
environment via sight-enabled identification,
selection, and confirmation; and (2) to extract and
display personal identity information from
recognized familiar faces viewed by the user. The
first feature is intended principally (although not
exclusively) for users with limited mobility, with the
intention to support independence with respect to
the control of remotely actuable mechanisms within
the built-environment. The second feature is
intended to compensate for loss of memory and/or
visual acuity associated principally (although not
exclusively) with the natural aging process. As with
previously developed service-features, the present
mechanism intends to increase the quality of life of
its user(s) in an affordable, intuitive, and highly
intelligent manner.

Keywords –

Intelligent Built-Environments, Active and
Assisted Living, Wireless Sensor and Actuator
Network, Internet of Things, Adaptive Architecture

1 Introduction

The eye- and gaze-tracking mechanism detailed in
this paper is situated within the Active and Assisted
Living / Ambient Assisted Living (AAL) discourse [1–4].
Its objective is to enable the user (1) to open, shut, slide
actuable windows and doors as well as to turn lights on
or off within an intelligent built-environment via sight-
enabled identification, selection, and execution; and (2)
to extract and display personal identity information
from recognized familiar faces viewed by the user.
Although this mechanism is designed to be compatible
with existing AAL or AAL-pertinent ecosystems and
frameworks (e.g., CASAS [5], The Aware Home [6],
PlaceLab [7]; and more recently in the last three years:
eServices [8], REACH [9], WITS [10], etc.), it is
deliberately designed as a service-feature in an ongoing
implementation of an intelligent built-environment
framework inspired by what Oosterhuis has called a
Society of Home, where users and their surrounding
objects / systems communicate and thereby instantiate a
home of Internet of Things and People; as well as a
Society of Building Components, where the intelligent
built-environment’s objects / systems act, react, and
interact computationally as well as physically [11]
towards user well-being. In order to realize this Society
of Home, emerging trends in Architecture, Engineering,
and Construction (AEC) research laboratories in
academia and industry—such us robotic fabrication,
computational design and optimization, etc.—are
considered in conjunction with Information and
Communication Technologies (ICTs) as well as allied
and resulting technical services that typically dominate
the AAL discourse. This dual consideration, while
adopted from the early stages of conception and design,
ascertains mutual complementarity [12] between ICTs
and AEC features where neither requires retrofitting
from or to the other. In such an intelligent built-
environment, both ICTs and AECs features serve to
enhance—in conjunction—the user’s quality of life.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

The eye- and gaze-tracking mechanism’s first
objective / feature intends principally (although not
exclusively) to assists users with limited mobility to
control remotely actuable mechanisms within the built-
environment. The second objective / feature intends to
compensate for the user’s loss of memory and/or visual
acuity—with respect to recognition of familiar faces—
associated principally (although not exclusively) with
the natural aging process. That is to say, these two
features serve as extensions of the user’s physical and
mental capabilities (with respect to the described
contexts and scopes) in a way that enables the user to
retain a degree of independence otherwise impossible
without technical and technological assistance. This is
in line with current trends where Computer Vision is
integrated into assistive services and solutions (see, for
example, [13]).

The present mechanism is deployed within an
inherited Wireless Sensor and Actuator Network
(WSAN) [14]. This WSAN’s ecosystem is highly
heterogenous in architecture, communication protocols,
and network topology. Some of its nodes are embedded
in the physical environment, while others are embedded
in ambulant systems or in wearable devices.
Capitalizing on the different levels of integration within
the built-environment, all nodes work in conjunction to
instantiate and to sustain a variety of intelligent service-
features. Some service-features are strictly
computational in character, while others involve
computation and physical action, reaction, interaction as
input or output; some are completely localized (i.e.,
dependent strictly and solely on the local network)
while others are either hybrid (i.e., relying on services
present both in the local network as well as in
distributed cloud-based services) or based entirely on
free cloud-based services via their corresponding
Application Program Interfaces (APIs). The hardware
of the eye- and gaze-tracking mechanism is embedded
in a wearable device, which works together with
architecture-embedded nodes and systems, as well as
with a variety of communication protocols, to instantiate
the above-mentioned features. In order to center on the
discussed mechanism, the systems and subsystems
implemented in the inherited WSAN are presupposed
without delving into their description and functionality
details.

This paper consists of four main sections. Section 2
details the Concept and Approach, where the system is
described and the implementation scope is defined.
Section 3 explains the Methodology and Implementation,
where the software and hardware implementations are
described and the sequence of operation is detailed.
Finally, Section 4 presents the Results that validate the
present proof-of-concept implementation and provides a
discussion on limitations, further work, and conclusions.

2 Concept and Approach

Figure 1. Concept and System Architecture of
the Eye- and Gaze-Tracking Mechanism.

 The eye- and gaze-tracking mechanism integrates
the following hardware components into a generic
eyeglass frame: a (i) Raspberry Pi Zero W (RPiZW); (ii)
generic USB TFT Display; (iii) generic USB Camera
(USBCam); (iv) and a CSI Raspberry Pi Camera v. 2.1.
(RPiCam). The RPiCam is used to track the movement
of the pupil corresponding to the right eye, while the
USBCam captures the environment viewed and projects
this scene back to the left eye via the TFT Display with
a real-time update frequency. The position of the pupil
is mapped on top of the captured scene, and gaze-
tracking is enabled by analyzing the position of the
pupil—and its movements—in relation with
recognizable objects captured in the scene (see Figure 1).
The following recognizable objects are presently
defined: a (1) sofa, (2) wall-light, (3) window, (4)
ceiling-light, (5) bookcase, (6) lamp, (7) wall-art, and (8)
a dining table (see Figure 2, Bottom). This represents a
generic sampling of objects contained in a given built-
environment, where some actuate and others do not.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Figure 2. Top: Captured-gaze of generic sample
built-environment. Bottom: Object-boundaries
overlaid on top of objects represented. Both
generated with PyGame.

In this implementation, the engagement with
actuable objects and systems (e.g., doors, windows,
lights, etc.) is limited to their generic virtual
representation (see Figure 2, Top). That is, while
previous implementations have required the building of
physical representations in real-scale, the present
development only requires confirmation of engagement
at a software level to ascertain its functionality.
Accordingly, a black-box approach is adopted with
respect to the other subsystems of the inherited WSAN.
In this manner, the present mechanism is said to actuate
a window, a door; or to turn on/off a light, etc., if the
user is detected to be engaging with a given object /
system and the eye- and gaze-tracking mechanism does
indeed respond by sending a signal to actuate or to turn
on/off.

A caveat on the architecture / built-environment
used as the captured scenes in this implementation: the
type of architecture displayed intends to represent an
average contemporary built-environment. As such, it is
meant as a neutral representation, and not as an
illustration of the type of environments to be generated
by considering both ICTs and emerging AEC features.
Nevertheless, as simple and reduced as representation as
it may be, it does serve to illustrate the functionality of
the present mechanism in a variety of existing AAL or
AAL-compatible built-environments.

As mentioned at the beginning of this section, the
position of the tracked pupil is overlaid with frequently
updated captured scenes. When the eye-target symbol
representing the location of said pupil lands on a non-
defined region, its color remains black and no actuation
options appear on the display (see Figure 2, Top). The
eye-target symbol changes color whenever the system
detects that it has entered any of the eight defined
regions. N.B.: entering a region occurs when the overlap
between the eye-target symbol’s area and a given
object’s defined region is greater than 50% of the
symbol’s overall area—that is, when the majority of the
symbol representing the eye is inside a given object’s
region.

If the eye-target symbol’s color turns red (see Figure
3), the console outputs confirmation of recognition of
viewed object while warning that no actuations are
associated with said object—as Kolarevic points out, an
adaptive environment is more appropriately conceived
as one containing both high-tech. and low-tech. objects
[15], where the former are actuatable while the latter are
fixed. If, however, the eye-target symbol’s color turns
green (see Figure 4, Wall and Wall-Light), the console
confirms object recognition and provides a list of
actuation options associated with said object. The user
is able to select any of the available actuation options by
looking at it (i.e., by moving the eye-target symbol to sit
on top of the preferred option) and then blinking twice
to confirm selection and trigger actuation execution (i.e.,
sending a confirmation signal to the responsible node
via which the actuatable object is controlled). Finally, if
the eye-target symbol’s color turns yellow (see Figure 4,
Wall-Art) the console confirms object recognition and
outputs a series of options pertaining not to physical
actuation but to other kinds of engagement, namely
information finding about the object, etc.—for example,
in Figure 4, Wall-Art, which represents the user looking
at a generic instance of wall-art, options to find
information about said art on the web or to take, store,
and share a picture of it are outputted by the console.

This first feature concerns the recognition of
actuatable and static objects and systems within the
built-environment. In addition to this feature, and as
mentioned in the Introduction, the mechanisms is
equipped with a second feature that concerns the
extraction of information corresponding to recognized
familiar faces. In this second feature, recognized human
faces—that is, faces that have already undergone
Machine Learning (ML)-based training for identity
recognition for a given user—are also a de facto defined
region. If the eye-target symbol enters this region, the
console outputs previously stored information about the
recognized person (see Figure 5). Since this region is
not of the same class as the previously listed eight
regions corresponding to the actuatable / static objects

1

2 3

4

5
7

8

6

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

in the present generic built-environment, the eye-target
symbol disappears to give way to a rectangular
boundary that contains the recognized face. This change
of representation explicitly distinguishes identified and
viewed non-human and human objects. As illustrated in
Figure 5, the probability of recognition of a face is
overlaid on top of the captured scene. Accordingly, in
this particular figure, the user is informed that the
viewed person is “Alejandra” with a 77.98%
probability—for simplicity, any probability higher than
75% is accepted as accurate in this implementation.

The console portion of the figure (Figure 5, Bottom)
shows multiple console outputs, each of which
represents the processing of a new instance of a
captured scene. In this particular figure, it may be
appreciated how the prediction probability fluctuates
depending on lighting conditions, distance, etc.
Nevertheless, all shown instances correctly and strongly
indicate that the person viewed is “Alejandra”.
Furthermore, in addition to successful prediction
probabilities, the console also outputs other useful and
pertinent information in order to compensate for loss of
memory and/or visual acuity. For example, in this figure,
the mechanism informs the user that this is “Alejandra”,
and that she is: “24 years old”; an “Architecture
student”; the user’s “daughter-in-law”; and the wife of
“Luis Francisco”, who may be presumed to be the user’s
son. All this information pertaining to this familiar face
are previously stored for the user and will naturally
differ from user to user. In the present setup, only a
small set of data (i.e., Full name, Age, Profession, etc.)
is provided to illustrate the mechanism’s functionality.
However, the amount and type of data may be added or
removed depending on the user’s preference and/or
need. The principal purpose of this second feature is to
enable to user to always recognize the people in her/his
immediate surroundings.

3 Methodology and Implementation

3.1 Eye- and Gaze-Tracking for Object
Actuation

The eye- and gaze-tracking mechanism as a means
to engage actuatable objects / systems is implemented
via two Python programs: (1) main_eye_detector.py and
(2) pygame_window.py. The first (built with OpenCV
and Numpy) is responsible for identifying and tracking
the pupil; while the second (built with Sys and PyGame)
is responsible for generating and/or displaying the
representation of a given captured built-environment
scene. It is in this latter that the regions corresponding
to the eight actuatable / static objects are defined; and
where the overlapping between eye-target symbol and
the defined objects’ boundary is calculated.

3.2 Eye- and Gaze-Tracking for Human
Identity Recognition

The component of the eye- and gaze-tracking
mechanism responsible for human identity recognition
depends on the inherited facial-identity and -expression
mechanism previously developed by the authors [16]. In
the previous work as with the present, the facial identity
recognition component is implemented in the local
network via Google Brain®’s TensorFlow™ [17]. That
is, TensorFlow™ is installed in the RPiZW’s Raspbian
operating system and its cloud-based services are
implemented via Python. The implementation of this
service has two phases. In the first phase, and during
execution of its Multi-task Cascaded Convolutional
Networks (MTCNN) face detection model, the camera
captures a given subject’s face from different positions,
orientations, and angles. All the people to be added to
the eye- and gaze-tracking mechanism’s users circle of
familiar faces must undergo this phase. The second
phase is the actual real-time execution of facial
recognition, following the successful acquisition of
analysed and stored faces from the first phase.

4 Results and Conclusion

With respect to the object actuation feature (see
Section 3.1) of the present mechanism, three volunteers
(with varying ages) (see Acknowledgements) in addition
to the authors tested its functionality and performance
via the following five steps:

Figure 3. Pupil detected on object Sofa, with no
available actuations.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

1. At initialization of PyGame’s represented
captured-scene, the eye-target symbol first appears
in the upper-left corner. The user then moves
her/his pupil in question (i.e., right-eye’s pupil)
and blinks twice over defined objects in order to
first calibrate the eye-tracking component.

2. Once the eye-tracking component is calibrated the
user is directed to look at the window, at which
point the eye-target symbol changes colors to
green, and the console first recognizes the
actuatable object and the outputs the available
actuation options: open or close (see Figure 4,
Window). The user selects open and a confirmation
of a corresponding execution signal sent is
ascertained—the same, mutatis mutandis, for close.

3. The user is then instructed to look at the sofa,
which is a non-actuating / fixed object that is
nevertheless recognized. At this point the eye-
target symbol turns red to indicate that no
available actuation options exist for this object
(see Figure 3).

4. The user’s attention is turned to the wall-art,
which is a non-actuatable object yet is nevertheless
an object associated with non-physical actions.
That is, after the eye-target symbol turns yellow
(to indicate that the object in question is neither
actuatable or fixed with no available options), the
user is given the choice to search for more
information on the art online or to take, store, and
share a picture of the art (see Figure 4, Wall-Art).
The user is instructed to engage in both, and a
corresponding confirmation signal is ascertained.

5. Finally, the user is instructed to look at any of the
light fixtures (see Figure 4, Wall-Light). Any of
these fixtures present the user with two options:
turn on or turn off. The user is instructed to engage
in both, sequentially, and corresponding
confirmation signals are ascertained.

Again, and as mentioned in Section 2, the present
setup has its actuations act on virtual representations of
generic objects found in an average built-environment.
For the scope of the present implementation, it is only
necessary to ascertain that a confirmation signal is sent
to a respective enabling-node (enabling of the window,
the lights, etc.) in order to demonstrate the successful
functionality of the present proof-of-concept. In all of
the above five steps mentioned, corresponding
confirmation signals were indeed ascertained.

In the present setup, only three types of responses /
options have been considered: (1) actuatable object
(green eye-target); (2) static object (red eye-target); and
(3) static object associated with non-physical actions
(yellow eye-target). However, other possible responses /
options may be envisioned for subsequent iterations of
this feature of the mechanism.

Figure 4. Top-to-Bottom: Pupil on object
Window (green target/text); Wall-Art (yellow
target/text); and Wall-Light (green target/text).

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

Figure 5. Recognition of a familiar face and
corresponding output of associated information
pertaining to the identified person.

With respect to the human identity recognition
feature (see Section 3.2) of the present mechanism, a
database of recognizable faces was first established,
followed by a sequence of trials by the same three
volunteers and the authors to gauge the feature’s human
identity recognition capabilities. The feature performed
as expected, where the prediction accuracy probabilities
were consistently above 70%.

In this paper an eye- and gaze-tracking mechanism
has been presented. Said mechanism enables the user (1)
to engage (i.e., open, shut, slide, turn-on/-off, etc.) with
a variety of actuable objects and systems deployed
within an intelligent built-environment via sight-enabled
identification, selection, and confirmation; and (2) to
extract and display personal identity information from
recognized familiar faces viewed by the user. As with
previously developed service-features, the present
mechanism intends to increase the quality of life of its

user(s) in an affordable, intuitive, and highly intelligent
manner. Although the present setup is limited and not
yet ready for widespread adoption (being in a
Technology Readiness Level [18] of 5), the detailed
proof-of-concept implementation’s validated
functionality and performance indicates further potential
for development, which is presently being undertaken.
Furthermore, in order to explore facial recognition
alternatives in order to enhance the efficiency—with
respect to the performance of the local network—of the
mechanism, a subsequent version of the eye- and gaze-
tracking mechanism is being implemented with Keras
[19].

Acknowledgement

The authors acknowledge the kind assistance that the
following people provided during the implementation
and trials of the detailed mechanism: Steffany A.
Cevallos G., Nelson B. Solano Y., and Jonathan G. Díaz
A.

References

[1] Dimitrievski, A., Zdravevski, E., Lameski, P., and
Trajkovik, V. A survey of Ambient Assisted
Living systems. Challenges and opportunities. In
Proceedings, 2016 IEEE 12th International
Conference on Intelligent Computer
Communication and Processing (ICCP). Cluj-
Napoca, Romania, September 8-10, 2016. IEEE,
pages 49–53, Piscataway, NJ, 2016.
DOI=10.1109/ICCP.2016.7737121.

[2] Flórez-Revuelta, F. and Chaaraoui, A. A., Eds.
Active and Assisted Living: Technologies and
Applications. Healthcare technologies series,
volume 6. The Institution of Engineering and
Technology, Stevenage, UK, 2016.

[3] Grzegorzek, M., Gertych, A., Aumayr, G., and
Piętka, E. Trends in Active and Assisted Living -
Open hardware architecture, Human Data
Interpretation, intervention and assistance.
Computers in biology and medicine, volume 95:
234–235, 2018.

[4] Byrne, C., Collier, R., and O’Hare, G. A Review
and Classification of Assisted Living Systems.
Information, volume 9, 7: 182, 2018.

[5] Rashidi, P. and Cook, D. J. Keeping the Resident
in the Loop. Adapting the Smart Home to the User.
IEEE Trans. Syst., Man, Cybern. A, volume 39, 5:
949–959, 2009.

[6] Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C.
G., Essa, I. A., MacIntyre, B., Mynatt, E. D., and
Starner, T. The Aware Home: A Living
Laboratory for Ubiquitous Computing Research.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

In Proceedings of the Second International
Workshop on Cooperative Buildings, Integrating
Information, Organization, and Architecture.
Springer Verlag, London, UK, 1999.

[7] Intille, S. S., Larson, K., Tapia, E. M., Beaudin, J.
S., Kaushik, P., Nawyn, J., and Rockinson, R.
Using a Live-In Laboratory for Ubiquitous
Computing Research. In Pervasive Computing.
Springer Berlin Heidelberg, pages 349–365,
Berlin, Heidelberg, 2006.

[8] Marcelino, I., Laza, R., Domingues, P., Gómez-
Meire, S., Fdez-Riverola, F., and Pereira, A.
Active and Assisted Living Ecosystem for the
Elderly. Sensors (Basel, Switzerland), volume 18,
4, 2018.

[9] European Union’s Horizon 2020 Research and
Innovation Programme. REACH: Responsive
Engagement of the Elderly promoting Activity and
Customized Healthcare. (Grant agreement No
690425.). On-line: http://reach2020.eu. Accessed:
20/04/2017.

[10] Yao, L., Sheng, Q. Z., Benatallah, B., Dustdar, S.,
Wang, X., Shemshadi, A., and Kanhere, S. S.
WITS. An IoT-endowed computational
framework for activity recognition in personalized
smart homes. Computing, volume 100, 4: 369–385,
2018.

[11] Oosterhuis, K., 2014. Caught in the Act. In ALIVE.
Advancements in adaptive architecture, M.
Kretzer and L. Hovestadt, Eds. Applied Virtuality
Book Series v.8. Birkhäuser, Basel/Berlin/Boston,
pages 114–119.

[12] Milgrom, P. R. The economics of modern
manufacturing: technology, strategy, and
organization. The American Economic Review,
volume 80, 3: 511–528, 1990.

[13] Leo, M. and Farinella, G. M., Eds. Computer
Vision for Assistive Healthcare. Elsevier, 2018.

[14] Liu Cheng, A. and Bier, H. Extension of a High-
Resolution Intelligence Implementation via
Design-to-Robotic-Production and -Operation
strategies. In Proceedings of the 35th
International Symposium on Automation and
Robotics in Construction (ISARC) 2018, pages
1005–1012, Berlin, Germany, 2018.

[15] Kolarevic, B., 2014. Outlook. Adaptive
Architecture: Low-Tech, High-Tech, or Both? In
ALIVE. Advancements in adaptive architecture, M.
Kretzer and L. Hovestadt, Eds. Applied Virtuality
Book Series v.8. Birkhäuser, Basel/Berlin/Boston,
pages 148–157.

[16] Liu Cheng, A., Bier, H., and Latorre, G. Actuation
Confirmation and Negation via Facial-Identity and
-Expression Recognition. In Proceedings of the

3rd IEEE Ecuador Technical Chapters Meeting
(ETCM) 2018, 2018.

[17] TensorFlow™. An open source machine learning
framework for everyone, 2018. On-line:
https://www.tensorflow.org/. Accessed:
20/04/2018.

[18] European Association of Research and
Technology Organisations. The TRL Scale as a
Research & Innovation Policy TOOL.
EARTO Recommendations, 2014. On-line:
http://www.earto.eu/fileadmin/content/03_Publicat
ions/The_TRL_Scale_as_a_R_I_Policy_Tool_-
_EARTO_Recommendations_-_Final.pdf.
Accessed: 07/01/2015.

[19] Keras®. Keras: The Python Deep Learning
Library, 2019. On-line: https://keras.io/. Accessed:
10/01/2019.

