

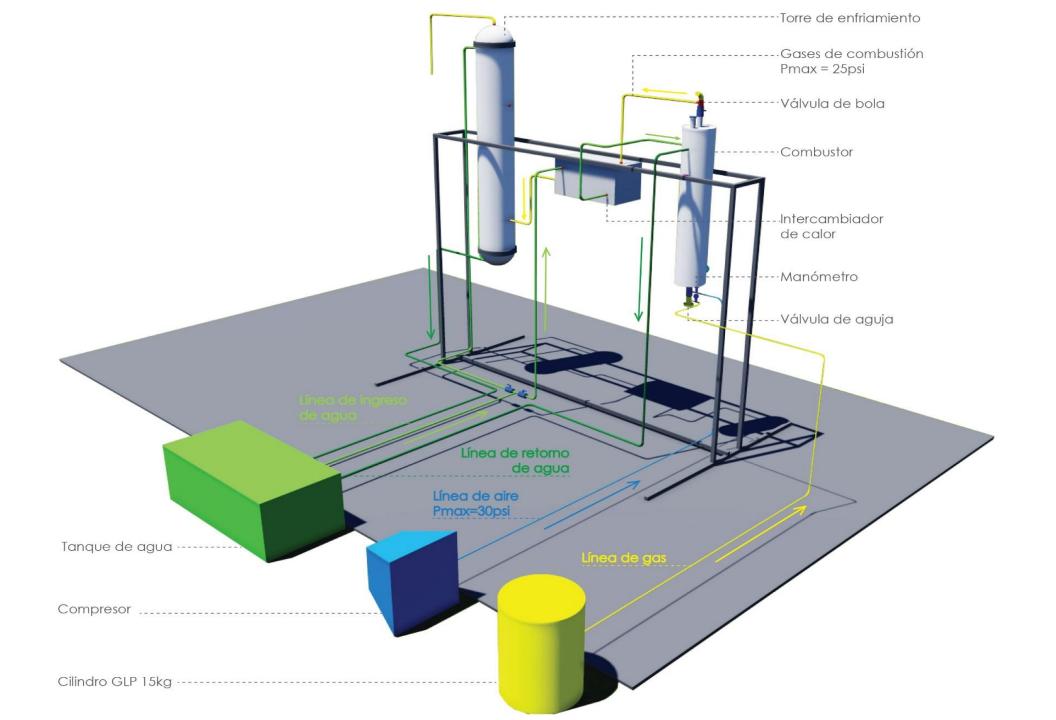
Facultad de Ciencias Naturales y Ambientales

Diseño y construcción de un equipo generador de CO₂ que utiliza GLP para la producción de biomasa para su posterior uso en la industria energética.

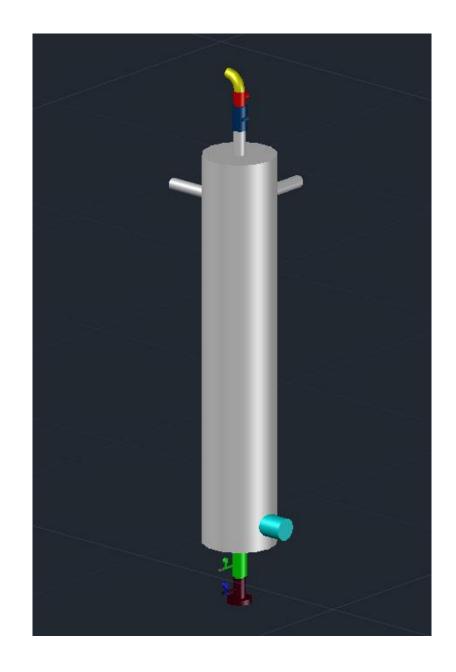
Marco Tapia Mora

01 de agosto del 2017

Procesos Industriales: generación de vapor y energía, Eficiencia energética. Generación de Calderas. Energía **Energías renovables:** Procesos domésticos: cocción eólica, solar, de alimentos. hidroeléctrica. Cotidianidad: movilidad, motor de combustión interna. Captura y almacenamiento de dióxido de carbono. Atrapamiento de CO₂ **Hidrocarburos** Producción de CO₂ mediante vía biológica. principal gas de efecto invernadero. Contaminación **Alternativas** Calentamiento Consecuencias. global. **Recurso natural** finito.

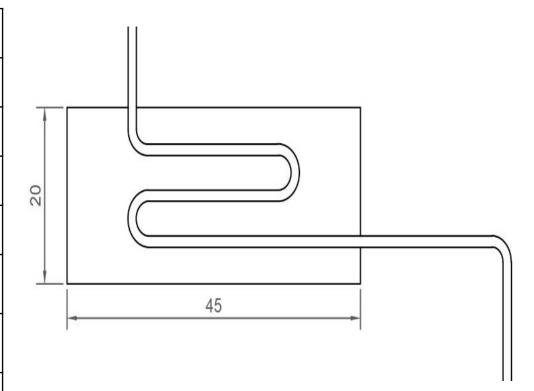

OBJETIVO GENERAL

Diseño y construcción de un sistema generador de CO₂, con combustión de GLP y capacidad de suministro continuo de CO2 a una temperatura menor a 30°C y un caudal máximo de 400 g/h a un fotobiorreactor con microalgas.


Objetivos Específicos

Obtención de datos reales referentes al proceso de combustión de GLP.

Funcionamiento del equipo con arranques reproducibles y seguros



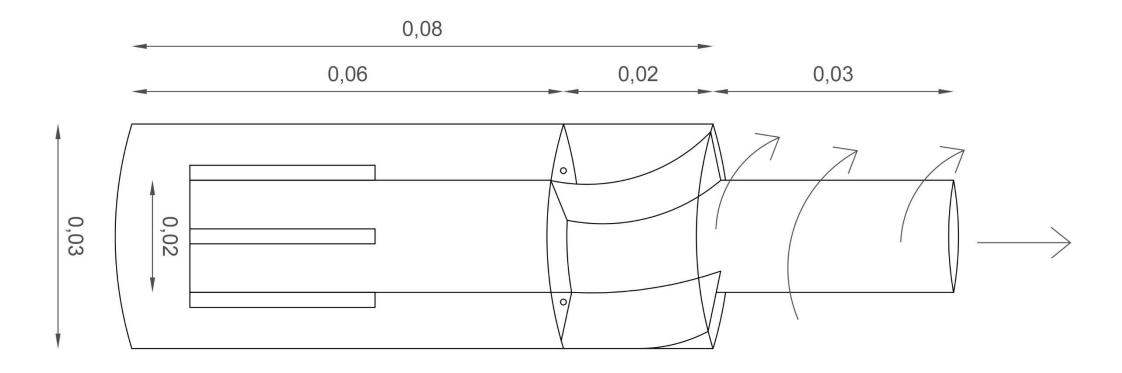
Flujo de calor Q	5806,49	KJ/h			
U	10,912	W/m²*C			
h _i	49,63	W/m^2 °C			
h _g	1,53E-01	W/m^² °C			
g _{ray}	0,1325				
h _{nb}	15,45	W/m²*C			
Volumen Hogar	0,3142	m^3			
Volumen Cámara	,				
Enfriamiento	0,0012	m^3			
Altura Total	0,60	m			
Diámetro Total	0,27	m			


Diseño de Intercambiador de Calor

U	230	W/m²*C		
MLDT	290,32	°C		
Flujo Volumétrico	2,93	m³/h		
flujo másico	0,003	kg/s		
Flujo de calor Q	0,69	kJ		
Masa de agua necesaria	48,12	kg		
Área Serpentín	0,0112	m ²		
Longitud Serpentín	0,53	m		
Área Carcasa	0,9	m ²		

Diseño de Torre de Enfria

Selección de Materiales								
Material	Clase	Normativa						
		ASTM A48						
		Clase 40.						
Hierro gris	300 B	ASTM A653						
		NTE INEN						
		0112						
		NTE INEN						
Suelda Mic	Costura	0600:2013						



Resultados de Experimentación y Mediciones

Mediciones de condiciones de gases de combustión.

		Parámetro		Medición 1		Medició	Medición 2		dad]		
		T salida gas			17,6			16		°(С	
	Exceso aire				9,3			40,3		%		•
Eficienc			ficiencia	ciencia		94,8		86,3		%		
	Q	CO ₂		CO ₂		12,5		9,5	%		6	CO ₂
				02		2		6,4		%	6	_
	po		100			113		ppm		generados		
			NO		41			53		ppm		g/h
Max.		7760	7760 6673,0			6 133			3,0			401,0
Min.		1726	6 1484,3			36 29,0			9,6	,6		89,2
m_{agua} $*$		Medición	H2O) H20		H20		20	ı Salida Gase		ases	
			I/s	°C			°(c		°C		
		cp_{aua}^{1}	$p_{\overset{}{a}gua}^{\overset{}{}} * \underset{}{\overset{}{}} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}}} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}{} \overset{}{}} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}{}} \overset{}{} \overset{}{}} \overset{}{} \overset{}{} \overset{}} \overset{}{} \overset{}} \overset{}{}} $		$\begin{array}{c} -T_{entrada}^{20.8} = \Delta H \\ 4 & 21.2 \end{array}$			$\backslash H_I$	$H_{Reacción} * E$		ffcombustión	
agai		2 2	3,7	19,	4	21,		,2	229 230			Jeombastion
	Į	3	3,6	20,				,6				
		4	3,7	21,	3		22,1		236			
	5 3,8 21,8			22	,7 241							

Diseño de difusor de Aire Primario

CONCLUSIONES

Combustor

Provee CO₂ de forma continua y estable

Suministra: 89 a 401 g de CO₂

Genera: 1726 a 7760 kJ/h

Temperatura: 16 – 17 °C

Quemador

Combustión constante de GLP Atmósfera cerrada a 10,3KPa

Exceso de aire: 9,3 a 40, 3 %

Concentración máxima CO de 110 ppm.

Ausencia de aire primario

Diseño y construcción de difusor de aire primario

Llama estable y constante

CONCLUSIONES

Combustor

Provee CO₂ de forma continua y estable

Suministra: 89 a 401 g de CO₂

Genera: 1726 a 7760 kJ/h

Temperatura: 16 – 17 °C

Funcionamiento del sistema

Arranques seguros y reproducibles

Manual de operación del Sistema

Ausencia de aire primario

Diseño y construcción de difusor de aire primario

Llama estable y constante

Recomendaciones

- Desarrollo de un sistema de control que permita mejorar la seguridad operativa del sistema.
- Construcción de una cubierta para evitar daños por corrosión y prolongar la vida útil del sistema.
- Utilizar el método del manual de operación del sistema para llevar a cabo arranques reproducibles con seguridad.
- Realizar pruebas en la torre de enfriamiento, con variaciones del caudal de agua y número de platos.
- Usar un compresor de dos o más pistones.

