UNIVERSIDAD INTERNACIONAL SEK

FACULTAD DE ARQUITECTURA Y URBANISMO

PROYECTO DE FIN DE CARRERA
"CENTRO DE INVESTIGACION, DIVULGACION Y OBSERVACION ASTRONOMICA PARA EL ECUADOR"

AUTORA: CECILIA ALEXANDRA MOSCOSO ZEA DIRECTOR: $A R Q$. Leonardo Miño Garcés

QUITO - ECUADOR

DEDICATORIA

A Dios, por su amor incondicional, por ser mí ayuda, mi guía y mi fortaleza para llegar al final de esta etapa en mi vida. Gracias por enseñarme que "todo lo puedo en Cristo que me fortalece".

- A mis padres por su amor, ejemplo, sus consejos sabios, por enseñarme a ser fuerte y por ser el motor de mi vida
- A mis hermanos por preocuparse tanto por mí, por su apoyo en todo momento.
Al decano y docentes de la facultad por aportar con sus conocimientos para formarme en esta grandiosa carrera, en especial al Arq. Leonardo Miño por su valioso aporte, y sabiduría para orientarme a culminar este trabajo.

INDICE

PágÍndice de contenidos ．．．i
Resumen ．．V
Abstract vii
NTRODUCCIÓN
1．FUNDAMENTACION DEL TEMA
1．1 Conocimiento de la Necesidad personal ．．．． 2
1．2 Conocimiento de la necesidad social ．． 2
1．3 Primera problematización：causa－problema－efecto ．． 3
1．4 Formulación del tema：causa－problema－tratamiento ．．． 4
1．5 Construcción del problema
15．1 Justificación Teórica del tema ． 5
1．6 Estructuración del cuerpo de Objetivos ． 7
CONCEPTUALIZACION
2．ESTUDIO DE LA TIPOLOGIA
2．1 Conocer el significado de astronomía，telescopio y observatorioAstronómico．10
2．2 Conocer la teoría de diseño de un observatorio Astronómico 14
2．3 Conocer la Funcionalidad Optima 12
2．4 Conocer las técnicas apropiadas para el diseño：
2．4．1 Modulo estructural 19
2．4．2 Sistemas constructivos，materiales，y equipamiento técnico necesario． 22
2．4．3 Sistemas de acondicionamientos técnicos 25
2．4．4 Conocer a los sujetos participantes 26
2．5 Conocer las condicionantes y determinantes climáticas y topográficas para la ubicación de un observatorio astronómico 27
2．6 Conocer y analizar la morfología． 33
3．CONSTRUIR Y DEFINIR EL PROBLEMA
3．1 Conocimiento，crítica y análisis de ejemplos relevantes e institutos existentes．． 37
A．Observatorio＂La Silla＂ 37
B．Observatorio＂Paranal＂ 41
C．Complejo astronómico＂Roque de los Muchachos＂ 46
3．2 Definición del programa definitivo． 49
3．3 Matriz de confrontación de programas 504．INVESTIGACION DIRECTA
Conocimiento directo del contexto 52
4．1 Investigación de las características del medio físico natural ． 52
4．2 Matriz de Confrontación para selección de terreno 55
4．3 Ubicación del terreno escogido 56

5.- DESARROLLO DE LA PROPUESTA

5.1 Modelo teórico conceptual 59
5.2 Organigrama de relaciones 61
5.3 Modelo Dimensiona 62
5.4 Modelo geométrico espacia 91
5.5 Modelo propositivo en el terreno 94
PLANOS ARQUITECTONICOS:

- Acceso al proyecto desde Calacalí, implantación en el terreno escogido, implantación acceso al proyecto 96
- Emplazamiento de campamento base 97
- Emplazamiento campamento base - planta cubiertas 98
- Emplazamiento campamento base- planta subsuelo 99
- Emplazamiento campamento base- planta baja 100
- Emplazamiento campamento base- planta alta 101
- Plantas Biblioteca Especializada 102
- Planta Subsuelo Biblioteca Especializada, fachada Norte, fachada Sur 103
- Fachada Este. 104
- Fachada Oeste 105
- Plantas Biblioteca General 106
- Fachadas Biblioteca General 107
- Planta Sala de Usos Múltiples 108
- Fachadas Sala de Usos Múltiples 109
- Plantas Administración 110
- Fachadas Administración 111
- Planta Baja Difusión - Planetario 112
- Planta Subsuelo Difusión - Planetario 113
- Fachada Este Difusión - Planetario 114
- Fachada Oeste Difusión - Planetario 115
- Planta Baja Restaurante - Cafetería 116
- Fachadas Restaurante - Cafetería 117
- Planta Baja Servicios Médicos 118
- Fachada Servicios Médicos 119
- Planta N-6.00 Edificio Residencia 120
- Planta N-3.00 Edificio Residencia 121
- Planta N+0.20 Edificio Residencia 122
- Planta N+3.50 Edificio Residencia 123
- Planta $N+7.00$ Edificio Residencia 124
- Planta N+10.00 Edificio Residencia 125
- Planta $N+13.00$ Edificio Residencia 126
- Planta $N+16.00$ Edificio Residencia 127
- Fachada Norte Edificio Residencia 128
- Fachada Sur Edificio Residencia 129
- Fachada Este Edificio Residencia 130
- Fachada Oeste Edificio Residencia 131
- Detalle de Fachadas Persianas 132
- Corte A-A Campamento Base 133
- Corte B-B' Campamento Base 134
- Corte C-C'y D-D Campamento Base 135
- Corte E-Éy F-F' Campamento Base 136
- Emplazamiento y Diseño Paisaje Campamento Base 137
- Emplazamiento de Área de Mantenimiento 138
- Planta Estación Meteorológica y Estación de Apoyo Comunicaciones 139
- Planta y Fachadas Edificio Control Estación Meteorológica y Estación de Apoyo comunicaciones 140
- Planta Talleres de Mantenimiento y Bodega General 141
- Planta Estación de Gasolina y Diesel, y Planta de Taller de Mecánica Automotriz 142
- Planta De Talleres de Aluminizado de Espejo primario de telescopios 143
- Emplazamiento Área Científica 144
- Planta y Fachadas Telescopio Circulo Meridiano 145
- Plantas de talleres y Antena de Radiotelescoplo 146
- Fachada Norte Radiotelescopio (persianas cerradas) 147
- Fachada Norte Radiotelescopio (persianas abiertas) 148
- Fachada Sur Radiotelescopio (persianas cerradas) 149
- Fachada Sur Radiotelescopio (persianas abiertas) 150
- Fachada Norte / Sur Antena Radiotelescopio 151
- Fachada Este / Oeste Antena Radiotelescopio 151
- Planta N-2.75 Telescopio 3.6 m 152
- Planta $\mathrm{N}+/-0.00$ Telescopio 3.6 m y 1.4 m 153
- Planta N+4.35 Telescopio 3.6 m 154
- Planta $\mathrm{N}+8.35$ Telescopio 3.6 m 155
- Planta $\mathrm{N}+12.35$ Telescopio 3.6 m 156
- Planta $\mathrm{N}+16.00$ Telescopio 3.6 m y Planta $\mathrm{N}+1640$ Telescopio 1.4 m 157
- Planta $\mathrm{N}+20.00$ Telescopio 3.6 m y Vista Cúpula Telescopio 1.4 m 158
- Fachada Oeste Telescopio 3.6 m y 1.4 m 159
- Fachada Este Telescopio 3.6 m y 1.4 m 160
- Planta ductos de ventilación Telescopio 3.6 m 161
- Axonometrías de Ductos de Ventilación Telescopio 3.6 m 162
- Corte Longitudinal Telescopio 3.6 m y 1.4 m 163
- Corte Transversal Telescopio 3.6 m y Detalle Cúpula 164
- Detalles Telescopio 3.6 m 165
- Detalles Telescopio 3.6 m 166
- Detalles Telescopio 3.6 m 167
- Detalles Telescopio 3.6 m 168
- Detalles Telescopio 1.4 m 169
- Detalles Telescopio 1.4 m 170
- Detalles Telescopio 1.4 m 171
- Detalles Telescopio 1.4 m 172
- Planta Subsuelo Telescopio Principal 8.2 m 173
- Planta Baja Telescopio Principal 8.2 m 174
- Planta Nasmyth Telescopio Principal 8.2 m 175
- Fachada Norte/Sur Telescopio Principal 8.2 m 176
- Fachada Este/Oeste Telescopio Principal 8.2 m 177
- Corte A-A'Telescopio Principal 8.2 m 178
- Corte B-B’Telescopio Principal 8.2 m 179
- Detalles Telescopio Principal 8.2 m 180
- Detalles Telescopio Principal 8.2 m 181
- Detalles Telescopio Principal 8.2 m 182
- Detalles Telescopio Principal 8.2 m 183
- Plantas Edificio Talleres Telescopio Principal 8.2 m 184
- Fachadas Norte y Este Edificio Talleres Telescopio Principal 8.2 m 185
- Fachada Sur y Oeste Talleres Telescopio Principal 8.2 m 186
- Imágenes del Proyecto 187
- Conclusiones 199
- Bibliografía 200

RESUMEN

para sí mismo, con un carácter melancólico, reflejándolo en su música, vestimenta, y sus viviendas - chozas.

El estudio de la cultura indígena con el significado de LABERINTO, muestra que estas civilizaciones tenían una comprensión particular de este concepto reflejándolo en sus construcciones.

Por lo tanto se plantea un Centro que se mimetice al entorno, que se cierre hacia sus actividades, que no cause impacto visual, que conecte a la tierra con el espacio y que produzca confort a sus ocupantes.

Consta de distintas zonas que tienen relación estrecha, se lo divide en tres áreas para independizar las actividades: En el área 1 se encuentran los espacios relacionados al mantenimiento, el área 2 está compuesta por el campamento base, y el área 3 es el espacio destinado a los telescopios.

Considerando la cultura andina, y buscando soluciones para no causar contaminación ambiental y con mayor énfasis contaminación lumínica, se diseña volúmenes "CAJAS" de madera (chozas) que se cierran, para lograr esto se plantea un sistema de Fachadas Persianas, que presenta una gran solución para no emitir ninguna partícula de luz al exterior, al ser un lugar de trabajo nocturno, las luces no se pueden escapar para no dañar la calidad del cielo y perjudicar así la observación astronómica. Este sistema de Fachada-Persiana permite que durante el día los volúmenes sean vitrinas abiertas, incorporando la naturaleza a las actividades, y en la noche estas cajas se cierran completamente al exterior permitiendo que las actividades en su interior no tengan ninguna restricción.

Este centro está diseñado y pensado para que las personas puedan realizar su trabajo y actividades durante su estadía de una manera llena de comodidad, admirando no solo el universo, sino también el entorno natural que lo rodea.

La ciencia siempre ha sido un incentivo en las naciones, es por esta razón que este centro de investigación marcara un hito en la historia del Ecuador.
"LOS CIELOS CUENTAN LA GLORIA DE DIOS, Y EL FIRMAMENTO ANUNCIA LA OBRA DE SUS MANOS" salmos 19:1

Son de gran importancia el entorno social y físico al momento del diseño de proyecto para no causar un impacto negativo. Es por esta razón que se analizo las características del paisaje andino, entendiendo que los colores de la naturaleza, de los granos, de las parcelas de cultivos marcan el diario vivir de los pobladores cercanos; la cultura de los indígenas de la Sierra es una cultura que se encierra

A nivel internacional se ha dado gran importancia al estudio y divulgación de las ciencias, especialmente LA ASTRONOMIA, alcanzado grandes descubrimientos del cosmos y un avance de gran magnitud en lo que se refiere a tecnología.

En Ecuador las personas no se han involucrado en esta ciencia y existe falta de interés y conocimiento por parte de los estudiantes, es por esta razón que se plantea un centro de investigación donde se estudie, y divulgue esta práctica para incentivar a la población a iniciar un viaje por las profundidades del cosmos.

La ubicación privilegiada del Ecuador es favorable al momento de realizar la observación astronómica, ya que permite un estudio completo del cielo tanto del hemisferio norte como del sur.

Este Centro se lo emplaza en la Loma Gorda cerca de la población de Calacalí, ubicada sobre la latitud 0°; sobresale la alineación con el nevado Cayambe, y a la vez se encuentra en la ruta de antiguos observatorios astronómicos de la época incaica, como son Rumicucho, Catequilla, Tulipe, Cochasqui, añadiendo así un valor histórico en la propuesta de este centro.

El concepto de este centro parte de entender la relación del universo con la tierra de comprender que el cosmos es infinito, dinámico, que tiene orden y produce variedad de sensaciones, características de nuestro diario vivir: estamos acostumbrados a esta percepción visual del movimiento, familiarizados cada noche a la disposición de las estrellas en el firmamento, posibilidades de orden ritmico y sutil que conforman un LABERINTO que ha sido tomado como idea fuerza del proyecto.

ABSTRACT

The spread and study of the sciences has gained great importance internationally specially the science of ASTRONOMY in which great discoveries of the cosmos and of technological advances have been seen.

In Ecuador, people in general but more specifically students have not been involved in these sciences and there is a lack of interest and knowledge about this topic. It is for this reason, that a research center was created where students can study Astronomy and the population can begin a trip into the depths of the cosmos.

The privileged location of Ecuador makes conditions favorable for the astronomical observation of the cosmos since it allows for a complete study of the heavens in the northern and southern hemispheres.

The established Center is located in Loma Gorda close to the Calacali population positioned at latitude 0° where the snow capped Cayambe volcano stands out in the horizon and where the route of old astronomical observatories of the Inca period lays. The Inca remnants of Rumicucho, Catequilla, and Tulipe give the conception of the center historical value and perspective.

The concept of the center derives from the relationship between the universe and the earth. From the understanding that the cosmos are infinite, dynamic, they have order and produce a variety of sensations and characteristics of our daily life. We are used to this visual perception of movement, familiar with the layout of the stars in the firmament. The rhythmic order and subtle possibilities make up a LABRYNTH that constitutes the strength of the project.

The characteristics of the social and physical surroundings were closely studied in order for this great center not to cause a negative impact in the area. The characteristics of the Andean landscape were also taken into consideration for this project with the understanding that the colors of nature, the grains, and the area's crops symbolize the daily livelihood of the nearby farmers. The culture of the indigenous people in the highlands is a culture that is closed off onto itself with a
melancholic characteristic that is reflected in its music, clothing, and their huts or chozas.

The study of the indigenous culture with the concept of a Labyrinth, demonstrate that this civilization had a particular understanding of this concept. We can clearly see this in the type of constructions they built.

Therefore, a Center was proposed that mimics the surrounding area. One that is closed off to its own activities, causes no visual impact, connects earth with space and one that gives comfort to its occupants.

The project consists of several zones that have a narrow relationship among them. The zones are divided in three areas in order to separate the different activities. In zone 1 we find the space that is designated for maintenance, in zone 2 we have the main building, and in zone 3 we have the space designated for the telescopes.

Taking the Andean culture into consideration and searching for solutions to avoid environmental contamination and more emphatically visual contamination, sectionals or "boxes" (chozas) of wood were designed. In order to achieve this closed-off design, a system of built in blinds was used for the façade. This is a great solution to the problem of visual contamination because no particles of light can escape through the blinds. This system of blinds is of great importance because the center is a nocturnal place of work and light should not escape so as not to contaminate the sky and damage the astronomical observation. This system of blinds allows these sectionals or "boxes" to be show-windows during the day incorporating nature and the center activities. At night, these "boxes" are completely closed off allowing the night time activities inside the center to carry on without restrictions.

This center is designed so that the people can carry out their work and activities during their stay with comfort admiring not just the universe but also the surrounding natural habitat.

Science has always been an incentive for nations and it is for that reason that this research center marks a milestone in the history of Ecuador.
"THE HEAVENS DECLARE THE GLORY OF GOD; AND THE FIRMAMENT SHOWS AND PROCLAIMS HIS HANDIWORK" Psalms 19:1

1.- Fundamentación del tema

1.1.- Conocimiento de la Necesidad Personal.-

En la Arquitectura, tanto el diseño urbano como el diseño arquitectónico son muy interesantes e importantes, y de una manera u otra deben trabajar en conjunto para lograr soluciones integrales.

Se dice que el diseño arquitectónico es un trabajo individual, donde el arquitecto pretende demostrar su gusto o estilo, sin embargo, su elaboración es muy compleja ya que va mas allá del diseño, debiendo integrar todos los elementos que forman el espacio en el que va a ser edificado el proyecto.

De las diferentes tipologías con que cuenta el diseño arquitectónico, es importante la relacionada con la educación, la misma que se subdivide en otras para así llegar a la de estudios científicos. Durante los años de estudio de la carrera se han realizado varios trabajos que han involucrado distintas tipologías, y por eso es importante enfatizar en la EDUCACIÓN SUPERIOR, CIENTÍFICA.

En la tipología de Educación, especificamente en los centros de investigación científica, existen temas complejos, los mismos que pueden abarcar muchos aspectos constructivos, tecnológicos, y que permiten además realizar estudios urbanos.

Esta tipología requiere el aprendizaje de nuevas tecnologías, sistemas que no manejan otras, y como algunos de estos centros no se ubican dentro de la ciudad deben tener tratamientos especiales en todo aspecto, por lo que hace de este campo algo complejo, que en otra tipología no se puede ejercitar. Cada espacio cumple funciones especificas, y, sus sistema constructivos son diferentes, es otra ventaja de un centro de esta tipología por lo que se puede experimentar con distintos tipos pero llegar a formar un solo conjunto.

Toda arquitectura tiene filosofía, la misma que depende de la cultura: comprendiendo este punto de vista se tiene claro lo que se va a diseñar. Al ser algo cultural. Io que se pretende es diseñar un objeto arquitectónico que promueva la investigación científica para elevar el conocimiento de la población.

La ciencia de la Astronomía trabaja con grandes ramas que van de la mano, y es interesante específicamente en la arquitectura mirar como muchos elementos son homogéneos tanto en el cosmos, y en la concepción de un elemento arquitectónico, ambos emplean innumerables elementos como dinámica, tiempo, espacio, profundidad, ritmo, fluidez, etc., y es gracias a estos elementos que se puede desarrollar un lugar donde el Espacio mismo transmita sensaciones, que el Espacio mismo sea el eje para crear un volumen que cumpla correctamente la función para la que está destinada.

DISEÑO ARQUITECTÓNICO \quad,
$\xrightarrow[\sim]{\square}$ SUPERIOR / UNIVERSITARIA
CENTROS DE INVESTIGACIÓN CIENTÍFICA

1.2.- Conocimiento de la Necesidad Social.-

A nivel internacional la astronomía ha ido y continúa evolucionando hasta el punto de llegar a tener grandes logros científicos de investigación y descubrimientos del espacio.

En el Ecuador hubo una época en la que esta clencia łuvo una gran importancia, pero lamentablemente en la actualidad existe una falta de conocimiento científico respecto a:

- Difusión del estudio astronómico en escuelas y colegios del país, ya que esta es una ciencia holista y completa que nos ayuda a expandir nuevos horizontes y complementa a otras ciencias. I
- Función y actividades que se realizan dentro de un centro de investigación astronómica. ${ }^{2}$
${ }^{\text {1 }}$ Trabajo de fin de carrera "Observatorio Astronómico para la ciudad de Cuenca, Ecuador". Wilson Ulloa y Pedro Rodas. Pág. I
${ }^{2}$ Entrevista Dr. Ericsson López. Director Observatorio Nacional "La Alameda". Quito, Ecuador.
- Ramas en que se clasifica la astronomía. (se divide en cuatro partes: 1. Astronomía descriptiva o Cosmografía, 2. Astrofísicab, 3. Astrometría c, 4. Cosmogonía d). ${ }^{3}$
- Descubrimiento de nuevos planetas, galaxias, asteroides, meteoritos, etc. ${ }^{4}$
* Importancia del desarrollo de la ciencia para realizar estudios de meteorología, sismología, y las nuevas ramas que componen el estudio astronómico como la radioastronomía y física solar.
- Comprensión de los fenómenos, procesos y estructuras del cosmos que se han acrecentado de manera extraordinaria. Esto se debe en gran parte a los nuevos procedimientos de exploración astronómica que han surgido como consecuencia del progreso exponencial que siguen los conocimientos de la física y de la técnica. ${ }^{5}$
- Ubicación privilegiada del Ecuador que nos permite estudiar el espacio tanto de los hemisferios norte como sur, para recopilar información que sea de apoyo para los estudios realizados en los grandes observatorios internacionales, ${ }^{\circ}$

[^0]
1.3.- Primera problematización: Causa - problema - efecto.-

- CAUSA.
- En el Ecuador existe un escaso nivel académico en general.
- Bajo nivel técnico y científico sobre Astronomía
- Poco o ningún interés de los centros académicos por implementar el estudio de nuevas disciplinas científicas.

- PROBLEMA.-

- No hay interés por la investigación científica astronómica en el Ecuador.
- No existe un edificio con las condiciones adecuadas para poder realizar estudios actualizados y de nivel clentífico investigativo de esta ciencia, "El observatorio ha declinado, y las actividades que se realizaban no han sido relevantes, ya que el edificio se encontraba destruido, por lo que se tuvo que cesar el trabajo astronómico a nivel científico, solo ha podido funcionar para aficionados" ${ }^{\prime 7}$.

- EFECTO.-

- Al no contar con la infraestructura adecuada para poder realizar estudios de alto nivel científico, se siguen ignorando los adelantos que ha tenido esta ciencia a nivel mundial, y como consecuencia no existe un avance significativo o importante en el campo de la astronomía.
* Subdesarrollo y poca participación en el ámbito de la investigación científica y tecnológica a nivel mundial.
- Falta de inserción del Ecuador en la comunidad científica internacional, a pesar de poseer una ubicación astronómica y geográfica privilegiada.

[^1]
1.4.- Formulación del tema: causa - problema - tratamiento.-

Los estudios preliminares nos han llevado a enfrentar el problema, en el cual se ha detectado que hay una gran carencia de difusión de esta ciencia, la que no solo abarca estudios espaciales y del cosmos, sino tamblén algunos que son relacionados con otras ciencias como la sismología, meteorología, etc., y que son muy importantes para el desarrollo intelectual de la población en general.

Es necesario también conocer que se han construido centros científicos de alto nivel investigativo, con las instalaciones en condiciones adecuadas para que se desarrollen todas las actividades de estudio. "Estos centros están ubicados tanto en el hemisferio norte como en el sur, y tienen la finalidad de trabajar en conjunto para poder enlazar los estudios y los hallazgos realizados"8, y de esta manera obtener un panorama general del Universo.

Una de las ventajas del país, es que dentro de su ubicación se pueden obtener estudios de ambos hemisferios.

Existe un solo observatorio a nivel nacional, el Observatorio de la Alameda, el cual fue de gran importancia a nivel mundial, porque de este se logro desarrollar el "Sky Atlas" o catálogo estelar, "el cual cumple el propósito de probar un nuevo método de determinación de las coordenadas de estrellas que puede ser realizado solamente desde la línea equinoccial, que son de beneficio para diversas actividades relacionadas con el estudio del espacio, y que actualmente se trabaja en conjunto con Rusia y la República Checa"9.
"En nuestro pais existen personas aficionadas a esta ciencia que están trabajando en fusión con los grandes observatorios a nivel mundial; todas estas actividades se realizan de manera anónima ya que no ha habido suficlente difusión ni interés en el pais" 10 .

En países europeos la astronomía es una materia fundamental para el desarrollo intelectual de los estudiantes a nivel de educación básica. De esta manera promueven al interés cientifico desde edades tempranas, y a futuro se desarrollan grandes científicos en diversas ramas.
Lamentablemente en el Ecuador se ha descuidado la transmisión de esta ciencia, es por eso que no hay conocimientos investigativos, a pesar que este país fue uno de los promotores de la astronomía en Latinoamérica.

El único observatorio del Ecuador, se encuentra en condiciones de inapropiadas, ya que está ubicado en medio de la ciudad, donde existe mucha contaminación

[^2]Iumínica (luz parásita), y de gases, rodeado de edificaciones que hacen que el edificio no funcione. Las condiciones de emplazamiento para un centro de este tipo no son las adecuadas, se necesita lugares que se encuentren alejados de los centros urbanos para no tener impedimentos en el momento de la observación.

En la actualidad se ha incrementado el número de personas interesadas en la astronomía a nivel nacional, y se están implementando planes de trabajo para difundir la ciencia, sin embargo no existe un lugar que sea óptimo para realizar estudios de alto nivel cuya difusión permita educar a la población, es por esto que se hace necesaria la creación de un nuevo edificio acorde a las necesidades tecnológicas - científicas que el siglo XXI demanda.

TEMA:
"DISEÑO DE UN CENTRO DE INVESTIGACIÓN, DIVULGACIÓN Y OBSERVACIÓN ASTRONÓMICA"

1．5．－Construcción del Problema：

1．5．1．－Justificación teórica del tema．－

＂La clencia de los cielos，como un día definiera Lucrecio（98－55 a．C．）a la futura Astronomía，es unall ciencia que ha apasionado al hombre desde las épocas más remotas＂

La visión que la humanidad ha ido teniendo sobre el universo a lo largo de la historia es una de las claves para entender la evolución de la cultura humana．El estudio del Cosmos admite diversos enfoques o formas de llevarlo a la práctica． desde la Historia de la Astronomía hasta la moderna Astrofisica，desde la Mitología a la Historia de la Cosmología，pasando por la construcción de objetos e instrumentos relacionados con la observación astronómica y por el desarrollo de la Astrofisica．${ }^{12}$

Esta clencia ha ido evolucionando a lo largo de los años，al principio los únicos instrumentos eran la observación directa y la intuición，a medida que han pasando los años y con la introducción del anteojo astronómico por Galileo Galilei，se han desarrollado descubrimientos de importantes índole a nivel mundial．Y de esta manera se ha dado paso a la evolución de esta ciencia．

Los estudios realizados por los grandes científicos y físicos de la antigüedad，dieron el impulso para seguir investigando y despertaron el interés por conocer lo desconocido，y llegar a descubrimientos de nuevos cuerpos celestes en los limites mismos del universo conocido．

La historia de la astronomía es el relato de las observaciones，descubrimientos y conocimientos adquiridos a lo largo de los tiempos，
La práctica de estas observaciones es tan cierta y universal que se han encontrado a lo largo y ancho del planeta en todas aquellas partes en donde ha habitado el hombre．

Se cita a continuación una reseña histórica para comprender la percepción en la evolución de esta ciencia，extractos tomados del artículo Historia de la Astronomía por Gonzalo Duque Escobar：
＂De Mileto（ 640 a．C．）．el primero de los grandes astrónomos，creía que el Universo era esférico．Aristóteles（384 a．C．）combatió la idea de una Tierra plana，basando sus puntos de vista en el cambio de posiciones de estrellas en

[^3]el cielo con la latitud y en la forma circular de la sombra de la Tierra proyectada sobre la Luna durante un eclipse．

Eratóstenes（280－200a．C．）．mide la Tierra utilizando la altura del Sol de mediodía．Con la sombra de un elemento vertical proyectada en dos puntos distintos，halló por métodos puramente geométricos，cuando aún no se habia desarrollado la trigonometría，la dimensión de la circunferencia de la tierra．

Hiparco（190－120 a．C．），el astrónomo griego más importante，inventó la trigonometría，hizo un catálogo de más de 1000 estrellas y descubrió la precesión del eje terrestre．
Una de las mayores contribuciones de la astronomía griega，entre las concepciones clásicas sobre las consideraciones del Universo como finito y geocéntrico fue el intento de explicar el movimiento de los planetas mediante una teoría de Hiparco（190－125 a．C）y Claudio Ptolomeo（87－170 d． C．）．El sistema de Ptolomeo es geocéntrico，y se sustituye por el heliocéntrico de Copérnico．

La teoría de los epiciclos de Ptolomeo permitía no sólo dar una explicación teórica al movimiento de los planetas，sino también obtener predicciones fiables．Al lado de la teoría geocéntrica aparecieron otras como la de Aristarco de Samos（ 310 a 250 a．C．）．Según él el Sol se hallaba en el centro y alrededor de él giran en círculo los planetas，entre ellos la Tierra．

Los griegos fueron también los primeros en intentar medir distancias en el cosmos．Los pueblos del centro y norte de Europa a．C．poseían conocimientos astronómicos que aplicaron a las construcciones megaliticas de la Edad de Piedra．Stonehenge en el sur de Inglaterra，que en su mayoría tienen que ver con los movimientos del Sol y la Luna．

El legado de la astronomía griega pasó en los siglos X－XV a manos de los árabes principalmente．Tradujeron la obra de Ptolomeo；a muchas de las principales estrellas de las constelaciones，les dieron nombres especiales que aún hoy se conservan，y confeccionaron diversos catálogos de estrellas y tablas planetarias．

En el periodo de El Renacimiento llega a su mayor esplendor con Nicolás Copérnico（1473－1543）．Considerado el verdadero artífice de la nueva astronomía．Basado en la lectura de autores antiguos que hacían referencia al sistema heliocéntrico de Aristarco de Samos observó lo improbable del Sistema Ptolemaico．Escribió sobre la arquitectura del sistema planetario y en el cual postula que la Tierra gira alrededor de su eje y que ésta y los planetas se mueven alrededor del Sol；a estas ideas llegó no tanto por mediciones y observaciones como por razonamientos teóricos．

Tycho Brahe (1546-1601) propuso un sistema intermedio, con la Tierra como centro, circundada por la Luna y el Sol, y este a su vez es circundado por los planetas.

A la muerte de Brahe, Johannes Kepler (1571-1630) evalúa las observaciones de Marte y en 1609 publica su Astronomía Nova, con las dos primeras leyes que señalan el movimiento elíptico y las áreas barridas por los radios vectores planetarios. La tercera ley se publica en 1619 en su obra Harmonices Mundi.

Galileo Galilei (1564-1642). Fue un defensor de la teoría copernicana. Este astrónomo que en 1610, al descubrir los cuatro satélites de Jüpiter, encuentra a comprobación objetiva de la teoría copernicana, también descubrió las leyes de la caída libre, de la inercia, de la oscilación del péndulo y los principios de escala en la resistencia de materiales. Con Galileo se inicia la Física moderna, al introducir el Método Científico y al transformar el tiempo, de una función discreta a una función continúa. En 1609 construyó un telescopio e hizo hallazgos y observaciones (manchas solares, cuatro lunas de Júpiter, fases de Venus, montañas lunares, etc.), con las fases de Venus, advierte la rotación de este planeta entorno al Sol y no a la Tierra.

La difusión del telescopio indujo en el siglo XVII una oleada de nuevos descubrimientos. Entre los astrónomos de ésta época destacan Simón Marius (lunas de Júpiter, detección de la nebulosa de Andrómeda en 1612), Christoph Scheiner (primera obra sistemática de las manchas solares), Johannes Hevelius (observaciones de la Luna y los cometas), Christian Huygens (descubrimiento del anillo de Saturno y de Titán el mayor satélite del planeta), Giovanni Doménico Cassini (hizo numerosas observaciones planetarias, descubrió cuatro satélites de Saturno). Olaus Römer (determinación de la velocidad de la luz a partir de los eclipses de los satélites de Júpiter), John Flamsteed (fundación del observatorio de Greenwich en 1675, catálogo estelar).

Isaac Newton (1643-1727). Nacido un año después de muerto Galileo, es el creador de la Ley de Gravitación Universal, según la cual la caída de las manzanas y el movimiento de los astros, se rigen por una misma fuerza. He aqui la importancia de dicha ley expresada como una teoría matemática capaz de explicar el movimiento de los cuerpos celestes.

En 1671 construyó un telescopio reflector, y al tiempo revoluciona los principios de la óptica con su descubrimiento de los colores en el espectro visible. Además, para sus desarrollos, creó su propia herramienta: el cálculo diferencial (que denominó Fluxiones), cuando contemporáneamente lo hacía Leibniz, por separado.

El descubrimiento de la Ley de la Gravitación Universal permitió, no sólo asentar el sistema copernicano sino, aumentar la precisión de los cálculos de órbitas lunares y planetarias, pues la ley también tenía en cuenta las perturbaciones gravitatorias entre los cuerpos que intervienen.

En el siglo XVIII y principios del XIX Ia mecánica celeste se desarrolla. No existe el computador. Halley calcula la órbita elíptica del cometa de 1682. Kant atribuye en 1755 la génesis del sistema solar a un proceso mecánico. Lagrange estudia en 1788 el conocido problema de los tres cuerpos y algunos casos especiales con solución. Laplace descubre la invariabilidad del eje mayor de las órbitas planetarias. Leverrier y Adams predicen la existencia de Neptuno por las perturbaciones que suffe Urano y el planeta es descubierto en 1846 en el Observatorio de Berlín. Bessel deduce en 1844, por las perturbaciones del movimiento propio de Sirio, la existencia de su compañera desconocida, que efectivamente es observada en 1862.

También, la técnica instrumental maduró en los siglos XVIII y XIX lo mismo que las técnicas y métodos de medida experimentan un avance continuo. Nacen los primeros catálogos estelares. Con las investigaciones sobre el espectro solar y las rayas oscuras que llevan su nombre (1814), con la creación del análisis espectral por R. W. Bunsen y G. R. Kirchhoff (1895) y con la introducción de los métodos de fotografía y los fotómetros en la segunda mitad del siglo XIX, se funda la astrofisica"13.

De la misma manera la actividad astronómica en Ecuador fue muy importante a finales del siglo XVIII, la primera Misión Geodésica dio un valioso impulso y despertó el interés por la investigación científica. La situación ecuatorial de nuestro país, su naturaleza con variadas formas de plantas y especies animales siempre ha llamado la atención científica.

Este auge por la investigación astronómica en el Ecuador empezó con la misión conformada por un equipo de franceses y destacados ecuatorianos, su trabajo consistía en determinar la medida de una arco de paralelo sobre el ecuador geográfico y la de un arco meridiano ecuatorial, porque se sospechaba que la tierra no era una esfera perfecta y su forma podía deducirse de esas medidas.
"Quito posee un Observatorio Astronómico y meteorológico instalado en excelentes condiciones, provisto de instrumentos de los más recientes modelos y que posee una importancia tan especial por su situación, a algunos minutos solamente de la línea equinoccial, (latitud 0 grados 14 sur), con cerca de 3.000 m . de altura y al pie del Pichincha cuya cima se eleva a 4.800 m . de acceso relativamente fácil, que permitiría con pocos gastos el establecimiento de un observatorio anexo" (Boletín del Observatorio, 1900:8, escrito por el francés E. Mourain, informe 1900) ${ }^{14}$
${ }^{13}$ http://www.manizales.unal.edu.co/oam manizales/hist-astronm.pdf
${ }^{14}$ Estudio Histórico: EL OBSERVATORIO ASTRONOMICO DE QUITO. Lucía Moscoso Cordero. Quito. 1993

Para principios del siglo XIX llego la segunda Misión Geodésica, ellos tenían como objetivo principal comprobar los estudios de la primera misión, y resolver así las dudas acerca de la forma del globo. Los resultados fueron exitosos, se consiguió determinar el arco meridiano ecuatorial.

Con estos antecedentes el presidente García Moreno construyó en 1875 el primero y único Observatorio Astronómico en el Ecuador, con el fin de promover esta ciencia. El observatorio ubicado en La Alameda tuvo grandes logros cientificos y se trabajó en cooperación con países como Rusia, Francia, Estados Unidos, se adquirieron varios equipos y se implemento varias zonas de trabajo en este observatorio. Esta actividad estuvo a la altura mundial hasta mediados del siglo XX, contribuyendo con un alto nivel de investigación y descubrimientos por científicos ecuatorianos como extranjeros.

IMAGEN 1
Observatorio Astronómico "La Alameda" Quito-Ecuador

FUENTE:http://oaq.epn.edu.ec/oaq/
Lamentablemente al pasar los años la astronomía en el país ha ido declinando y se ha frenado la actividad astronómica, al punto que el observatorio ha cerrado las puertas a la investigación científica hace más de una década; esto se debe a que
no posee un centro de estudios especializados con las calidades óptimas para trabajar y tan solo se realizan observaciones a nivel aficionado.

En el país existen ciertos grupos de personas interesadas por estos estudios pero no han podido ser escuchadas, ni tienen un lugar adecuado para realizar sus estudios. También a nivel de estudios básicos, no se ha podido educar a maestros para transmitir e inculcar a niños esta ciencia, ya que no ha habido la suficiente preocupación por la difusión.

El observatorio de La Alameda se encontraba en condiciones de penuria, y con las instalaciones casi sin funcionamiento, no solamente por la ubicación, sino también por el descuido en las autoridades; el edificio estaba deshabilitado. El FONSAL ${ }^{15}$ intervino para poder recuperar este objeto arquitectónico que es de gran importancia histórica para el Ecuador, dada la ubicación no se puede realizar estudios con fines cientificos, es por eso que ahora funciona como museo y para observaciones de aficionados.

Los observatorios más importantes a nivel mundial se encuentran en varios puntos tanto en el hemisferio sur como el norte, estos son centros especializados con tecnología de punta y de gran avance tecnológico en el escudriñamiento del espacio.

El Ecuador tiene una posición privilegiada, por encontrarse en la Lat. 0°, se tiene la capacidad de realizar estudios y observar completamente el cielo en los dos hemisferios, a pesar de algunos obstáculos por las condiciones climáticas; existen varios puntos, en los que posee mayor cantidad de noches despejadas, por lo tanto se puede implementar un centro de observación astronómica. Un centro tecnológico que sirva de instrumento para poder aprovechar y optimizar esas noches despejadas, e iniciar ese viaje por las estrellas que nos llevara al conocimiento del universo y sus misterios.

Los centros de investigación cientifica son muy escasos en el pais, por tanto se pretende planificar y diseñar un lugar donde se puedan integrar varias actividades, pues, los observatorios no sólo se dedican a la observación óptica, sino también a la meteorología, sismología, radioastronomía, astrofisica, para que los futuros estudios científicos de nuestro país cuenten con los espacios e instalaciones de condiciones óptimas que permitan dar aportes a nuevos descubrimientos y colocarnos a la altura del nivel mundial.

[^4]
1.6.- Estrucłuración del cuerpo de objetivos.-

CUADRO

	$\begin{aligned} & z \\ & \frac{0}{U} \\ & \text { N } \\ & 0 \\ & \frac{1}{4} \\ & \frac{2}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	OBJEIVOS PARTICULARES	OBJEIVOS ESPECIFICOS	Actividades
		1. CONOCERLATPOLOGIA		Búsueda Diologuticae interner
			12. Conocella leora de disano de un obseevatono astionamico	
			14. Conoce las técnicas appopiodass para el oisefió	Reorear fichas bibiogificas
			1.4. - stemas Constructivos y Materides	
			1.43. Sistemas de Acondicionamientos Téericos 14.4-Conocerlia infroestructura y equipomiento necesano	
			1.5. Conocer alos spuetos paticipantes	Büqueda de datos institucioner, publicocioner y entevitas
				Buscueda en intemet Lectura y intesis
			1.7. Conocer y andiver la mortologio	Esquemos de estudio de la torma orquilectionica
			18. Formulo un programo aruviectionico moximo	Sintesis de investigocion y tormulacion del programo rravícitonico maximo
		2-ESTUDIARY ANALIAR LOS Referentes	2.- Conocimiento, critico y andiaid de ejemplos relevantes e institutos existentes	Etudiode eleerentes hitemaciondes
				Andibe funcionoles, tormalesy témicor de coda reterente
		3. FOPMUURE PROGRAMA AROUIECTONCO DEANTVO	3.1. Comparar y controntar fos programas	Hocer una matriz de comparación de los programas y obtener el programo arquitectónico defiritive
	$\begin{aligned} & \text { z } \\ & \frac{0}{U} \\ & \frac{8}{0} \\ & \frac{0}{5} \\ & \text { Z } \end{aligned}$	1. Conocer el medo hico natural		Buscar dolor en ell G M M MAMH
			1.2. Ancizar lugares con las condiciones climaticos y geograficas optimas para lo voicación del objefo dentro del país	Estudiar mapas del Ecuodor que ayuden a conocer estas condiciones en el poís
		2. ESTABBECER LALOGICADEIMPLANTACION DEL OBJETO EN ELPAIS	21. Seleccionar una zona	Estucior Io zono seleccionodo pero encontrar oltemotivar de tereno
			22. Idenilicar ofernativas de terenes potala limplantocibn	Hocel una mamzprola selecabn del lereno
			24. Selocciono ell ereno	
			25. Conocerell lereno y andizato parceil divento de la implantiocion	Consequit yestudior planos geogaricos
				Levantamiento del terreno
				Ceometio del tereno y de los finderos
				Cunos de nivel
				Recoridos do vientos
		3. Elaborar el procrama ARQUITECTONCO DEFINTIVO - elaborar los modelos dela PROPUESTA	31. Conitontary comparat los programas	Pasoles naturaes
				el programo ravitectorico deffintivo
			${ }^{\text {12, }}$ - Elaborar modelo leâico-conceptual	Descrator e modealo teinco por zonos
		${ }_{1}^{1 .}$ ellaborar los modelos dela		Desarollor modelos concepivoles
			12. Elobotry el modelo tuncional	Destarolar el modelo fincional por tonas
			13.EItborar el modelo dmensional	Detaralor el modelo tuncional por obletor
				Desarralorel modelo dime
				treas
				Mocular las dimensisnes
			14.Elaboror el modelo geometrico espocial	Coordihodis modular de zonas paro abtener el macio módulo
				Hocer una matriz de compalocion ce las alemativas
		2. DISENAR EL PARTIDO	21. Burcar aleernativar Se diseño meciante mallor geométicas.	Reolizo una mallo geomética y elobocrar varios
			,	Niemativas de diseio
			22. bseñore emplazamenio en en eneno	Realiza oremotitas de emplatamiento
		3. oisenare provecto	3 3. Diveñar el anteprovecto	Diseño del emplozomiento del provecto.
				Dienio y diovio de las Plantos orquitectionicos
				Dibujo de cortes Diseño de Fochadios
				Diovio de Perspectivas
			3.2-Dioujar detoles de zona cientifica	Oibvio detolos do teleccopop pincioal
			33- Mematia descioitiva	Resumen y condurioner de todo el provecto Redoctor la memorio
		$\begin{aligned} & \text { 4. EABBRAR LOS ARCHIVOS DE } \\ & \text { ENTREGA } \end{aligned}$	41. Redactor el documento	Carección de toda lo documentoción
				$\frac{\text { Redoctor el documento ind }}{\text { Recocalion dol }}$
			43. Realizar planos y archivor moannélicos	Eaborca el documento en lormato ${ }^{3} 3$
				Coneopr crichlos mognéticos
				Amor tóminas en Programos orautectionicos
			$\begin{aligned} & \text { 4.5-Empostar documento } \\ & \hline \text { 4.- Entregar } \end{aligned}$	Enviva
			48. Delensa Puolica de la Teis	Buscar equipos para la exporición Exponer

Fuente: Cuadro realizado por la autora.

EロNEEPTUALIZABIロN

－Telescopio：

＂Se denomina telescopio（del griego Tク̃入દ＂lejos＂y $\sigma к о п \varepsilon ่ \omega ~ " v e r ") ~ a ~ c u a l q u i e r ~$ herramienta o instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista．Es herramienta fundamental de la astronomía，y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo＂ 18 ．

Gracias al telescopio，desde que Galileo lo usó para ver la Luna，al planeta Júpiter y a las estrellas，pudo el ser humano empezar a conocer la verdadera naturaleza de los objetos astronómicos que nos rodean y nuestra ubicación en el Universo．
＂Galieo conoció en 1609 un invento holandés consistente en un tubo en cuyos extremos se habian colocado sendas piezas de cristal curvado，con el resultado de que al mirar a través de él se agrandaban el tamaño de los objetos lejanos．El utensilio，usado hasta entonces con fines militares por su indudable utilidad en el campo de batalla，le sugirió la idea de construir él mismo un par de instrumentos similares para dedicarlos al estudio del firmamento．Asi nacieron los primeros telescopios，con los que llegó a alcanzar hasta 20 aumentos．

El telescopio de Galieo tenia una lente objetivo convexa y una ocular cóncava，con lo que producía imágenes no invertidas y virtuales． Posteriormente Kepler，había desarrollado los fundamentos teóricos de la refracción，proyectó telescopios con una lente ocular también convexa，que， si bien producen imágenes invertidas，son más adecuados para usos astronómicos．

En 1668 Newton construyó su propio telescopio，un aparato muy mejorado en comparación con sus antecesores，pues su óptica se benefició de los profundos conocimientos respecto a la propagación de la luz．Se trataba del primer telescopio reflector，en el que la luz es reflejada por un espejo y no por los cristales，como en los telescopios refractores．Con esta innovación consiguió la desaparición de las aberraciones ópticas tan comunes en los largos tubos de lentes utilizados hasta entonces．

William Herschel，el descubridor de Urano，aporto con una innovación muy destacada en sus telescopios incorporo una montura estable y precisa que mejoró notablemente su exactitud，precisión y seguridad sobre los modelos precedentes．

Entre 1842 y 1845 William Parsons construyó el mayor telescopio fabricado

[^5]hasta ese momento，con un espejo metálico de 1.8 metros de diámetro y un
peso de 4 toneladas，y cuyas medidas no fueron superadas hasta principios del siglo XX．

Se habia alcanzado el nivel técnico que permitia superar el tamaño de telescopios de un metro de diámetro utilizando espejos．Sin embargo，los espejos，compuestos de una aleación de cobre y estaño，se deslustraban rápidamente．Los progresos de la química vinieron a resolver el problema a mediados del siglo XIX．El método consistía en depositar una fina capa de plata metálica sobre la superficie pulida de un disco de vidrio，con lo que se conseguia un espejo de mayor capacidad de reflexión que los metálicos． Además，eran más baratos y más fáciles de tallar y permitían tamaños mayores que los de metal．

Estas grandes máquinas，con tubos de longitudes de 12,16 y hasta 18 metros， necesitaban unas sustentaciones sólidas，a las que además se las dotaba de monturas ecuatoriales que，gracias a que uno de sus ejes estaba dispuesto paralelamente al eje de rotación de la Tierra，permitian el seguimiento de los astros durante períodos prolongados．Además，llevaban incorporados los sistemas de fotografia y de relojeria precisos para hacer largas exposiciones．

A medida que avanza el siglo $X X$ los telescopios ya no se conciben sin espectroscopios，sin cámaras fotográficas y sin relojes de precisión．También en este campo se aplican los adelantos tecnológicos en el proceso de hacer ciencia，cuyos descubrimientos conducirán，a su vez，al desarrollo de nuevos adelantos tecnológicos．

Existen varios tipos de telescopio，notablemente refractores，que utilizan lentes，reflectores，que tienen un espejo concavo en lugar de la lente del objetivo，y catadióptricos，que poseen un espejo cóncavo y una lente correctora．

El parámetro más importante de un telescopio es el diámetro de su lente objetivo．Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchísimos objetos del cielo profundo（cúmulos，nebulosas y algunas galaxias）．Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos，detalles planetarios importantes y una gran cantidad de cúmulos， nebulosas y galaxias brillantes．

Para caracterizar un telescopio y utilizarlo se emplea una serie de parámetros y accesorios：
－Distancia Focal：es la longitud focal del telescopio，que se define como la distancia desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular．
－Diámetro del objetivo：diámetro del espejo o lente primaria del telescopio．
＊Ocular：accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos．
－Lente de Barlow：lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros．
＊Filtro：pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación．Se ubica delante del ocular，y los más usados son el lunar（verde－azulado， mejora el contraste en la observación de nuestro satélite），y el solar，con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo．
－Razón Focal：es el cociente entre la distancia focal（ mm ）y el diámetro（ mm ）． （f／ratio）
－Magnitud límite：es la magnitud máxima que teóricamente puede observarse con un telescopio dado，en condiciones de observación ideales．La fórmula para su cálculo es： m （límite）$=6,8+5 \log (\mathrm{D})$（siendo D el diámetro en centímetros de la lente o el espejo del telescopio）．
－Aumentos：La cantidad de veces que un instrumento multiplica el diámetro aparente de los objetos observados．Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular（DF／df）．Por ejemplo，un telescopio de 1000 mm de distancia focal，con un ocular de 10 mm de df ． proporcionará un aumento de 100 （se expresa también como 100X）．
－Trípode：conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio．
＊Porta ocular：orificio donde se colocan el ocular，reductores o multiplicadores de focal（p．ej．lentes de Barlow）o fotográficas＂．${ }^{19}$

Monturas de un telescopio：

La montura de un telescopio es la parte mecánica que une el tripode o base al instrumento óptico．La montura tiene como objetivo proveer movimiento controlado al telescopio．Es muy importante la firmeza y suavidad de los movimientos para que la observación sea confortable y la astrofotografía sea perfecta．

Las monturas se clasifican en dos grandes grupos，según los planos de referencia que utilicen（coordenadas）
－Montura altazimutal．－
＂Una montura de telescopio sencilla es la montura altitud－azimut o altazimutal．Una parte gira en azimut（en el plano horizontal），y otro eje sobre esta parte giratoria． Permite además variar la inclinación del telescopio para cambiar la altitud（en el plano vertical）＂ 20

[^6]- Montura ecuatorial.-
"Es una montura que utiliza como plano fundamental el ecuador celeste (protección del ecuador terrestre). Este diseño usa las coordenadas ecuatoriales. El eje de azimut es paralelo al eje de rotación de la tierra" ${ }^{21}$.
- Otras monturas.-

Los grandes telescopios modernos usan monturas altazimutales controladas por ordenador que, para exposiciones de larga duración, o bien hacen girar los instrumentos, o tienen rotadores de imagen de tasa variable en una imagen de la pupila del telescopio.
"Hay monturas incluso más sencillas que la altazimutal, generalmente para instrumentos especializados. Algunos son: de tránsito meridiano (sólo altitud); fijo con un espejo plano móvil para la observación solar: de rótula (obsoleto e inútil para astronomía)" 22 .

Telescopios famosos:

Hay un gran número de telescopios, que han causado grandes impactos en el estudio del cosmos, entre los más famosos podemos numerar:

* El Very Large Telescope (VLT) es en la actualidad el más grande en existencia, compuesto por cuatro telescopios, cada uno de 8 m de diámetro. Pertenece al ESO (European Southern Observatories) y fue construido en el desierto de Atacama, al norte de Chile. Pueden funcionar como cuatro telescopios separados o como uno solo, combinando la luz proveniente de los cuatro espejos, se forma un telescopio con un diámetro de 200 m .
- El espejo individual más grande es el del Gran Telescopio Canarias, con un diámetro de 10,4 metros. Se compone, a su vez, de 36 segmentos más pequeños. Este espejo fragmentado se lo conoce como panel de abeja.
- Los infrarrojos Keck 1 y Keck I, se encuentran ubicados en Mauna Kea, Hawái, son dos telescopios gemelos, que también fomentan la divulgación.
- En Chile se encuentra el telescopio Gemini Sur, y en Mauna Kea (Hawái) el Gemini Norte, estos dos telescopios con iguales características han aportado con imágenes de ambos hemisferios para los estudios astronómicos.
- El telescopio Hale construido sobre el Monte Palomar, con un diámetro de 5 metros, fue el más grande hasta los años 80 . Tiene un único espejo de silicato de boro .
- Existen muchos proyectos para fabricar telescopios aún más grandes, por ejemplo el Overwhelmingly Large Telescope (telescopio abrumadoramente grande), comúnmente llamado OWL, con un espejo de 100 metros de diámetro.

Al mismo tiempo existen telescopios que se encuentran fuera de órbita, como son:

- El telescopio espacial Hubble perteneciente a la NASA, se encuentra en órbita fuera de la atmósfera terrestre, para evitar que las imágenes sean distorsionadas por la refracción. Con este telescopio se ha explorado lo más profundo del espacio que se ha podido hasta el momento en la historia de la astronomía.
- El telescopio espacial SOHO es un cronógrafo situado en una órbita entre la Tierra y el Sol observando ininterrumpidamente al Sol.

A comienzos de la década de los 40 , se empezaron a construir radiotelescopios, son grandes antenas que sirven para detectar y estudiar radiofuentes emitidas en el Universo.

IMAGEN 2
Esquemas de espejo y montura del Gran telescopio de las Canarias

Fuente: http://www.gtc.iac.es/

[^7]

Fuente：http：／／www．eso．org／sci／facilities／eelt／owl／images／High＿resolution／OWLB＿1200．jpg IMAGEN 6

RADIOTELESCOPIO VERY LARGE ARRAY

Fuente：http：／／www．eso．org／public／images／eso0021f／

IMAGEN 4

Interior telescopio Gemini Norte

Fuente：http：／／hubblesite．org／the＿telescope／hubble＿essentials／image．phpłimage＝hst－above IMAGEN 7

TELESCOPIO ESPACIAL HUBBLE

Fuente：Archivo：USA．NM．VeryLargeArray．02．jpg

- Observatorio astronómico:

Un observatorio astronómico es una construcción o lugar destinado al estudio de los cuerpos celestes y del cielo en general.

Históricamente los observatorios han contenido sextantes como herramientas o piedras alineadas con ciertos fenómenos astronómicos, como es el caso de Stonehenge. Los modernos observatorios astronómicos contienen enormes telescopios con espejos de varios metros de diámetro y ordenadores para el procesamiento de los datos obtenidos.

Los observatorios astronómicos, además de permitir al hombre observar el universo e ir desarrollando esta ciencia, "también han tenido otros usos como el de estudiar os fenómenos magnéticos, meteorológicos y, han permitido resolver el problema de la longitud del mar, enseñar los métodos de navegación y para mantener la hora"23.

Existen varios tipos de observatorios y estos dependen de las actividades que van a realizar:

- Observatorios Gubernamentales.- "Sirven para la observación ininterrumpida de estrellas y planetas, para la preparación de las tablas de navegación y determinación de la hora" ${ }^{24}$.
- Observatorios Educativos.- Son para la formación de estudiantes.
- Observatorios de Investigación.- Estos se dedican al descubrimiento observación y análisis de cometas, asteroides, hoyos negros, o estrella variables. En estos se incluyen los grandes observatorios del planeta, que a la vez se dedican a problemas exclusivamente de astrofísica. Son observatorios de espacio profundo.
- Observatorios De Radioastronomía.- Se dedican al estudio de emisiones de radio del Sol y de las estrellas.

En la antigüedad se construía un solo objeto arquitectónico en el que funcionara el telescopio, actualmente los Observatorios cuentan con un complejo dotado de varias infraestructuras, al mismo tiempo estos grandes complejos son espacios destinados a trabajar en conjunto entre varios paises, es por esta razón que encontramos una gran variedad de Telescopios en distintos complejos astronómicos, como es el caso de La Silla en Chile, Mauna Kea en Hawái-USA, Roque de los muchachos en islas Canarias- España, entre otros.
${ }^{23} \mathrm{htpp} / / / \mathrm{www}$. astromia.com/glosario/observastronom.htm
${ }^{24} \mathrm{htp}: / / \mathrm{usuarios} . m u l t i m a n i a . e s / d 59$ astro/universo/observatorios/observatorios.php

IMAGEN 8
Complejo Astronómico Roque de los Muchachos, Canarias-España Vista Telescopio GTC

Fuente: http://www.gtc.iac.es/
IMAGEN 9
Complejo Astronómico Mauna Kea, Hawái-USA

2.2.- Conocer la Teoría de Diseño de un Observatorio Astronómico.-

Existen variables en el diseño de los observatorios astronómicos, en la acłualidad están ubicados en las cimas de montañas a gran altura sobre el nivel del mar, para sobrepasar los colchones de nubes, estos grandes complejos constan en su parte más importante del Telescopio principal y este está complementándose con instrumentos secundarios, como son telescopios para observaciones planetarias, fotográficos, espectroscopios, interferómetros, radiotelescopios y telescopios solares.

Estos centros de investigación se los ha realizado con el fin de poder seguir expandiendo el conocimiento del cosmos, realizar mediciones, descubrimientos y estudios, y es por eso que ha ido evolucionando su tecnología a un ritmo vertiginoso.
Los observatorios profesionales modernos son sorprendentes por la complejidad de los instrumentos que ayudan a operar a los telescopios. A estos equipos sofisticados se los ubica en zonas alejadas para garantizar el mejor funcionamiento sin ningún tipo de contaminación lumínica, ni refracción para realizar estos estudios, es por eso que se debe equipar cada complejo astronómico con toda la infraestructura adecuada para poder diseñar espacios confortables tanto para el área astronómica como para lo administrativo y logístico del campamento.

Se puede distribuir de distintas maneras los campamentos, generalmente se aisla el área científica de los demás espacios, pero todas estas áreas deben causar el menor impacto ambiental posible para mantener las condiciones climatológicas y ambientales de la zona para garantizar el correcto funcionamiento de este centro cientifico.

Dentro de un complejo astronómico se trabaja las 24 horas, es un lugar donde siempre se realizan actividades, es por eso que se debe pensar en conexiones de un lugar a otro para que esto no cause ningún malestar en condiciones de temperaturas extremas.

Un centro de observación astronómica está compuesto por las siguientes zonas:

- Zona administrativa
- Zona residencial
- Zona de entretenimiento
- Zona de apoyo
- Zona de servicios médicos
- Zona de mantenimiento general
- Zona de servicios
- Zona de Difusión y estudios
- Zona Cientifica

2.3.- Formulación de Programa Arquitectónico Óptimo.-

Estos centros de investigación al estar en lugares remotos y alejados de las poblaciones deben desarrollarse como un complejo arquitectónico completo, en el que conste con todas las áreas necesarias para que la vida de las personas que utilizarán estas instalaciones sea agradable.

El Proyecto Óptimo ${ }^{25}$ contendrá las siguientes zonas:

ZONA ADMINISTRATIVA:

* Subzona:

Administración

* Espacios:
- Recepción
- Director
- Secretaria
- Sub director

Sala de sesiones

- Archivos
- Relaciones Públicas
- Logistica
- Financiero
- Responsable de laboratorios
- oficina de investigadores permanentes
- Oficina de investigadores visitantes
- Oficina Ingeniería Quimica
- Oficina Ingeniería eléctrica
- oficina Ingeniería mecánica
- Oficina Ingeniería Óptica
- Oficina Ingeniería de sistemas
- Responsable de laboratorios

Área de interpretación y dibujo (CAD)

- Archivo fotográfico
- Bodega
- sshh
- aseo

ZONA RESIDENCIAL:

* Subzona:

Estancia

* Espacios:
- habitaciones cientificos
- Habitaciones personal
- habitaciones administrativo
- habitaciones visitantes

[^8]
Meuncorrant

- baño por habitación
- estar científico
- estar personal
*Subzona:
Cocina
* Espacios:

Comedor

- Comedor servicio

Auto servicio
Bodega de Alimentos Diarios
Bodega general

- Depósito de basura

Frigorífico

- Preparación alimentos
- Cocina
sshh
- Aseo

ZONA ENTRETENIMIENTO CIENTIFICO:

* Subzona:

Biblioteca especializada

* Espacios:
- Sala de lectura
- Videoteca
- Nemoteca
- Deposito de libros
- Bodega de libros
- Estanterías de libros accesibles
- Sala de cómputo
- Mapoteca espacial
- Recepción y entrega
- Vestibulo
- Aseo
- sshh
* Subzona:

Sala de juegos
Espacios:

- Billar
- Tenis de mesa
- Juegos de mesa
- Bar
* Subzona:

Gimnasio

* Espacios:
- Área de maquinas
- Área de aeróbicos
- Piscina
- vestidores
- sshh
- aseo
* Subzona:

Sala de uso Múltiple
*Espacios:

- Cine / auditorio
- Cabina de proyección
- Bodega de equipos
- Platea
- Ropero
- Lobby
- sshh

Aseo

ZONA SALUD:

* Subzona:

Servicios médicos

* Espacios:
- Consultorio médico general
- Enfermera
- Farmacia
- Deposito de medicinas
- Sala de curaciones

Sala de espera
-sshh

- Aseo

ZONA APOYO:

Apoyo

* Subzona:

Comunicaciones

* Espacios:
- Antena de comunicación satelital - Cabina de radio comunicaciones

Antena de tv

- Antena de telefonía celular

H $1 E E K$

ZONA CIENTIFICA

Científica

* Subzona:

Observatorio

* Espacios:
- Telescopio reflector (espacio profundo)
- Radiotelescopio
- Telescopio planetario (espectrógrafo)
- Laboratorio fotográfico
- cuarto oscuro
- cuarto de maquinas para el telescopio
- cabinas de observación
- cuarto de estar con cafetería
- responsable de observatorio
- cuarto de control cúpula y telescopio
- bodega
- sshh
- aseo
* Subzona:

Central de Control ambiental

* Espacios:
- Área de meteorología aérea
- Área de meteorología terrestre
- Area de sismografía
- Responsable de sismo grafía y meteorología - sshh
- Telescopio planetario (espectrógrafo)
- Laboratorio fotográfico
- cuarto oscuro
- cuarto de maquinas para el telescopio
- cabinas de observación
- cuarto de estar con cafetería
- responsable de observatorio
- cuarto de control cúpula y telescopio
- bodega
- sshh
* Subzona:

Mantenimiento Especial de Equipos

* Espacios:
- Taller mecánica de precisión
- Taller de electrónica
- Taller de óptica
- Laboratorio instrumentos científicos
- Aluminizado de espejo
- Bodegas
- Laser
- Aseo
- sshh

ZONA MANTENIMIENTO GENERAL:

Mantenimiento general

* Subzona:

Agua

* Espacios:
- Cisterna
- Cuarto de bomba de agua
- Abastecimiento de agua
- Tratamiento de agua
- Recirculación de agua
* Subzona:

Electricidad

* Espacios:
- Generador eléctrico
- Cuarto de Maquinas
- Central de aire acondicionado
- Central de calefacción
- Central de gas
* Subzona:

Instalaciones especiales

* Espacios:
- área de control
* Subzona:

Talleres

* Espacios:
- Mecánica
- Carpintería
- Electricidad
- Bodegas
- vestidores
- Cuarto de basura
- Cuarto de aseo
- sshh

LIEEK

ZONA SERVICIOS GENERALES

```
Servicios generales
    * Subzona:
        * Espacios:
            - Guardianía
            - Lavandería
            - Bodega General
            - Estacionamiento
            - Helipuerto
            - Transporte
            - sshh
```


ZONA DIFUSION ${ }^{26}$

* Subzona:

Centro de enseñanza Astronómica

* Espacios:
- Información
- Director
- Secretaria
- Oficina ingeniero de sistemas
- taller de trabajo y audiovisuales
- Planetario
- cabina de control planetario
- cuarto de ventilación/ extracción de aire planetario
- Observatorio Amateur
- Aulas de enseñanza
- Sala de guías
- recepción señal radioastronomía
* Subzona:

Sala de Uso Múltiple

* Espacios:
- Cine/Auditorio
- Cabina de proyección
- Bodega de equipos
- platea
- sshh
- Aseo
* Subzona:

Museo

* Espacios:
-Sala de exhibición
${ }^{2 n}$ Sección de Difusión del Planetario del Instituto Geográfico Militar. IGM. Quito, Ecuador
- Bodega
- Mantenimiento
*Subzona:
Biblioteca General
* Espacios:
- Mediateca
- Videoteca
- Nemoteca
- Sala de Lectura
- Deposito de libros/equipo

Bodega de Libros

- Lobby
- Recepción y entrega
- Fotocopiadora
- sshh
* Subzona:

Tienda de Suvenires

* Espacios:
- Sala de venta
- Caja
- Caja

2.4.-Conocer la funcionalidad óptima.-

Dentro de los complejos astronómicos tanto del hemisferio norte como el sur, se maneja varias áreas para crear orden en el desarrollo de las actividades de estos centros.

Por ser un campamento alejado consta con circulaciones que conducen a cada área para las actividades a desarrollarse.

Los observatorios profesionales modernos son sorprendentes por la complejidad de los instrumentos que ayudan a operar a los telescopios.

La astronomía moderna hecha desde la tierra en longitudes de onda visible e infrarroja está basada fuertemente en la electrónica y la computación por lo que representa un reto a la vez para los ingenieros profesionales y los físicos aplicados como para los astrónomos.
"Normalmente el observador llega al observatorio un par de días antes de que empiece la temporada asignada con el propósito de familiarizarse con el equipo asi como empezar a cambiar de horario, ya que se trabaja durante toda la noche. Durante el día va al telescopio y una vez familiarizado con el instrumento, para sentirse plenamente confiados de que entienden la operación del mismo, se llevan
a cabo procedimientos de prueba, como son la medida del ruido del detector o calibraciones de las imágenes o espectros. Con todo listo para observar, los astrónomos regresan a la residencia del observatorio, donde se sirven alimentos y se preparan para realizar su noche de observación. Entre una o dos horas antes de que se ponga el sol, los astrónomos regresan al telescopio, normalmente en compañía del asistente para completar los preparativos. Se discute el plan de observación, desarrollado previamente. Se le da la lista de objetos a observar junto con sus coordenadas para que el operador o la operadora los introduzca en la computadora de control del telescopio. Se toman importantes datos de calibración como son medidas de la corriente oscura, o campos planos o espectros de lámparas de comparación". 27

Conforme el crepúsculo avanza y el cielo se hace más oscuro empieza la noche de observación propiamente dicha, esto depende en que estación del año se encuentre, si es verano las noches de observación, cuando los colchones de nubes se hayan dispersado, la observación puede empezar a partir de las 9:30 pm pero en las noches de invierno se empieza a partir de las 11:00 u 11:30 pm.

Los astrónomos no trabajan a la intemperie en la oscuridad junto al telescopio, padeciendo el frío propio de los lugares altos como lo realizaban anteriormente, todo lo contrario, a lo largo de la noche el asistente y los astrónomos trabajan confortablemente en una sala de control con calefacción donde se puede preparar bebidas calientes para disfrutar de la noche de observación que dura hasta el amanecer.
"Normalmente, una noche de observación proporciona una cantidad ingente de datos que deberán ser clasificados y estudiados. Se dice que, yendo una semana a observar, si hay suerte, hay material para ser analizado durante el resto del año e incluso para más tiempo. Y esto es lo que hacen los astrofísicos: eventualmente van a observar y recogen datos con los que trabajan delante de una pantalla de ordenador en sus respectivos institutos. Ya no hay un telescopio asociado a un astrofísico, en todo caso a un astrónomo de soporte, que es quien trabaja en el telescopio durante un período de tiempo más largo y conoce bien su funcionamiento. De hecho, algunos cientificos no saben manejar el telescopio con el que van a trabajar y dependen completamente del astrónomo de soporte"28.

Al terminar el periodo de observación los cientificos regresan a la residencia para poder descansar, hay que entender que mientras un equipo duerme en el dia hay otro equipo que trabajando, para realizar las la interpretación de datos tomados en la observación, radioastronomía, en el área de sismo grafía y meteorología, y asi mismo todo el personal administrativo.
Las áreas lúdicas permanecen abiertas para que se las puedan utilizar las 24 horas del día.

[^9]
2.5.- Conocer las técnicas apropiadas para el diseño

2.5.1.- Módulo Estructural.-

El diseño de una estación de estudios astronómicos incluye varias áreas, dentro de las cuales se encuentran la zona administrativa, zona residencial, zona de entretenimiento, zona de servicios médicos, zona de apoyo, zona difusión y estudios, zona de mantenimiento general, zona de servicios generales y la más importante la zona cientifica, es en esta zona donde funciona el alma del proyecto, especialmente la torre de observación.

Las distintas zonas se pueden determinar por un módulo a nivel de las funciones que se realizan, con un cálculo de acuerdo a las áreas moduladas que el proyecto tendrá. También se puede tomar módulos estándares de materiales para abarcar estas zonas, con excepción del área de telescopio que está dentro de la zona científica.

Todas estas zonas se manejaran con un módulo estándar de $0,60 \mathrm{~cm}$, el cual ayudará a mantener una estructura con luces estables, pero al mismo tiempo ayudará a que el diseño de la infraestructura para este campamento sea flexible, para cualquier modificación o cambio a futuro.

En el área del telescopio no existe un módulo estructural estándar puesto que este depende del diámetro del lente del mismo, ya que esto determina la montura del Telescopio y nos da un diámetro para determinar el tipo de cubierta, es por esta razón que es muy variable. Es importante recordar también que esta estructura debe ser de planta libre, dependiendo del telescopio y su soporte determinara las luces que se debe cubrir.

El diseño conceptual para el telescopio principal pretende definir una tipologia estructural óptima para cumplir la exigente serie de requerimientos necesarios para el eficaz uso de este sistema de observación. "Las altas prestaciones tanto estáticas como dinámicas requeridas por el telescopio principal con un espejo primario de $8,2 \mathrm{~m}$ de diámetro equivalente, determina la necesidad de un análisis detallado de los diversos componentes aislados del sistema estructural, con el objeto de desvelar la influencia de cada componente sobre el comportamiento del conjunto". 29
"La optimización de las variables de diseño, inicialmente de carácter geométrico y cinemático, consigue una solución tipológica y topológica inicial optima que proporciona una reducción considerable de la masa estructural necesaria, lo cual

[^10]determina un favorable punto de partida para el posterior control de las magnitudes dinámicas que son las que finalmente llevan a la definición precisa del sistema". ${ }^{30}$

El diseño tiene como objetivo la definición de una tipología estructural y una geometría optima ajustada a los condicionamientos impuestos finalmente por las estrechas tolerancias dinámicas.
"La estructura presentada queda claramente enmarcada dentro de las obras más singulares de la ingeniería civil. Es evidente la excepcional singularidad tipológica de este tipo de estructura; pero es más palpable aún esta singularidad cuando se profundiza en el análisis de la misma.

En efecto, los órdenes de magnitud de los condicionantes geométricos y movimientos exigidos se desmarcan netamente de los habituales en el campo de la ingenieria, pero sobre todo, es en el ámbito de los requerimientos dinámicos impuestos por criterios de integración de la estructura en un conjunto de elementos ópticos y sistemas de control de extrema precisión donde la excepcionalidad de la estructura destaca claramente". ${ }^{31}$

- Requisitos geométricos para el telescopio principal:

El telescopio principal de configuración altazimutal posee dos partes claramente diferenciadas: el tubo y la montura.

A.) El tubo.-

El término tubo define un complejo conjunto de elementos ópticos y sistemas de control altamente sofisticados. La estructura que determinan estos condicionantes debe permitir acopladamente el giro alrededor de un eje de elevación sustentado y accionado desde la montura, y la rotación acimutal sobre un anillo inferior de suspensión hidráulica.
"El tubo es el subsistema del telescopio que soporta los espejos, el foco Cassegrain y los focos Cassegrain acodados (con sus respectivos instrumentos). Está constituido, principalmente, por la celda del espejo primario, la torre del terciario, el anillo de elevación y el conjunto del secundario (anillo, araña y estructura de soporte).

La celda del primario, formada por un intrincado conjunto de barras, sujeta al espejo primario y debe mantenerlo alineado y modificar su posición para equilibrar los efectos de posibles dilataciones o contracciones. Lo hace

[^11]gracias a sensores de borde, y a los sistemas de accionamiento del espejo primario. Sostiene, además, la torre del espejo terciario y el foco Cassegrain, lo que suma un total de 40 toneladas.
La torre del terciario es una estructura de 1.8 m de diámetro máximo y 7 m de altura, que soporta el espejo terciario. La masa total, incluyendo el espejo y sus mecanismos es de 2,5 toneladas.

El anillo de elevación es una caja circular hueca de 40 toneladas de peso con dos estructuras a los lados que enganchan los motores y permiten que el tubo gire en torno al eje de elevación. El anillo soporta todo el peso del tubo y lo transmite a la montura. A su vez soporta los focos Cassegrain.

Los mecanismos de la estructura de soporte y movimiento del espejo secundario tienen un rango de movimientos de unos 30 mm con una precisión de 0,1 micras.

Dentro del conjunto del secundario, el anillo es la estructura que une la parte superior del tubo con la araña. Por su parte, la araña, una estructura de seis pares de barras, soporta el peso del conjunto del secundario (espejo y anillo). ¡Unos 10.500 kg que sujetan una masa de 2.500 a 20 m de altura y cuya máxima deformación se reduce a 300 micras! Para reducir la sombra que la araña produce sobre el espejo primario, se ha estrechado la anchura de las barras, intentando, además, que coincidan con las brechas que quedan entre los segmentos del espejo primario". ${ }^{32}$

GRAFICO 1

[^12]
B.) La montura.-

"Es una superestructura que soporta 300 toneladas, todo el conjunto del tubo descarga su peso sobre la MONTURA, un subsistema que, junto con los motores y los cojinetes de acimut y de elevación, dota al telescopio de dos ejes de rotación. Transmite todas sus cargas (la del tubo y las suyas propias) al pilar del telescopio a través del anillo de acimut y está constituido por las plataformas Nasmyth y la horquilla.

La función de las plataformas Nasmyth es servir de base estructural a los Instrumentos instalados en ellas, soportando hasta un máximo de 10 toneladas cada una.

La horquilla es la principal unidad estructural de este subsistema y está formada por un conjunto de barras unidas que evitan que el telescopio pierda el apuntado a causa de las vibraciones. Está formada por dos brazos conectados en su parte inferior por una base cuadrada. Sujeta el tubo del telescopio y las plataformas Nasmyth.

El anillo de acimut está formado por una viga anular de acero de unos 16 m de diámetro y sirve de pista de rodadura al movimiento de acimut (movimiento horizontal) y de elemento de unión entre la montura y el pilar. Es uno de los componentes de la base. Sobre el anillo se deposita todo el peso del telescopio a través de los cojinetes hidrostáticos de acimut que suavizan el movimiento y evitan los rozamientos.

Para localizar un objeto celeste, el telescopio se mueve en dos ejes. Los movimientos de acimut (paralelo al horizonte) y elevación (en altura) se encargan de localizar los objetos a observar. Su funcionamiento se asemeja al de los cañones de los barcos: primero, el cañón rota sobre su base y luego busca el objetivo en altura.
Una vez localizado el objeto es necesario hacer un seguimiento del mismo con motivo de la rotación terrestre. Este fenómeno exige disponer de movimientos para compensar dicha rotación y mantener fija la imagen de los objetos que se estén observando. Por la ubicación geográfica de este observatorio, el telescopio dispone de un eje de rotación paralelo al de la Tierra, esto ayuda a realizar el seguimiento con un sólo movimiento.

Para mover este inmenso conjunto se utilizan diversos mecanismos:
Los cojinetes hidrostáticos hacen que la estructura "flote" sobre una superficie de aceite a presión. Esto produce tal sensibilidad al movimiento que un simple empujón con la mano puede mover toda la estructura del telescopio. La misión de los cojinetes es, por tanto, suavizar el movimiento de las partes móviles del telescopio. Funcionan mediante un bombeo constante de aceite
a alta presión; de este modo se logra un movimiento suave y preciso con un esfuerzo minimo. El aceite se envia a un circuito donde es enfriado y reenviado a los cojinetes.

Existen dos tipos de cojinetes hidrostáticos: los cojinetes de elevación, que soportan el tubo y están ubicados en los ejes del anillo de elevación, y los cojinetes de acimut, que soportan el peso de la montura y están situados entre el anillo de acimut y la base de la montura.

Los motores son los encargados de inducir el movimiento, emplea motores directos. Este tipo de motor, que requiere poco mantenimiento, elimina las posibles imprecisiones debidas a la existencia de componentes mecánicos intermedios y, además, reduce el rozamiento. Los codificadores, o sistemas de posición del telescopio, se encuentran en los anillos de acimut y de elevación, y son capaces de registrar movimientos de centésimas de micra. La información que suministran los codificadores sirve para conocer la posición del telescopio y asi poder dirigir el movimiento de los motores". ${ }^{33}$

-Requisitos de conexión de tecnologías:

El telescopio contiene gran cantidad de tuberias y cables que tienen que comunicar elementos con movimiento relativo entre si, lo que genera el problema de que estos se entrecrucen, desordenen o retuerzan.

En el diseño del telescopio se toma en cuenta la necesidad de instalar rotadores de cables para compensar el movimiento, manteniendo su correcta disposición y atenuando las posibles tensiones que afectan al movimiento del telescopio.

GRAFICO 2

FUENTE: Dibujo realizado por la autora

[^13]
- Requisitos de envolfura o cúpula:

La cúpula es la "cáscara" que recubre y protege al telescopio, se trata de una estructura rotante fabricada en acero que, junto con la parte alta de la base del edificio, encierra la cámara del telescopio.
"La cúpula tiene forma cilindrica, con una altura máxima de 29 m , equivalente a un edificio de 9 pisos de altura. Se compone de un entramado de meridianos y paralelos en celosía que soporta una chapa de cerramiento exterior así como la estructura soporte del aislamiento térmico interior.

El conjunto, que tiene un peso de unas 500 toneladas, se apoya sobre un rail en su base, de forma que es posible rotar toda la estructura alrededor de su eje de simetría vertical. Con el objetivo de permitir observar al telescopio, la cúpula incorpora una abertura con 2 compuertas de observación móviles. Se trata de dos compuertas deslizantes, de manera que permite observaciones cerca del horizonte.
La cúpula cuenta con unas ventanas que ayudan a mantener una temperatura uniforme en el conjunto del telescopio y mantener una buena calidad de imagen.

Finalmente existe un último componente móvil consistente en una pantalla anti viento metálica desplegable que, a modo de persiana, minimiza la acción del viento sobre el telescopio. Ésta se sitúa bajo la compuerta de observación de la cúpula". ${ }^{34}$

- Requisitos del edificio del telescopio:

El edificio del telescopio es un "bunker" a toda prueba, está conformado por la base y el pilar. La base del edificio es una estructura cilíndrica fija de hormigón armado. Sobre la base va instalado el carril de rodadura de la cúpula. Por funcionalidad, la base del edificio del telescopio incluye parte de las áreas de servicio, como por ejemplo las áreas de limpieza, la sala de bombeo de aceite de los cojinetes hidrostáticos.
"El pilar del telescopio es un cilindro hueco formado por un anillo de hormigón de aproximadamente 15 m de diámetro externo, 1 metro de ancho y 8 m de altura, sobre el pilar, que soporta todas las cargas del telescopio, se instala el anillo de acimut. La cimentación del pilar y de la base son completamente independientes para evitar la transmisión de vibraciones". 35

[^14]El edificio anexo, se debe conectar con la base del edificio del telescopio y aloja las áreas de servicios auxiliares y de soporte para la instalación. Este edificio lleva una estructura tradicional, se puede mantener el módulo utilizado en el resto de zonas del proyecto.

2.5.2.- Sistemas Constructivos, Materiales y Equipamiento Técnico necesario.-

Los sistemas constructivos y materiales en este tipo de objeto arquitectónico pueden ser muy versátiles, se pueden utilizar materiales tradicionales combinados con estructuras de acero, o cualquier sistema constructivo.

Todas las zonas del proyecto (zona administrativa, residencial, de servicios médicos, mantenimiento general, servicios generales, difusión y estudios) con excepción de la zona cientifica, pueden utilizar una cimentación sencilla, que se requiera según el estudio de suelos; la estructura, las mamposterias, cubiertas, pisos, acabados, pueden utilizar un sistema que sea fácil de acceder en la zona, podrían al mismo fiempo utilizarse sistemas de estructuras ligeras y paneles. Lo importante en estas áreas es saber utilizar correctamente los materiales que resistan las condiciones climáticas, y a la vez tener un correcto tratamiento de estos. Se debe considerar materiales que no causen grandes impactos al medio ambiente, y que sean fáciles de adaptar tecnologias alternativas para que no produzcan contaminación lumínica, y de gases para que no interfiera en la tarea principal de observación astronómica.
"Se debe considerar que los edificios emiten el 48% del total de dióxido de carbono, según cifras del Programa de las Naciones Unidad para el Medio.
Del total emitido por los edificicos, en promedio el 85% se produce por la fase operacional, es decir, debido a transferencias térmicas por el uso de climatizadores. El restante 15% es consumido durante la fase de construcción edilicia.

La injerencia de los edificios en la emisión de dióxido de carbono, principal gas que produce el efecto invernadero y el calentamiento global, es altisima, y deja claro que una de las llaves fundamentales para la solución de este acuciante problema mundial está en la arquitectura, y en especial en las fachadas, que deben impedir la transferencia de energía".36

[^15]En la actualidad se han desarrollando sistemas de fachadas que ofrecen productos en carpintería en madera y aluminio que ayudan a mejorar el desempeño energético de los edificios respetando el medio ambiente．

Es importante considerar en este diseño el aprovechamiento de la energía solar y． para esto se puede utilizar celdas fotovoltaicas opacas incrustadas en la carpintería de las fachadas y estas evitan la transferencia de energía．

La arquitectura modular en fachadas es un innovador sistema de edificación eco－ eficiente，que se caracteriza por el aporte y protección medioambiental que brinda，los principales criterios de sostenibilidad de estos sistemas son el unir la eficiencia energética，diseño bioclimático，y bio－construcción．
＂Destacan el ahorro de energía obtenido，que puede llegar hasta un 50% del gasto energético a lo largo del año．Este ahorro se consigue a través de la implantación de sistemas pasivos de climatización，diseño bioclimático，gran capacidad aislante de sus cerramientos y sistemas de alta eficiencia energética con apoyo de energía solar térmica．

En cuanto al carácter Bioclimático y a la adaptación del medio，las compañías hacen hincapié en las fachadas，huecos，materiales，sistemas pasivos así como su implantación en la localización de destino．Sistemas pasivos de diseño que se suman para la consecución de una edificación lo más energéticamente eficiente posible y totalmente adaptada al medio en el que se implante＂．${ }^{37}$

Por tanto este sistema de fachadas persianas ayuda a la funcionalidad óptima del edificio，cuidando de no emitir contaminación y que el cielo para observación se mantenga limpio．Este sistema es muy útil ya que permite tener edificios totalmente abiertos con ventanales durante el día y por la noche son como cajas de madera que no permite el paso de la luz al exterior，y en su interior las personas pueden llevar una vida completamente normal sin limitarse al uso de luminarias o equipos tecnológicos．Cada una de estas persianas se puede abrir y cerrar individualmente al ser controladas desde cada especio por ejemplo oficinas，habitaciones，estar， comedor，a través del uso de botoneras controlados por sistemas de automatización，permitiendo tanto la ventilación como la iluminación natural．

La zona más importante de este proyecto es la zona científica，es aqui donde se van a instalar los laboratorios，áreas de observación e interpretación y sobre todo el área del telescopio．

El telescopio necesita de un espacio independiente que tenga conexión directa con la cabina de observación，＂esta área utiliza un sistema de cimentación de

[^16]hormigón armado en forma de anillo，utilizará mampostería también de hormigón armado reforzado y será soportante ya que sobre esta se desplazará la cúpula，en el interior se realizara un entrepiso de estructura metálica para que sea el soporte del piso de la cámara del telescopio y un pilar de hormigón sobre el cual descansará la estructura del telescopio＂，38
＂El área base de la cúpula será de hormigón armado ya que tienen que funcionar como pared soportante，la altura de esta pared irá determinada por la altura del telescopio，sobre esta pared se coloca una pletina para formar el riel de rodamiento．La cúpula puede realizarse de estructura metálica，se va armando cada una de las costillas de la cúpula y se deja en el área central un espacio abierto ya que por aquí será la abertura para el telescopio．El recubrimiento de esta será de chapa galvanizada，y en su exterior deberá ser pintada o recubierta de un material que impida el reflejo de luz para que no afecte en el trabajo de observación y，al mismo tiempo，para que la limpieza y mantenimiento sea fácil．Se puede utilizar recubrimientos de aluminio＂．${ }^{39}$

IMAGEN 10
Estado de la construcción del GTC．Puede apreciarse el anillo exterior de hormigón y el carril sobre el cual se desplazará la cúpula，la estructura metálica soporte del piso de la cámara del telescopio y el pilar de hormigón sobre el que descansará la estructura del telescopio．© GRAN TELESCOPIO CANARIAS．

Dependiendo del lugar de emplazamiento hay que utilizar sistemas de precaución contra sismos o cualquier eventualidad de la naturaleza，es así que se debe dar un tratamiento específico a las cimentaciones especialmente del área más delicada que es la del telescopio．

[^17]También es importante contar con un área para el sistema de producción de energía que no solo abastezca al telescopio sino también a todo el conjunto. En este caso se utilizara paneles solares en las cubiertas, y celdas fotovoltaicas en fachadas, se debe considerar un espacio de carga de baterías para almacenar la energia recolectada, también a través de este sistema se calentara el agua para abastecimiento del complejo.

Se necesita una cisterna para recolección y abastecimiento de agua. Este equipo debe tener las bombas necesarias para transportar el agua de los rios cercanos a las cisternas, y al mismo tiempo se recolectara el agua lluvia. El agua recolectada pasara por una planta de tratamiento y purificación, para que esta agua pueda ser utilizada.

Dentro de la infraestructura se necesita un centro médico, para auxilios inmediatos, ya que al encontrarse este centro cientifico alejado de la ciudad hay que prevenir cualquier inconveniente tanto de los ocupantes como de los visitantes.

Para el personal de trabajo tanto científico como logístico de este lugar, se necesita crear espacios adecuados y cómodos para que su estadía en ese lugar sea agradable. Los cientificos al pasar mucho tiempo de trabajo, investigación, y malas noches necesitan espacios lúdicos de distracción es por eso que se debe implementar áreas de gimnasia, piscina, y juegos.

Asi como también es necesario crear vías de circulación dentro del complejo y para conectar a este con las poblaciones cercanas. Un requerimiento importante es construir una vía principal de primer orden conectando las vías principales de conexión con la vias propias del proyecto, esto se debe a que se deben transportar los espejos principales, y este procedimiento es de cuidado extremo, ya que al realizar este procedimiento los espejos deben recibir la menos vibración posible, para no dañar la calidad que este tiene.

Se debe tomar en consideración que esta infraestructura debe ser tratada con elementos que no causen contaminación ya que es importante recordar que se debe mantener el lugar sin polución para que el trabajo de observación sea exitoso.

En la zona de difusión y estudios, funciona el planetario, la construcción del área de planetario se realizara en hormigón inflado, este espacio debe tener un acabado liso, para que al momento de realizar la proyección pueda mantener un optimo funcionamiento, es importante recordar que este espacio debe ser aislado sin ventanas, y se iluminara artificialmente, también debemos considerar que se debe tener un área para el equipo de ventilación y extracción de aire.

Otra zona importante es el cuarto de aluminizado, que se encuentra en la zona de mantenimiento general, este espacio está destinado para el mantenimiento de los
espejos principales, es un espacio muy técnico y especializado, debe ser un lugar completamente hermético, ya que en su interior funcionara un equipo de campana al vacio, que limpiara por completo el aluminio ya desgastado de los espejos principales, y recubrirá nuevamente con una nueva capa de aluminio para que pueda seguir su propósito de observación correctamente.
"Este proceso se lo realiza introduciendo el espejo en una campana de vacío para luego dar una descarga eléctrica muy fuerte a unos gránulos de aluminio, que se vaporizan y se fijan al vidrio creando una capa muy delgada de aluminio metálico sobre la superficie del espejo, en estos casos, para proteger el aluminizado se emplea el mismo método pero con algún silicato, generalmente silicato de Boro (Pírex) creando otra capa sobre el aluminizado, los espejos aluminizados por este método suelen tener una reflectividad de aproximadamente un 90-95\%". 40

Descripción del proceso de aluminizado:

"Primero se retira el instrumento astronómico situado en el foco Cassegrain en el fondo del telescopio. La jaula del instrumento y todo el cableado del telescopio también se retira. Esto expone la célula del espejo que sostiene el espejo al telescopio.

Un carro grande entonces es empujado por el personal del observatorio a una posición directamente debajo del telescopio. Un disco en el carro se levanta para capturar la célula del espejo, entonces se desemperna del telescopio. La célula del espejo se baja y después el carro con la célula del espejo se los empuja lejos del telescopio al cuarto de aluminizado.

Se da una inspección al espejo y se realiza una primera limpieza áspera. Después de una lavada con jabón y agua, el espejo está listo para retirar su antigua capa de aluminio. Una lavada de ácido se utiliza para pelar la vieja capa del aluminio. Esto revela la estructura inferior del espejo.

El forro provisto de costillas del espejo crea los espacios huecos que reducen el peso del espejo y proporcionan las localizaciones para que el espejo sea apoyado por debajo. Los soportes evitan que la gravedad tuerza la forma del espejo sin importar en qué dirección sea apuntada.

Después de que se haya pelado la capa se da una limpieza adicional y se examina cuidadosamente. Cuando todo está listo la operación delicada de la elevación de la tapa del compartimiento del aluminizado comienza. Un operador de grúa en la tapa de la bóveda levanta cuidadosamente el compartimiento de 17.5 toneladas sobre la tapa del espejo.

[^18]El compartimiento se baja sobre el espejo y se asegura al carro. Durante alrededor de un dia, todo el aire entonces se bombea del compartimiento que forma un vacío. Una vez que el proceso de bombear el aire hacia fuera ha terminado; el espejo puede ser recubierto. Colocado bajo el compartimiento están los centenares de bobinas de alambre de tungsteno. Cada una de las bobinas tiene una cantidad de aluminio pequeña cubierta en él. En la secuencia apropiada las bobinas son electrificadas y se calientan a una temperatura de $1,000^{\circ} \mathrm{F}$.

Las bobinas calentadas vaporizan el aluminio que entonces cubre todo el compartimiento con una película fina del metal brillante. Una capa acertada deposita apenas algunos gramos de aluminio a través del disco que hace una capa solamente 3 millones de una pulgada de grueso". ${ }^{41}$

IMAGEN 11
Cámara de vacio Observatorio Calar Alto

2.5.3.- Sistemas de Acondicionamientos Técnicos.-

Esta construcción se ejecutará con el mayor respeto al entorno natural, se la debe enmarcar en lo referente a 'arquitectura sostenible' y contendrá los sistemas técnicos más eficaces en lo que a sostenibilidad respecta.

[^19]Por la ubicación de este tipo de proyectos se debe considerar la instalación de equipos para captación de agua y tratamiento especial de agua para que esta sea de consumo humano.

Para abastecer de energía el complejo y para la utilización de los equipos especializados, se necesitara una fuente para que provea de energía sin causar impactos ambientales tanto auditivos como en polución del aire, es por eso que se plantea un sistema de recolección de energía solar a través de paneles en las cubiertas de cada edificio y a la vez celdas fotovoltaicas en las fachadas para poder producir la energía necesaria para este complejo.

En cuanto a las condiciones de cada zona es necesario tener sistemas de calefacción para mantener un ambiente agradable por cuanto se está a una gran altura sobre el nivel del mar, al utilizar sistemas de recolección de energía a través de paneles fotovoltaicos, se aprovechara este sistema para transportar la energía a través de cada losa y crear pisos radiantes dentro de cada edificio del complejo para de esta manera mantener una temperatura estable.

Para la evacuación de residuos biodegradables se utilizara un biodigestor con el fin de hacer biogás de uso domestico accesible barato y cómodo. Esta solución es muy viable en lugares de difícil acceso donde el abastecimiento de gas propano es muy dificil o escasea.

La propuesta de un biodigestor tiene las siguientes ventajas:

- "Aumentara la dependencia de recursos renovables y viables.
- No se dependerá de recursos no renovables como el petróleo ya que la bombona de gas propano tiene este origen.
- Los residuos del biodigestor es un excelente fertilizante en lugares rurales.
* Contribuye a la conservación de los sistemas ecológicos, para un medio ambiente más limpio y sustentable". 42
En el área del telescopio es muy importante tener sistemas especiales como son calefacción y aire acondicionado para mantener una temperatura estable y segura para que el lente del telescopio no sea afectado por los agentes ambientales en los momentos de observación. Así mismo los sistemas de climatización de acondicionamiento de este espacio trabajaran en conjunto con unas ventanas que se colocaran alrededor de la cúpula astronómica para ayudar a la ventilación.
"Uno de los problemas a evitar, y que incide negativamente sobre la calidad óptica de todo telescopio, es la aparición de turbulencias en el aire contenido en la cámara del telescopio debido a diferencias de temperatura entre los distintos componentes y niveles. Por tanto es primordial controlar la temperatura que afecta

[^20]al entorno del telescopio. Para ello se han diseñado varios sistemas que están instalados en diferentes partes del mismo.

Durante el día, se reduce el calentamiento solar ya que la cúpula está térmicamente aislada. A su vez, la cámara del telescopio dispone de un sistema de aire acondicionado para mantenerse a la temperatura nocturna prevista. Llegada la noche, dos filas de aberturas dispuestas en la estructura de la cúpula controlaran, mediante compuertas, la ventilación natural del interior de la cámara del telescopio. Se colocaran grandes ventanas móviles de ventilación, situadas a la altura del espejo primario, elemento clave en este proceso de control de temperaturas. Esta solución permite mantener unas condiciones ambientales óptimas en el interior. También se dispone de un sistema alternativo de ventilación forzada"43.
"Además, las superficies internas y externas de la Cúpula tendrán que estar cubiertas con una pintura baja de emisividad, de modo que puedan ser aisladas contra la calefacción solar y también evitar el congelamiento por la radiación al cielo frío durante la noche. También se reducirá el volumen de aire dentro del compartimiento del telescopio a un mínimo. Por el tiempo no usado para las observaciones, la calefacción solar es normalmente el primer contribuidor a los problemas termales, asi el aislamiento, y el aire acondicionado durante el día serán proporcionados.

Pero hay también muchas consideraciones que tendrán que ser tenidas presente para alcanzar un diseño acertado del recinto del telescopio: el coste inicial, los costes operacionales, la facilidad de prevenir los escapes del agua y del polvo, un sistema para quitar el hielo cerca del obturador de la bóveda, y las provisiones para el mantenimiento y la ayuda del telescopio son también importantes" 44 .
"Por otra parte, la altura del edificio permite la incorporación de una fila más de aberturas con sus correspondientes compuertas de ventilación en la parte superior de la base del edificio del telescopio. Esta fila de compuertas mejora la ventilación de la celda del espejo y del piso de la cámara del telescopio. También para minimizar la transferencia de calor, se debe incorporar una cámara de aire entre la base del edificio y la cámara del telescopio". 45

En la zona científica los telescopios se instalaran sobre plataformas de hormigón, se modificara el estado original de la montaña para poder realizar la construcción necesaria y estable de los telescopios, es importante recordar que esta zona debe

[^21] Calzón, José Maria Goicolea. Febrero 2000
estar libre de árboles y vegetación que provoquen microclimas produciendo nubes, vientos, o refracción que afecten el uso correcto de los telescopios, y el resultado final de la observación.

También es necesario instalar conexiones eléctricas, para el funcionamiento de cada equipo, se debe utilizar los sistemas de red en computación para transmitir la información a todo el centro y poder trabajar conjuntamente, a la vez se utilizará sistemas satélites para poder transferir información alrededor del mundo a otros centros de investigación científica.

Es importante tomar todas las consideraciones en torno al área cientifica, es por esto que se debe dar tratamientos especiales a las demás áreas, se debe utilizar sistemas automáticos de control de iluminación dentro de cada área habitable, ya que al llegar la noche el complejo no puede emitir ningún tipo de escape de luz que pueda afectar la observación astronómica, y al mismo tiempo hay que garantizar un ambiente agradable y confortable para las personas que no están realizando ningún trabajo de observación astronómica.

2.5.4.- Conocer a los sujetos participantes.-

Las personas que participan de este gran complejo son varias, en su mayoria son científicos y técnicos especializados.

Es un requerimiento a nivel internacional que los administradores, investigadores y encargados de laboratorios sean gente que tenga conocimientos del manejo de centros y equipos astronómicos.

Dado la complejidad y especialidad de los observatorios astronómicos los profesionales que trabajan son de varias ramas como Astrofísica, fisica, química, ingeniería electrónica, ingeniería eléctrica, ingeniería en sistemas, astronomia, cosmogonía. También se encuentran vinculado estudiantes de astronomía quienes realizan trabajos de pasantías.

- Zona administrativa.-

Esta consta de un director, vicedirector, administrador, jefe de logística, finanzas, Ing. Químico, Ing. Sistemas, Ing. Óptica, astrónomos intérpretes de información, recepcionista, secretaria, dibujante. ${ }^{46}$.

[^22]
- Zona residencial.

Este espacio está destinado al descanso de los ocupantes del campamento, y no existe un personal permanente, este espacio se divide en habitaciones para científicos, habitaciones para administrativos, y habitaciones para servicios. En el área de cocina, generalmente se tiene un Chef responsable, dos ayudantes.

- Zona de entretenimiento.-

Estas son áreas abiertas las 24 horas, entre los espacios que conforman esta zona tenemos:
Biblioteca especializada, un encargado.
Sala de uso múltiple, un encargado.
Sala de juegos, un encargado.
Gimnasio, dos fisioterapistas ${ }^{47}$.

- Zona de difusión y estudios ${ }^{48}$.

Aqui se realizaran las actividades para los estudiantes o visitantes al complejo, conforman esta zona:
sala de exhibición. Dos guías
Planetario. Dos guías (pueden ser los mismos de la sala de exhibición)
Administración y estudios. Un jefe de área, Ing. Sistemas, encargado de equipo de proyección.

- Zona de Apoyo.-

Trabaja una persona receptando las comunicaciones.

- Zona servicios médicos.-

Esta zona consta de un médico general, un odontólogo, una enfermera, un encargado de farmacia ${ }^{49}$.

- Zona cientifica.-

Esta zona se divide en dos partes, la administrativa y la de observación. Las personas encargadas de lo administrativo cientifico comparten las instalaciones en el edificio de administración del campamento.

En el área del telescopio trabajan un equipo por noche de observación. Este equipo está conformado por un asistente operador del telescopio y cúpula, el

[^23]astrónomo u observador, que trabaja con dos ayudantes, el encargado del telescopio, dos intérpretes de imágenes captadas ${ }^{50}$.

Asi mismo existen astrónomos visitantes que se encontrarán ocasionalmente en estos centros. Estas personas llegan a estas instalaciones por épocas de observación, y se tiene como regla ${ }^{51}$, máximo un grupo de 4 astrónomos visitantes por telescopio. Los grupos de difusión pueden ser grupos máximos de 20 personas, y utilizaran únicamente el observatorio destinado a esta actividad. Los telescopios fotográficos, de espacio profundo, radiotelescopio, solo lo utilizan los astrónomos profesionales.

- Zona de mantenimiento general.-

Aqui hay talleres de carpintería, plomería, electricidad.

- Zona de servicios generales.-

A esta zona pertenece:
La lavanderia que consta de un encargado, y dos ayudantes.
Taller de mecánica automotriz, un mecánico encargado y dos ayudantes. Bodega general, un encargado.

En los complejos astronómicos más grandes del mundo operan alrededor de 250 personas.

2.6.- Conocer las condicionantes y determinantes climáticas y topográficas para la ubicación de un observatorio astronómico.-

Existen pocos observatorios que en la actualidad funcionen en lugares poblados, uno de los requerimientos especiales para poder alcanzar estudios de gran nivel cientifico y que sean las observaciones claras y un resultado nitido en las imágenes captadas, es que el emplazamiento de estos centros sea lo más distante posible de las ciudades. Se estima que la distancia mínima es de 50 Km de la población más cercana.

Se debe procurar esta distancia para no provocar contaminación lumínica, para que al área de influencia del observatorio, no produzca ninguna distorsión en los objetos observados. Así mismo esta norma permite que los cielos se mantengan despejados y que se conserven con buena calidad para esta actividad. Dentro de las poblaciones cercanas a estos centros se han determinado leyes para la iluminación y no afectar a los observatorios.

[^24]El problema de la contaminación lumínica o luz parasita, ha sido una de las preocupaciones más grandes en el mundo de la astronomía, es importante educar a las personas que debemos iluminar el suelo y no el cielo, así podemos mantener cielos oscuros para seguir expandiendo la investigación del cosmos.

La calidad astronómica de un Observatorio está principalmente definida por la transparencia de sus cielos y por el número de horas de observación útil al año. Esto está íntimamente relacionado con la climatología del lugar y de sus características geográficas.

Es por esta razón que se debe considerar en el emplazamiento los siguientes factores:

- Su ubicación en el Ecuador permite la observación de todo el Hemisferio Norte Celeste y Sur.
- Los Observatorios se deben emplazar sobre los 2.400 m . sobre el nivel del mar por encima de la inversión térmica de los vientos, lo que garantiza que las instalaciones estén por encima del llamado "Mar de Nubes" donde existe una atmósfera limpia sin turbulencias, y estable.

Por debajo del mar de nubes predominan los movimientos turbulentos de las capas inferiores de la atmósfera. El "mar de nubes" es una capa protectora que no permite el paso de la polución atmosférica y de partículas, y de la contaminación lumínica cuando esta capa es muy densa.

Se detalla a continuación un extracto de 'LA LEY DEL CIELO52' elaborado por el Instituto de Astrofísica Canarias para protección de áreas de observación astronómica:
a) FACTORES QUE IMPACTAN NEGATIVAMENTE EN LA CALIDAD ASTRONÓMICA.

Principalmente hay cuatro factores que pueden impactar negativamente en la calidad astronómica:

- Contaminación Lumínica.
- Contaminación Atmosférica.
- Contaminación por radio frecuencia.
- Contaminación por rutas aéreas.

Son factores producidos por la actividad humana, excepto la contaminación atmosférica.

- CONTAMINACIÓN LUMÍNICA.-

Este factor sólo afecta a las observaciones nocturnas en el espectro visible y cercano al visible. La contaminación lumínica es el brillo o resplandor de luz en el cielo producido por la difusión y reflexión de la luz artificial en los gases y partículas de la atmósfera.

Este resplandor, producido por la luz que se escapa de las instalaciones de alumbrado de exterior, produce un incremento del brillo del fondo natural del cielo. Al hacerse las observaciones de objetos astronómicos por contraste con el fondo del cielo, un incremento del brillo del fondo disminuye este contraste e impide ver los objetos con un brillo similar o inferior al del fondo.

IMAGEN 12
Vista desde el Observatorio Monte Palomar a Las Vegas

FUENTE: http://www.umanzor.com/?paged=2

- Elflujo luminoso.-

La forma en que la luz artificial es enviada hacia el cielo puede dividirse en tres partes:

- Directa, desde la propia fuente de luz (lámpara ó bombilla)
- Por reflexión en las superficies iluminadas
- Por refracción en las partículas del aire

[^25]1. El impacto Directo es el más perjudicial. Principalmente es producido por focos o proyectores simétricos (alumbrado de grandes áreas, zonas deportivas, puertos, aeropuertos, fachadas de edificios, etc.) con elevada inclinación (superior a 20°) donde parte del flujo de la lámpara (bombilla) es enviado directamente sobre el horizonte, desperdiciando energía luminosa. Estos casos son especialmente graves pues en general utilizan lámparas de gran voltaje. (400 W.- 2000 W.) con un elevado paquete luminoso, de forma que un sólo proyector puede impactar más que una población iluminada de 1.000 habitantes.

Otras instalaciones muy impactantes por su tamaño y proliferación son los alumbrados decorativos u ornamentales en los que el flujo de luz de la Iuminaria sale en todas las direcciones, especialmente sobre el horizonte, como son las bolas o globos y faroles con la lámpara (bombilla) en el medio del farol. El impacto Directo puede eliminarse totalmente dirigiendo la luz sólo alli donde se necesite evitando enviar flujo hacia el cielo. En los casos de alumbrados de fachadas o monumentos, donde es inevitable que parte del flujo salga fuera del escenario a iluminar, deberian ser apagados en las horas que no hay ciudadanos en la calle para observarlos. Los letreros luminosos deberian apagarse de igual forma o realizarse de forma que su luz se proyecte totalmente por debajo del horizonte donde realmente el ciudadano lo va a percibir (similar a las luminarias empotradas en techos de oficinas). La eliminación del impacto Directo suele suponer como mínimo un aumento del 25% en los niveles de iluminación usando la misma lámpara, por lo que se puede reducir el número de luminarias o el consumo de las lámparas para obtener los mismos niveles anteriores con menos energía.
11. La reflexión suele tener un impacto inferior a 10 veces el impacto Directo. La diferencia principal con el Directo es que tiene un bajo brillo (millares de veces inferior). Su impacto es importante en grandes instalaciones o en pequeñas cuando se encuentra cercano al Observatorio (distancias inferiores a 10 Km .). Su impacto no se puede eliminar totalmente pero puede reducirse evitando excesos en los niveles de iluminación ó reduciendo estos a altas horas de la noche cuando no se necesiten niveles elevados. También puede disminuirse reduciendo los índices de reflexión de las superficies iluminadas (colores oscuros).
III. La refracción suele tener un impacto muy despreciable con respecto a las otras dos y su influencia depende del tamaño y cantidad de partículas del aire entre la fuente de luz y la zona iluminada. Disminuye con la distancia entre la fuente y la zona iluminada.

Características del fluio luminoso:

- Lámparas.-

No todos los tipos de lámparas (bombillas) impactan de igual forma en la calidad astronómica. Cuanto mayor sea la zona del espectro donde emite, mayor es su impacto al invadir mayor zona del espectro de observación astronómica. También depende de la zona del espectro donde emite. Una lámpara emitiendo en la zona del ultravioleta (no útil para el ojo humano) impacta más que cualquier otra con el mismo flujo. La radiación ultravioleta es una onda de gran energia con gran alcance y llega con mucha más fuerza a las instalaciones telescópicas. Por esta misma razón, esta zona del espectro es muy importante astronómicamente por la información que los astrónomos obtienen de los astros lejanos.

De los tipos de lámparas que actualmente existen en el mercado, atendiendo a sus espectros, las podemos clasificar de la siguiente forma:

a) Poco contaminantes:

- Vapor de Sodio a Baja Presión: emite prácticamente sólo en una estrecha zona del espectro, dejando limpio el resto. Su luz es amarillenta y monocromática. Es recomendable para alumbrados de seguridad y carreteras fuera de núcleos urbanos. Son las más eficientes del mercado y carece de residuos tóxicos y peligrosos.
- Vapor de Sodio a alta Presión: emiten sólo dentro del espectro visible. Su luz es amarillenta con rendimientos de color entre 20% y 80%, dependiendo del modelo. Es recomendable para todo tipo de alumbrado exterior. Son las más eficientes del mercado después de las de baja presión.

b) Medianamente contaminantes:

- Lámparas incandescentes: No emiten en el ultravioleta pero si en el infrarrojo cercano. Su espectro es continuo. Su luz es amarillenta con un rendimiento de color del 100%. No es recomendable para alumbrado exterior, excepto para iluminar detalles ornamentales. Son las más ineficaces del mercado.
- Lámparas incandescentes halógenas. Son iguales que las incandescentes pero emiten algo más en el ultravioleta si no va provista de un cristal difusor (son peligrosas sin este cristal por emitir en el ultravioleta duro). Son algo más eficaces que las incandescentes.
－Lámparas fluorescentes en tubos y compactas（vapor de mercurio a baja presión）：Emiten en el Ultravioleta．Su luz es blanca con rendimientos cromáticos entre el 40% y el 90% ．Es recomendable para alumbrados peatonales y de jardines．Tienen una alta eficiencia．

Estas lámparas son medianamente contaminantes si no se usan en grandes instalaciones y convenientemente apantalladas evitando emisión de luz sobre el horizonte．Debido a sus bajos paquetes de lúmenes，si se usan compactas con voltajes de hasta 25 W．（o incandescentes hasta 60 W．）．de forma discreta y separadas a más de 15 m ．unas de otras，no representan un impacto apreciable si están a más de 10 Km ．de las instalaciones telescópicas，siempre y cuando no se superen los niveles de iluminación recomendados（10－5 lux de media y 20 lux de máxima puntual）．

Por otro lado，la sensibilidad del ojo humano se desplaza hacia el azul con niveles bajos de iluminación por lo que las lámparas fluorescentes son más adecuadas para instalaciones que requieran un alumbrado tenue y de señalización（en paseos，jardines）con entornos oscuros．

c）Muy contaminantes：

－Lámparas de Vapor de Mercurio a alta presión：Tienen una elevada emisión en el ultravioleta．Su luz es blanca con rendimientos de color inferiores al 60% ．Es recomendable para zonas peatonales y de jardines． Son las menos eficientes del mercado en lámparas de descarga．
＊Lámparas de halogenuros metálicos：Tienen una fortísima emisión en el ultravioleta．Su luz es blanca azulada con rendimientos de color entre el 60% y el 90% ．Es recomendable para eventos deportivos importantes y grandes zonas donde se requiera un elevado rendimiento cromático．Son muy eficaces，parecidas al sodio de alta presión，pero de corta vida．

Límite de contaminación：

De acuerdo con el Comité 50 de la Unión Astronómica Internacional，un Observatorio de alta calidad no puede superar un incremento del 10% en su brillo natural del fondo del cielo，medido a 45° sobre el horizonte en el rango del espectro de 300 nm a 1000 nm ．（Visible： 400 － 700 nm ．）．

Impactos en el Medio Ambiente：

Se desconoce la existencia de impactos en el medio ambiente producidos por la contaminación luminica，refiriéndonos al entorno oscuro que es afectado por el brillo artificial del cielo，a excepción del impacto sobre el paisaje nocturno natural（incluyendo las maravillas del universo）．Si existen impactos en el lugar
donde se encuentran los focos o fuentes de contaminación．Estos producen por deslumbramiento y exceso de iluminación：Inseguridad vial，derroche energético，stress，vandalismo，disconformidad visual y deslumbramiento de las aves nocturnas．
－Inseguridad vial．Debido a que el ojo humano se adapta rápidamente a la superficie o punto de mayor brillo que hay en su campo de visión y por otro lado a su lenta adaptación de una zona muy iluminada a otra oscura（varios minutos），produce que en alumbrados mal proyectados los conductores reduzcan su capacidad de percepción（deslumbramiento）．Son ejemplos claros de este efecto los siguientes casos：

1）El paso de una carretera muy iluminada a otra poco iluminada．Un caso típico es el de los túneles．De día，si entramos en un túnel poco iluminado pasará un tiempo sin que veamos lo suficiente para ver obstáculos en la carretera．De noche，si salimos de un túnel muy iluminado，ocurrirá lo mismo si no hay alumbrado a la salida del túnel．Por ese motivo，los ingenieros en iluminación recomiendan utilizar alumbrados de transición que gradualmente pasan de un nivel de iluminación a otro y permiten una adaptación del ojo humano entre zonas con diferentes niveles de iluminación．

2）También ocurre en viales iluminados con muy poca uniformidad，es decir，los puntos de luz intercalados a más de 3 ó 5 veces la altura de las luminarias．Esto produce zonas oscuras y zonas muy iluminadas，por lo que el ojo humano se acostumbra a las zonas más brillantes y lo obstáculos en las zonas oscuras no son percibidos．Este fenómeno aumenta con la potencia de las lámparas （aumentando el brillo de las zonas iluminadas）al aumentar el contraste entre ambas zonas（erróneamente utilizado para obtener una iluminación media más alta）．

3）Circular por una carretera sin iluminación y tener puntos brillantes de luz en el campo de visión，como instalaciones con proyectores inclinados（un campo de fútbol）o luminarias prismáticas，globos，faroles de instalaciones anexas a la carretera．También ocurre lo mismo cuando se circula por una vía urbana con alumbrados contaminantes a baja altura（globos y faroles）que debido a su poca eficiencia no iluminan suficiente la calzada pero si producen deslumbramiento que impide ver convenientemente a los peatones．Este fenómeno se incrementa al aumentar la potencia de las lámparas （normalmente hecho erróneamente para compensar la pobre iluminación de la calzada）．

- Derroche energético. Por 10 visto en párrafos anteriores, si utilizamos la mayor parte de la luz en iluminar lo necesario y no fuera de los límites que queremos iluminar, necesitamos menos energía eléctrica para tener una iluminación adecuada.

Si se realizan los alumbrados con los niveles de iluminación necesarios (sin excederse) también reducimos el consumo eléctrico. Igualmente, si se optan medidas de reducción de flujo luminoso a partir de ciertas horas de la noche cuando los niveles de iluminación requerida sean inferiores a los de las primeras horas de la noche, o incluso el apagado de la misma (alumbrados ornamentales, anuncios Iuminosos, etc.).

Realizar un alumbrado con una excesiva iluminación supondrá que las instalaciones vecinas tiendan a igualarlo produciéndose un efecto multiplicativo en el consumo de energía (innecesaria).

También debe tenerse en cuenta el usar el tipo de lámpara (bombilla) adecuada para cada instalación procurando usar la más eficiente para cada caso (por ejemplo, no debe usarse lámparas incandescentes o de vapor de mercurio para alumbrados de seguridad), esto vendrá condicionado por la reproducción cromática necesaria.

- Estrés, vandalismo, disconformidad visual. El deslumbramiento además provoca cansancio visual (somnolencia, dolor de cabeza). También ha sido demostrado su influencia en el stress y vandalismo (reduciendo el deslumbramiento se reduce el vandalismo) según estudios realizados en la ciudad de Nueva York. No es inadvertido como en nuestras islas las luminarias tipo GLOBO reciben la mayor parte del vandalismo a instalaciones de alumbrado (autodestrucción).

En instalaciones alejadas de zonas iluminadas, es preferible no utilizar alumbrados de seguridad pues de lo contrario se está indicando donde se encuentra la instalación y proporcionando posibles zonas de acceso a la misma. Es más efectivo un alumbrado disuasorio que se encienda por presencia o similar.

Ejemplos de cómo combatir la contaminación lumínica en el uso de alumbrado: GRAFICO 3

Tipo de luminarias

MALO............Luminaria regular

FEO. \qquad Luminaria mala

FUENTE: Norma de emisión para la regulación de la contaminación luminica. 1999
Siguiendo las indicaciones contra la contaminación lumínica, observatorios como Cerro Paranal, y La Silla que pertenecen a la Organización ESO, han determinado como política, no utilizar ningún tipo de alumbrado en los exteriores del área de Telescopio, el acceso se lo realizara un par de horas antes de que oscurezca, si fuere el caso de acceder cuando ya ha oscurecido, se debe utilizar linternas personales, y apuntar hacia el suelo, nunca hacia el cielo y jamás hacia los equipos.

En cuanto a la topografía, al estar en una montaña es muy irregular pero para la colocación de la torre de observación se debe nivelar el terreno creando plataformas para no tener desviación con los instrumentos.

En cuanto al clima, este debe ser en lo posible seco, hay que tratar de evitar la humedad, para que esta no ocasione distorsiones en el horizonte del espejo del telescopio, así mismo es necesario para el funcionamiento correcto de los telescopios.
"Las condiciones atmosféricas son determinantes para una observación productiva hasta el punto que, si no son las adecuadas, esta se interrumpe. Esto no implica que no se pueda transgredir con algunos parámetros, pero para cada telescopio
existen unas condiciones atmosféricas de utilización fuera de las cuales se deja de trabajar" 53.

Entre las cuales se deben considerar:

- Meteorología local
- Debe mantenerse en una alta altitud, ya que la densidad del viento es menor que en niveles cercanos al mar. ${ }^{54}$
- La humedad relativa debe ser estable durante el año en un promedio de $48 \%{ }^{55}$.
- La capa de inversión debe estar sobre los 2000 a 2400 msnm .
- Las temperaturas nocturnas deben estar entre $2 \pm 4 \mathrm{C}, 90 \%$ del tiempo. ${ }^{56}$
- Nubosidad
- transparencia del cielo
- vapor de agua
- Precipitaciones
- Brillantes de los cielos cercanos
- Seeing
- Temperatura
- Sismicidad

El siguiente cuadro corresponde a las estadísticas que se manejan en algunos de los grandes observatorios profesionales del mundo:

[^26]CUADRO 2
Estudio caracteristicas climatológicas de Observatorios Astronómicos Profesionales

CARACTERISTICAS	OBSERVATORIOS					minimo	MÁxIMO
	PARANAL WWWeso.org	LA SILLA wwwls eso org	GTC wngto iaces	MAUNA KEA Keck Report 90	CALAR ALTO wWW caha es		
NOCHES DESPEJADAS	350	300	270	300	180	180	350
NOCHES FOTOMETRICAS (\% de noches al año)	84.6\%	70\%	83.7\%	47\%	35\%	35\%	84.6\%
CERCANIAACIUDADES (contaminación luminica)	$\begin{gathered} 120 \mathrm{Km} . \\ \text { ANTOFAGAS } \\ \text { TA } \end{gathered}$	$\begin{gathered} 85 \mathrm{Km} . \\ \text { LA SERENA } \end{gathered}$	15 Km . SANTACRUZ DE LAPALMA	40 Km . ST. HILO	44 Km . ALMERIA	15 Km .	120 Km .
ALTITUD	$\begin{gathered} 2635,43 \\ \mathrm{msnm} \end{gathered}$	2400 msnm	2426 msnm	4200 msnm	2168 msnm	2168 msnm	4200 msnm
VELOCIDAD DEL MENTO	$30.05 \mathrm{~m} / \mathrm{s}$	$33.35 \mathrm{~m} / \mathrm{s}$	$22.13 \mathrm{~m} / \mathrm{s}$	$24.33 \mathrm{~m} / \mathrm{s}$	$8 \mathrm{~m} / \mathrm{s}$	$8 \mathrm{~m} / \mathrm{s}$	$33,35 \mathrm{~m} / \mathrm{s}$
VAPOR DE AGUA	4 mm	10 mm	$3.3-5.2 \mathrm{~mm}$	5.1 mm		3.3 mm	10 mm
TEMPERATURA	$-8^{\circ} \mathrm{A} 25^{\circ} \mathrm{C}$	$15.3^{\circ} \mathrm{C}$	$-8^{\circ} \mathrm{A} 25^{\circ} \mathrm{C}$	$\begin{array}{\|c} -4^{\circ} \text { a } 4^{\circ} \mathrm{C} \text { en } \\ \text { invierno y } 15^{\circ} \\ \text { C de Abr. A } \\ \text { Nov. } \\ \hline \end{array}$	$-4 \mathrm{~A} 8.6^{\circ} \mathrm{C}$	-8 ${ }^{\circ}$	25°
HUMEDAD	5-20\%	50\%	10-50\%	4-99\%	64.9\%	4\%	99\%
CLIMA	desertico (seco a muy poca humedad)	desertico (seco a muy poca humedad)	humedo a seco	templado a frio (seco)	desertico arido	seco	desertico
CAPADE INVERSIÓN (mar de nubes sobre)	1000 msnm	1500 msnm	$\begin{gathered} 800-1500 \\ \mathrm{msnm} \end{gathered}$	2400 msnm	1500 msnm	800 msnm	2400 msnm
\% Nubes	3.7\%	4.1\%		20-100\%	4\%	3.7\%	100\%
PRECIPITACIÓN	$0.03 \mathrm{~mm} / \mathrm{dia}$		$200 \mathrm{~mm} / \mathrm{dia}$	$4 \mathrm{~mm} / \mathrm{dia}$	$0.2 \mathrm{~mm} /$ dia	$0.02 \mathrm{~mm} / \mathrm{dia}$	$200 \mathrm{~mm} / \mathrm{dia}$
PRESION ATMOSFÉRICA	750 mbar	772.2 mbar	$\begin{gathered} 720-800 \\ \text { mbar } \end{gathered}$	653 mbar	775.9 mbar	653 mbar	775.9 mbar
HELIOFANIA	$\begin{array}{\|c\|} \hline 1120 \text { horas } \\ \text { invierno } \\ 800 \text { horas } \\ \text { verano } \\ \hline \end{array}$	50 horas				50 horas	1120 horas
SEEING	0.69 arcsec	0.86 arcsec	$\begin{gathered} 0.5-0.76 \\ \operatorname{arcsec} \end{gathered}$	0.5 arcsec	0.9 arcsec	0.5 arcsec	0.9 arcsec

Fuente: Cuadro realizado por la autora

2．7．－Conocer y analizar la morfología．－

La morfología dentro del complejo astronómico es sencilla，son edificaciones de baja altura y mantienen una geometría regular．

Se debe considerara dentro del campamento，la construcción de cubiertas completamente simétricas，con una geometría plana para evitar las turbulencias， no se recomienda cubiertas inclinadas ya que estas son altas en reflectancia，y pueden contaminar el cielo del lugar．

Se encuentra diferencias morfológicas en el área de la torre de observación．En realidad existen algunas variantes para las cúpulas．Estas son las más importantes， en estas están la clave para la protección y el uso exitoso del telescopio．

No hay muchas geometrías para los edificios estructurales de telescopios， especialmente en vista de los parámetros básicos que cualquier edificio de telescopio debe lograr．Existen geometrias que son muy conocidas y comunes en el campo de la astronomía y corresponden a los telescopios que están trabajando actualmente o al de los proyectos en curso．

Sin importar la forma，las cúpulas deben cumplir la misma función de proteger al telescopio y deben girar 360° para poder ayudar a realizar una observación completa y óptima．
＂La envoltura del telescopio debe ser diseñada para prevenir el flujo y turbulencias del aire en el interior de la cámara del telescopio．La cúpula debe incorporar ventanas controlables para maximizar la ventilación natural durante la observación． El viento debe ingresar de una manera sutil para no dañar los equipos y no alterar la observación．

Es importante controla el comportamiento termal de la cúpula，especialmente en las horas de observación，esto depende básicamente en que la baja masa térmica que posee la estructura．Reduciendo el peso de la estructura es el método más directo para minimizar la carga de calor，asi mismo el tamaño y la geometría del telescopio tendrán un efecto importante en la reducción de la inercia térmica．

El ancho de la cámara del telescopio debe ser la minima necesaria para reducir el volumen del aire que debe ser renovado．

La geometría łambién dependerá de las operaciones que se desean realizar dentro del compartimiento del telescopio，por ejemplo，descubriendo proceso，cambios secundarios，el montaje del instrumento en las diversas estaciones focales，el etc． （éstos implican el uso de las elevaciones，de las grúas，de las plataformas）＂57．
${ }^{57}$ Towards an optimal enclosure for the future large telescope．G．Pescador J．Castro，G．Winter P．Cuesta．

Entre las tipologías más comunes se conoce ${ }^{58}$ ：

1．－Consiste en un cilindro similar al recinto del VLT．La＂cúpula＂es un cilindro con un diámetro levemente más grande que la base，rodeada por los respiraderos de viento y de una azotea doble en la parte alta de la compuerta，para de esta manera reducir el problema del peso de la nieve en la parte superior del obturador． El obturador consiste en dos puertas en la forma de＂L＂，que se abren lateralmente sobre una pieza externa del cilindro．

GRAFICO 4

Esquema de geometría

IMAGEN 13
Telescopios VLT

FUENTE：www．eso．org／paranal
Las ventajas de este tipo de cubierta es que permite tener una abertura más grande y completa para los telescopios，al mismo tiempo este tipo de cubierta se

[^27]escoge para minimizar recursos de calefacción en el interior pero a la vez maximizar la calidad de imagen de los telescopios，es considerada la mejor opción en lugares que soportan pocas cantidades de nieve o donde no tienen nieve．

2．－La segunda opción es un edificio octagonal que incorpora una figura giratoria trapezoidal．Las puertas del obturador se abren como＂alas singulares＂a los lados de la estructura．El recinto tiene también lumbreras en la parte posterior．Esta topología se podía comparar al de los recintos de NTT o Galileo．

GRAFICO 5

IMAGEN 14
Telescopio NTT

3．－El tercero son las cúpulas del proyecto de los Observatorio Géminis．La base del edificio es un cilindro y la bóveda tiene una parte cilíndrica seguida por un hemisferio．Esta solución propone un esquema de ventilación basado en puertas en la parte cilíndrica de la estructura giratoria que abren de abajo hacia arriba en el exterior，cambiando la geometría a un cilindro cuando estas puertas están completamente abiertas para la ventilación．

GRAFICO 6
Esquema de geometría

FUENTE：http：／／www．gtc．iac．es／documentos／PUB／EDIF／0002B1AA．pdf
MMAGEN 15
Telescopio Gemini

FUENTE：http：／／www．gemini．edu／

4．－La cuarta alternativa corresponde al telescopio Keck．La cúpula tiene la forma de una esfera truncada en la base，y apoyada en un edificio cilíndrico．El diámetro de la cúpula es más grande que el diámetro de la base．En este caso，la bóveda incorpora ventiladores．

GRAFICO 7

IMAGEN 16
Telescopios Keck

Es importante estudiar diversas alternativas para la tipología del la cubierta del telescopio para anticipar problemas y también para hacer más fácil la optimización de la geometría seleccionada．

La altura del compartimiento del telescopio sobre la tierra es crítica，y será diferente para diversos estilos．Una tipología que no aumenta el grueso por aguas，arriba de la capa superficial turbulenta es deseable puesto que ésta reduce la altura y el costo．

La gran mayoría de observatorios a nivel mundial ha conservado la cúpula tradicional，esta es de gran facilidad al momento de realizar los giros，y aparentemente refleja menos luz al momento de realizar la observación，sin embargo el costo de la construcción de la cúpula y su peso son muy altos，es por eso que en la actualidad al contar con materiales flexibles se ha optado por nuevas formas．

IMAGEN 17
Interior de la cúpula del gran Telescopio Canarias

FUENTE：http：／／WWW．gtcdigital．net／todogtc．php？op $1=28$ op $2=16$

CロNSTRUIR Y DEFINIR EL PREBLEMA

A. OBSERVATORIO "LA SILLA"

"Se encuentra situado a 2400 msnm , rodeando la extremidad sur del desierto de Atacama en Chile, a 160 km . de La Serena. Las coordenadas geográficas son: Latitud $29^{\circ} 15^{\prime}$ sur y Longitud $70^{\circ} 44^{\circ}$ oeste" 59 .

GRAFICO 8
Ubicación La Silla en Chile

3.1.- Conocimiento, crítica y análisis de ejemplos relevantes e institutos existentes.-

Hace algunos años el concepto que se tenía de observatorio era distinto, este era un solo complejo donde funcionaban todas sus áreas en conjunto; esto ha ido variando y actualmente, se trata de ubicar el sitio de emplazamiento lo más distante posible de las poblaciones y sobre todo en montañas de gran altura por lo que se ha tenido que realizar campamentos de varias edificaciones para la instalación de observatorios.

Una de las características más comunes de los grandes observatorios de la actualidad es que toman la parte alta de la montaña para la ubicación de las torres de observación; las demás instalaciones se ubican en un campamento situado por debajo de esta zona, a una distancia prudente para de esta manera evitar la contaminación a los equipos de observación.

Se debe tener en cuenta que al emplazar los campamentos, estos deben proporcionar las condiciones más apropiadas a fin de transformar estos lugares inhóspitos en un sitio de relajación y de estimulación para las personas que habitan aqui, así sea por periodos cortos. Actualmente las instalaciones para el área residencial son como las de un hotel 5 estrellas.

A continuación se estudiaran tres de los más importantes observatorios en el ámbito mundial.

FUENTE: WWW.LS.ESO.ORG

La Silla es parte de la sociedad "ESO" (European Southern Observatory), que cuenta con miembros internacionales y nacionales, este es un complejo donde se han instalado algunos telescopios de diferentes nacionalidades.

El Observatorio La Silla es el primer complejo astronómico de ESO en Chile, inaugurado el 25 de marzo de 1969.
"Con sus telescopios y variados instrumentos, el Observatorio La Silla ha permitido a astrónomos de todo el mundo desarrollar investigaciones de primera línea en las últimas cuatro décadas. La Silla ha seguido incorporado nuevas tecnologías que le permiten mantener un lugar de liderazgo en el estudio del cosmos"60.

[^28]Este complejo está aislado de cualquier luz artificial y fuente de polvo. Sus instalaciones albergan a uno de los espectrógrafos más modernos del mundo denominado "Buscador de Planetas por Velocidad Radial de Alta Precisión" (High Accuracy Radial velocity Planet Searcher, en inglés) HARPS, y que tiene como objetivo observar planetas extrasolares. Otro instrumento destacado que funciona en este observatorio astronómico es el Detector óptico e infrarrojo cercano de brotes de rayos gamma, (en inglés Gamma-Ray Burst Optical/Near-Infrared Detector, GROND) que está instalado en un telescopio de $2,20 \mathrm{~m}$.

Los tres principales telescopios que se encuentran en el observatorio de la Silla son: el NTI de 3.5 m , otro telescopio de 2.2 m , el Telescopio de 2.2 metros ha estado en operaciones desde principios de 1984 y está en préstamo indefinido a ESO por el Max Planck Gesellschaft. Tanto la operación como la mantención de este telescopio están bajo la responsabilidad de ESO. Este telescopio tiene un diseño Ritchey-Chrétien sobre una montura de tipo ecuatorial, y sus instrumentos son FEROS y WFI. Y por último otro de 3.6 m que posee un diseño de quasi-Ritchey-Chrétien y una montura ecuatorial clásica este está en operaciones desde 1977, este ha generado una gran cantidad de datos astronómicos, principalmente en la búsqueda de planetas extrasolares.
"El Observatorio La Silla sigue ofreciendo capacidades excepcionales a la comunidad astronómica" dice el Director General de ESO, Tim de Zeeuw. "Fue la primera presencia de ESO en Chille y, como tal, gatilló una larga y provechosa colaboración con este pais y su comunidad cientifica".

Este complejo cuenta con ${ }^{\text {b1 }}$:

- Zona administrativa:
- Director
- Subdirector
- Recepción
- Secretaría
- Sala de sesiones
- Archivos
- Sala de sesiones
- Administrador
- ingeniería de sistemas
- Zona residencial:
- 172 dormitorios para todo el personal
- 14 habitaciones de hotel
- Cocina
- Restaurante
- Zona de entretenimiento:
-2 librerías (una científica y otra de entretenimiento)
- una sala de cine
- una casa club
- un gimnasio
- Zona de apoyo:
-Antena de comunicación
- Zona de salud:
- ayuda medica
- Zona científica:
- 3 telescopios espectrógrafos
- 1 telescopio Reflectores
- 1 telescopio para medir el paso de las estrellas (circulo meridiano)
- 1 radiotelescopio
- área de aluminizado
- Laboratorios ópticos
- Laboratorios electrónicos
- Cabinas de Observación
- Cuartos Oscuros
-Cuarto de control
-Cuarto de máquinas para el telescopio
-Área de análisis e interpretación
- Cuarto de ordenadores
- ups (servidores)
- sala coude
- Zona de mantenimiento:
- Taller de mecánica
- Taller de electricidad
- Planta de energía
- Planta de calefacción
- Tanques de almacenamiento de agua
- Zona de Servicios:
- Lavandería
- Bodega
- Estacionamientos
- Zona de Difusión y estudios:
- 2 cuartos de conferencias
- un laboratorio de aprendizaje

IMAGEN 19
GRAFICO 9

IMAGEN 18
Vista área de todo el complejo

FUENTE: www.ls.eso.org

Vista área de telescopios

IMAGEN 20

Vista de las habitaciones

IMAGEN 23

IMAGEN 24
Práctica de Aikido en la casa Club

ORGANIGRAMA DE FUNCIONAMIENTO DEL OBSERVATORIO

FUENTE: dibujo realizado por la autora

B. OBSERVATORIO "CERRO PARANAL"

"Este complejo arquitectónico se encuentra emplazado en la montaña, está localizado en la cima del Cerro Paranal en el desierto de Atacama, en la parte norte de Chile, en la cual se cree es la parte más seca de la Tierra, está a una altura de 2635 msnm , y a unos 120 km de la ciudad de Antofagasta, y 12 km al interior de la Costa del Pacífico. Las coordenadas geográficas son $24^{\circ} 40^{\circ} \mathrm{S}$ y $70^{\circ} 25^{\prime} \mathrm{W}^{\prime \prime} 62$.
"Este complejo cuenta con un total de 10000 m 2 de construcción y está formado por las siguientes áreas" 63 ;

IMAGEN 25
Vista área del campamento base y área de telescopios

FUENTE: www.eso.org/paranal

- Zona administrativa
- 22 oficinas
- área de control ambiental
- sala de sesiones
- Logística
- ingeniería de sistemas
- ingeniería óptica
- ingeniería química
- Relaciones públicas
- Zona residencial

120 habitaciones para científicos de $16 \mathrm{~m} 2 \mathrm{c} / \mathrm{u}$
(Concepto modular con un potencial para extensión de 200 habitaciones)

- varias áreas de estar
- Comedor - cafetería para 200 personas
- Zona de entretenimiento:
- 2 librerías (una científica y otra de entretenimiento)
- una sala de cine para 70 personas
- sala de juegos (billa)
- una piscina
- sauna
- Zona de apoyo:
-Antena de comunicación
- Zona de salud:
- 1 paramédico
- I ambulancia de emergencia
- Zona científica:
- 4 telescopios Reflectores
- 3 telescopios auxiliares
- área de aluminizado
- Laboratorios ópticos
- Laboratorios electrónicos
- Cabinas de Observación
- Cuartos Oscuros
- Cuarto de control
- Cuarto de máquinas para el telescopio
- Área de análisis e interpretación
- Área de meteorología y sismo grafía
- laser
- ups (servidores)
- estar con cafetería
- sala coude
- Zona de mantenimiento
- Taller de mecánica
- generadores eléctricos
- planta de aire acondicionado
- Planta de calefacción
- Tanques de almacenamiento de agua
${ }_{62}^{62}$ www.eso.org/paranal
${ }^{3}$ www.eso.org/paranal
- Zona de Servicios:
- Lavandería
- Guardianía
- Bodegas
- Estacionamientos
- Helipuerto
- Zona de Difusión y estudios:
- Sala de guía
- Sala de proyección para visitantes
- aulas de estudio

Este complejo astronómico se caracteriza, es uno de los más modernos en la actualidad, se caracteriza por tener dos zonas definidas, la zona de Telescopios, y la zona del Campamento Base.

- Zona de Telescopios.-
"Cerca de 350.000 metros cúbicos de roca y tierra fueron removidos desde la cumbre para crear una plataforma de 20.000 metros cuadrados para los grandes telescopios y un túnel interferométrico.

Para mantener un flujo de aire continuo alrededor de la montaña, crucial para la observación astronómica, los laboratorios se ubican en forma subterránea. Por la misma razón, el edificio de control se encuentra justo bajo la plataforma principal" 64 .

IMAGEN 26
Vista en 3d de la plataforma de telescopios

[^29]
IMAGEN 27

Vista Edificio de Control

FUENTE: www.eso.org/paranal
MAGEN 28
Interior del edificio de Control

FUENTE; www,eso,org/parana
"EI VLT (Very Large Telescope) es un telescopio sumamente inusual, basado en la última tecnología. No es solo uno, sino varios telescopios interconectados. Los elementos principales son 4 telescopios reflectantes con espejos primarios de 8 metros de diámetro. Los 4 telescopios se ubican en configuración trapezoidal. Adicionalmente a ellos cuenta con 3 telescopios móviles de 1.8 metros. La luz de todos los telescopios puede ser combinada en el Interferómetro VLT, estos telescopios pueden funcionar independientes o a la vez todos en conjunto para así formar un espejo de telescopio con un diámetro de 200 m para la observación.

EI VLT está equipado con muchos instrumentos ópticos diferentes, incluyendo cámaras CCD de campo amplio, fotómetros multi-canal, espectrógrafos de alta resolución y fotómetros de alta rapidez y precisión, los que permiten observaciones en una amplia región espectral, en longitudes de onda que van desde el ultravioleta lejano al infrarrojo medio.

Cada telescopio está alojado en un edificio compacto y controlado térmicamente, que rota sincronizadamente con los telescopios. Este diseño sirve para minimizar los efectos adversos en las condiciones de observación, por ejemplo, turbulencia de
aire en el telescopio, lo que puede ocurrir debido a variaciones en la temperatura y flujo del viento"65.

IMAGEN 29
Vista de los 4 telescopios VLT junto a Telescopios auxiliares

FUENTE: www.eso.org/paranal

Sistema operativo de VLTbo.-

VLT puede ser pensado como una simple máquina consistente en muchas partes individuales interconectadas. La operación de esta máquina, como la operación de un computador moderno, está controlada por un sistema operativo. Este sistema asegura que las partes se comuniquen, coordina y opera de manera tal que la máquina completa produzca el producto deseado, en este caso, la información astronómica.

En Paranal todo está diseñado para ser lo más eficiente posible, desde la singular arquitectura de los telescopios hasta los complicados sistemas de reducción de la información obtenida en cada noche de observación.

Los 4 grandes telescopios son exactamente iguales. Cada telescopio tiene 3 espejos principales. El más grande, llamado espejo primario o Ml tiene 8 metros de diámetro, 18 cms . de espesor y pesa 23 toneladas. Es este espejo el que capta la luz del objeto que se está observando. Mientras más grande es el espejo, más luz es capaz de recolectar, por lo que puede ver objetos que están más lejos en el Universo, La luz captada por el espejo primario es dirigida al Espejo Secundario o M2, el que está hecho de berilio puro, por su ligereza y flexibilidad. Este espejo recibe la luz del M1 y la dirige al M3 o Espejo Terciario, que a su vez la dirige a los instrumentos ópticos montados en el telescopio.

[^30]La principal característica de VLT está dada en su revolucionario diseño de óptica. El sistema de óptica activa permite que el espejo primario mantenga permanentemente la forma óptima para la observación que se realiza. Para hacer esto, bajo el espejo primario hay 150 actuadores (un tipo muy sofisticado de pistones) que en forma sincronizada gracias a un complicado software permite hacer presión sobre las distintas zonas del espejo deformándolo para mantener la concavidad necesaria del espejo.

La óptica adaptativa es otra tecnología revolucionaria que permite compensar la interferencia producida por la atmósfera. Cuando la luz atraviesa la atmósfera es distorsionada por esta, lo que afecta la resolución de las imágenes obtenidas con los telescopios terrestres. Gracias a la óptica adaptativa, VLT es capaz de compensar esta distorsión, obteniendo una resolución similar a la que obtendría si estuviera en el espacio.

- Campamento Base.-
"La vida en Paranal se desarrolla en el campamento base, un conjunto de edificaciones donde se encuentran las oficinas de administración del observatorio, las instalaciones de cocina y comedores y las zonas de dormitorios de quienes trabajan en el observatorio, también están los edificios de bodegas, policlínico y el edificio de aluminizado, donde se limpian los espejos principales de los telescopios" 67 .

IMAGEN 30
Vista área del área del campamento

FUENTE: www.eso.org/paranal

[^31]Al principio la zona de vivienda de los astrónomos era en unos contenedores blancos de condiciones inhóspitas，así mismo el campamento，una colección dispareja de edificios blancos．

IMAGEN 31
Vista de contenedores y cuarto de aluminizado

FUENTE：www．eso．org／paranal
＂El complejo entero con 120 elegantes habitaciones con baño，gimnasio，saunas， tenis de mesa y televisión，fue construido bajo tierra，para minimizar el impacto en el medioambiente y evitar que la luz se escape y arruine el cielo nocturno．El estudio Auer \＆Weber，creo un edificio totalmente integrado con la naturaleza，de hormigón a la vista，teñido con los mismos colores del desierto，cristal y acero inoxidable opaco．Además，tiene un sistema de iluminación realmente colosal． Cerca de las siete de la tarde，mediante un sistema de carpas，la residencia se cierra completamente al exterior y recién pueden encenderse los clentos de luces internas．Esto，porque no puede salir ni un mínimo fotón de luz que altere la observación de los estudiosos＂${ }^{\text {＂}} 8$ ．
＂Son cuatro pisos a los que se accede por el nivel más alto，en una superficie de diez mil metros cuadrados，con 120 habitaciones individuales y varios espacios comunes como la recepción，la cafetería abierta las 24 horas，las terrazas，los jardines，las dos bibliotecas y la piscina．De decoración contemporánea y con piezas de calidad，se incorporó mucho color porque，el desierto es tan duro que el edificio debía ser cálido y agradable＂ 69 ．

IMAGEN 32
Vista de la nueva residencia

FUENTE：www．eso．org／paranal
IMAGEN 33
Vista de la cúpula sobre la piscina de la residencia

IMAGEN 34
Vista del edificio de residencia

${ }^{68}$ Auer \＆Weber \＆Assoziierte．http：／／www．auer－weber．de／pdf－e／ESOHotelCerroParanalChile－A4web＿engl．pdf ${ }^{60}$ Arq．Paula Gutiérrez．Diseñadora de los interiores de la residencia de Paranal．http：／／www．paulagutierrez．com

Vista de un patio interior

FUENTE：www．eso．org／paranal
IMAGEN 36
Vista de la piscina

IMAGEN 37

Dentro del campamento hacia un extremo se encuentran las instalaciones de servicios，en la cual están ubicados los generadores，el aire acondicionado，bodega general．

IMAGEN 38
Área de generadores

Área de Aire acondicionado

FUENTE：www．eso．org／paranal

GRAFICO 11
ORGANIGRAMA DE FUNCIONAMIENTO DEL OBSERVATORIO

C. COMPLEJO ASTRONOMICO ROQUE DE LOS MUCHACHOS.-

"En el Observatorio del Roque de los Muchachos (ORM), al borde del Parque Nacional de la Caldera de Taburiente, a 2.396 m . de allitud, en el término municipal de Garafía (La Palma), se encuentra una de las baterías de telescopios más completa del mundo. Tiene una extensión de 189 hectáreas.

Si bien este Observatorio es ideal para la observación nocturna, lo es iguaimente para la Física Solar.

Aparte de las actividades cientificas, el Instituto de Astrofísica de Canarias realiza numerosas tareas de divulgación para que los conocimientos astronómicos lleguen a todos los públicos. Para ello, en determinadas épocas del año, se organizan visitas de colegios y grupos a sus Observatorios
La Residencia del ORM consta de una serie de instalaciones (dormitorios diurnos y nocturnos, cocina y comedor, recepción, salas de estar y de juegos, etc.), con objeto de prestar un servicio a todo el personal científico y técnico vinculado al Observatorio que lo precise"70
"Este complejo cuenta con las siguientes áreas"71:

- Zona administrativa:
- Director
- Administrador
- recepción
- Oficina de logística
- ingeniería de sistemas
- ingeniería óptica
- ingeniería química
- Interpretación y CAD
- Zona residencial
- habitaciones diurnas y nocturnas
- salas de estar
- Comedor
- Cocina
- Zona de entretenimiento:
- 1 librería
- sala de juegos (billar, juegos de mesa, sala de tv, tenis de mesa)

[^32]－Zona de apoyo：
－Antena de comunicación
－Zona de salud：
－ 1 paramédico
－Emergencia seguridad astronómica
－ 1 ambulancia de emergencia
－Zona científica：
－ 9 telescopios reflectores
－área de aluminizado
－Laboratorios ópticos
－Laboratorios electrónicos
－Cabinas de Observación
－Cuartos Oscuros
－Cuarto de control
－Cuarto de máquinas para el telescopio
－Laboratorio de análisis
－laboratorio de instrumentos científicos
－Laboratorio sala coude
－ups（servidores）
－estar con cafetería
－Area de meteorología y sismo grafía－bodegas
－Helio
－Recubrimiento espejos
－Almacén espejos
－Almacén instrumentos científicos
－Bombas y botellas de LN2
－carga baterías
－sala eléctrica
－sala aire acondicionado
－bombas de aceite
－aire comprimido
－bombas de agua
－plataforma de carga
－Zona de mantenimiento
－Taller de mecánica
－Taller de electricidad
－Cuarto de máquinas
－Cuarto de mantenimiento tratamiento de agua
－recirculación de aguas negras
－generadores eléctricos
－planta de aire acondicionado
－Planta de calefacción

－Tanques de almacenamiento de agua

－Zona de Servicios：
－Lavandería
－Guardianía
－Bodegas
－Estacionamientos
－Helipuerto
－Gasolinera
－Zona de Difusión y estudios：
－Sala de estudios
－Sala de venta de suvenires
IMAGEN 40
Vista área de telescopios del complejo Roque de los muchachos

FUENTE：http：／／aporcel．wordpress．com／2009／04／11／618／

IMAGEN 41
Interior del comedor del campamento

FUENTE：http：／／www．iac．es／adjuntos／orm／residenciaorm．pdf

Este complejo alberga al telescopio GTC (Gran Telescopio Canarias), el cual es uno de los más modernos en la actualidad, este telescopio consta de un espejo primario segmentado en forma de panel de abeja, el cual hace posible disminuir peso y poder ampliar el tamaño del espejo a 10,4m para una mejor observación.
"El objetivo de este telescopio es poder conocer más sobre los agujeros negros, las estrellas y galaxias más alejadas del Universo y las condiciones iniciales tras el Big Bang. Se espera que el telescopio realice importantes avances en todos los campos de la astrofísica" ${ }^{72}$

IMAGEN 43
Vista del gran telescopio Canarias

FUENTE: http://www.iac.es/gtcinauguracion/prensa.php?opl=4\&gal=1\&img=16\&ind=12

IMAGEN 44
Vista Edificio de Control anexo al telescopio

FUENTE: http://www.iac.es/gtcinauguracion/prensa.php?opl $=4 \& \mathrm{gal}=1$ \&img=17\&ind=12

IMAGEN 45
Superestructura Metálica de la Cúpula del GTC

FUENTE: http://www.iac.es/gtcinauguracion/prensa.php?opl=4\&gal=1\&img=18\&ind=12

[^33]
GRAFICO 12

FUENTE: dibujo realizado por la autora

3.2- DEFINICION DEL PROGRAMA DEFINITIVO.-

Al terminar el estudio de referentes se ha determinado las áreas comunes con las que constan estos centros, y al mismo tiempo otras áreas que se complementarán en el proyecto al integrarlas en un programa arquitectónico. Es así que con este estudio se ha establecido el programa definitivo para desarrollar la propuesta arquitectónica de un OBSERVATORIO PARA ECUADOR.

Matriz de comparación programa óptimo con referentes para encontrar el programa arquitectónico definitivo:
人

INVESTICABIロN DIRECTA

＊La observación requiere sobre todo de un cielo apto，es decir transparente，diáfano y oscuro．
－Para una mejor observación es necesario que el sitio tenga una escasa o casi nula contaminación lumínica．
－Se puede utilizar la Cordillera de los Andes como barrera contra e resplandor lumínico de las ciudades．
－El sitio debe encontrarse superior a la capa de inversión．La capa de inversión tiende a atrapar el vapor de agua，haciendo del sitio un lugar seco．Esta también bloqueara la contaminación lumínica．
－Debe tener una buena transmisión atmosférica．

La elección del lugar de emplazamiento de un complejo astronómico es una característica importante，ya que determina el éxito de funcionamiento de este． Para esto es necesario tomar en consideración algunos parámetros meteorológicos asi como también altitud，lugares libres de contaminación luminica y de gases．

Es por esta razón que los grandes observatorios se encuentran ubicados en altitudes superiores a los 2000 msnm ，y a la vez a distancias superiores de 100 km de las poblaciones más cercanas para de esta manera evitar la contaminación．Dado que el Ecuador no tiene distancias tan extensas entre las ciudades，debemos estudiar con precisión las cualidades ambientales，se debe recordar que una distancia de 100 km puede ser variable como es el caso del Observatorio Roque de los Muchachos que se encuentra a tan solo 15 Km de la ciudad de La Palma，en España．

－Condicionantes ambientales：

－Para una buena calidad de imagen el telescopio debe estar colocado en un lugar con la mejor calidad de aire natural posible．Se debe recordar que la óptica adaptativa trabaja mejor en condiciones excelentes de vista．
－El sitio debe tener un alto porcentaje de noches usables，ya que el clima es el mayor causante de pérdida de tiempo de observación．Como sea， en orden para obtener la mejor ciencia es crucial que el tiempo de uso debe ser un alto tiempo de noches para observación．（Fotometria，con buena visibilidad，y／o bajo vapor de agua）．

Históricamente el Ecuador fue considerado como el mejor lugar para observación， especialmente la meseta de Quito，los incas de la antigüedad conocían las virtudes de estos cielos y establecieron grandes sitios para la observación，entre ellos Catequilla，Rumicucho，Tulipe，Cochasqui，Jerusalén．

Así mismo los científicos de la segunda misión geodésica Francesa consideraron esta zona de grandes cualidades para la observación astronómica．En el siglo XX， en los años setenta un grupo de científicos europeos，hicieron estudios con el afán de encontrar un lugar optimo para instalar un observatorio en la Latitud $0^{\circ} 00^{\prime} 000^{\prime}$ pero lamentablemente por problemas polificos no pudieron establecer en Ecuador aquel observatorio y lo trasladaron a África，sin tener las mismas caracteristicas del cielo ecuatoriano．

En este estudio se tomaron en consideración estos datos emitidos en la antigüedad． Estas zonas en la actualidad disponen de grandes cualidades ambientales， lamentablemente la expansión de la ciudad de Quito，el crecimiento poblacional y una carencia de estudio en la iluminación pública de la ciudad ha llevado a emitir altisimo grado de resplandor a los sectores mencionados y，como consecuencia， estos lugares no son adecuados para la implantación de un Observatorio Astronómico．

Debido a estos motivos se identificaron zonas homogéneas a las características de estudio mencionadas，a fin de seleccionar una zona adecuada para la implantación del proyecto．

FUENTE：departamento de cartografía del Instituto Geográfico Militar IGM．

Considerando la distancia a las ciudades y características de altitud y clima de la zona se determinan las siguientes opciones：
－El ángel y San Gabriel en la provincia de Imbabura，están distantes de la ciudad de lbarra，en una zona árida，cerca de la Hoya del Chota．
－Papallacta，es un lugar con condiciones óptimas，cercano a la ciudad de Quito，protegido de toda contaminación lumínica ya que se encuentra al otro lado de la cordillera．
－El Desierto de Palmira en la Provincia de Chimborazo，está a 50 km de la ciudad de Riobamba，es un lugar de fácil acceso．
－El volcán Wolf en las Islas Galápagos，ya que este archipiélago es completamente aislado de toda contaminación，las islas poseen un clima
seco，este volcán es el punto más alto de las islas，el inconveniente de este lugar es la gran cantidad de vapor de agua que se produce．
－Calacalí，al otro lado de la cordillera，es de fácil acceso．
GRAFICO 14
MAPA DE CLIMAS DEL ECUADOR

FUENTE：INHAMI
Con el estudio realizado de los referentes expuestos en el grafico 5 del punto 2．6，se analizaron las zonas homogeneas del Ecuador cuyos datos se muestran en el siguiente cuadro（gráfico 22）．

DATOS DE LOS LUGARES PRESELECCIONADOS

CARACTERISTICAS	SITIOS						PARAMETROS INTRRNACIONALES	
	SAN GABRIEL VALLEDEL CHOTA	且 ANGE Valledel chota	PALMIRA GUAMOTE	$\begin{aligned} & \text { VOLCAN WOLF } \\ & \text { ISLAS } \\ & \text { GALAPAGOS } \end{aligned}$	LOMA GORDA CALACALI	PAPALLACTA		
							мімімо	MÁXIMO
NOCHES DESPEJADAS	150	150	120	200	180	150	180	350
NOCHES FOTOMETRICAS (\% de noches al año)							35\%	84.6\%
CERCANÍA A CIUDADES (contaminación lumínica)	IBARRA 42 km	IBARRA 36 km	$\begin{aligned} & \text { RIOBAMBA } \\ & 50 \mathrm{~km} \end{aligned}$	PTO. VILLAMIL 100 km	$\begin{aligned} & \text { QUITO } \\ & 25 \mathrm{~km} \end{aligned}$	Quito 44 km	15 Km .	120 Km .
ALTITUD	3600	3600	3200-3900	1660	3155	3800-4300	2168 msnm	4200 msnm
VELOCIDAD DEL VIENTO			$1 / 12.3 \mathrm{~m} / \mathrm{s}$	$1.7 / 7.8 \mathrm{~m} / \mathrm{s}$	$1.6 / 10.1 \mathrm{~m} / \mathrm{s}$	$0 / 8.4 \mathrm{~m} / \mathrm{s}$	$8 \mathrm{~m} / \mathrm{s}$	$33.35 \mathrm{~m} / \mathrm{s}$
VAPOR DE AGUA	$9.7 / 13.3 \mathrm{hp}$	$9.3 / 13.7 \mathrm{hp}$	$9.3 / 14.2 \mathrm{hp}$	19.6 / 33.8 hp	$7.6 / 12.8 \mathrm{hp}$	$6.1 / 12.8 \mathrm{hp}$	3.3 mm	10 mm
TEMPERATURA	$1.5 / 6.5 \mathrm{gc}$	$10.9 / 14.1 \mathrm{gc}$	$10.6 / 14.8 \mathrm{gc}$	$20.3 / 28.1 \mathrm{gc}$	$13.4 / 16.7 \mathrm{gc}$	$0 / 11.8 \mathrm{gc}$	-8°	25°
HUMEDAD	69 / 89%	65/94\%	66/98\%	$76 / 89 \%$	49/71\%	81/100\%	4\%	99\%
CUMA	mesotermicosemihumedo/seco	mesotermicosemihumedo/seco	mesotermicosemihumedo/seco	seco	mesotermicosemihumedo/seco	paramo		
CAPADE INVERSIÓN (mar de nubes sobre)			2900 msnm		2800 msn	3000 msn	800 msnm	2400 msnm
\%Nubes	5/8 octas	3/6 octas	2/6 octas	3/7 octas	0/9 octas	0/8 octas	3.7\%	100\%
PRECIPITACIÓN MENSUAL	$3 / 309.1$ mm	$0 / 285.8$ mm	$0 / 244.1$ mm	$0 / 233.8 \mathrm{~mm}$	$0 / 142.1$ mm	$0 / 706 \mathrm{~mm}$	$\begin{gathered} 0.02 \\ \mathrm{~mm} / \mathrm{dia} \end{gathered}$	$\begin{gathered} 200 \mathrm{~mm} / \\ \text { dia } \end{gathered}$
PRESIÓN ATMOSFÉRICA					726.5 / 729.6 hp		653 mbar	775.9 mbar
HELIOFANIA (Horas mensuales)				$\begin{gathered} 97.8 / 295.2 \\ \text { horas } \end{gathered}$	57/269.4 horas		$50 \mathrm{~W} / \mathrm{m} 2$	$1120 \mathrm{~W} / \mathrm{m} 2$
SEEING							0.5 arcsec	0.9 arcsec
FUENTE: INFORMACION SERIE DE DATOS METEOROLOGICOS. INHAMICuadro realizado por la autora								

4．2．－Matriz de confrontación para selección de terreno．

 CUADRO 4| | | | | | Iz DE | TACION | Elecci | ERRENOS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | QUE DEbe Reunir un terreno | | SAN GABRIEL | | El ANGEL | | | MIRA | VOICAN WOLF | | LOMA GORDA | | PAPALIACTA | |
| | PARAMETROS INTERNACIONALES | | | Valoracion | CARACT． | VAIORACION | CARACT． | Valoracion | CARACT． | valoracion | Caract． | valoracion | CARACT． | VALORACION | CARACT． | $\begin{array}{\|c\|c\|} \hline \text { VALORAC } \\ \text { ION } \end{array}$ |
| | NOCHES DESPEEADAS | | ｜MINIMO 180 | $\frac{1}{5}$ | 150 | 2 | 150 | 2 | 120 | 1 | 200 | 3 | 180 | 3 | 150 | 2 |
| | | NOCHES FOTOMEIRICAS | MINMMO 35\％ | 1 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | NOHAY | 0 | $\begin{aligned} & \text { NOHAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NOHAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 |
| | | | MAXIMO 84．6\％ | 5 | | | | | | | | | | | | |
| | | CERCANIA A CIUDADES | MINIMO 15 KM | $\frac{1}{5}$ | 42 KM | 2 | 2 | | 50 kM 2 | | 100kM | 4 | 25 KM | 1 | 44 KM | 2 |
| | | | MINIMO 2168 msnm | 1 | 3600 MSNM | 4 | 3600 MSNM | 4 | 3400 MSNN | 4 | 1660 MSNM | 2 | 3155 MSNM | 4 | 3800 MSNM | 4 |
| | | almud | MAXIMO 4200 msnm | 5 | | | | | | | | | | | | |
| | | Velocidad del viento | MINIMO $8 \mathrm{~m} / \mathrm{s}$ | 5 | NOHAYDATOS | 0 | NO HAY DATOS | 0 | $7.15 \mathrm{~m} / \mathrm{s}$ | 5 | $5.6 \mathrm{~m} / \mathrm{s}$ | 5 | $5.85 \mathrm{~m} / \mathrm{s}$ | 5 | $4.2 \mathrm{~m} / \mathrm{s}$ | 5 |
| | | Velocidad dervento | MAXIMO $33.35 \mathrm{~m} / \mathrm{s}$ | $\frac{1}{5}$ | | | datos | 0 | | | | | | | | |
| | | VAPOR de agua | MAXIMO 10 mm | 1 | 11.5 | 1 | 11.5 | 1 | 11.75 | 1 | 26.7 | 1 | 10.2 | 1 | 18,9 | 1 |
| | | TEmPERATURA | MINIMO ． 8 gc | 1 | 4 | 1 | 12.5 | 2 | 12.7 | 2 | 24.2 | 5 | 15.05 | 3 | 5.9 | 1 |
| | | | MaXimo 25 gc | 5 | | | | | | | | | | | | |
| | | Humedad | MINIMO 4\％ | $\frac{5}{0.2}$ | 79\％ | 0.25 | 80\％ | 0.25 | 82\％ | 0.24 | 83\％ | 0.24 | 60\％ | 0.33 | 91\％ | ${ }^{0.21}$ |
| | | Clima | câlido hưmedo | 1 | NOHAY DATOS | | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | | | | | | | | | |
| | | | frio seco | 5 | | | | | | | | | | | | |
| | | CAPA DE INVERSION | MINIMO 800 msnm | 5 | | 0 | | 0 | 2900 msnm | 1 | NO hay | 0 | 2800 mssm | 1 | 3000 msnm | 1 |
| | | \％DE NUBES | MINIMO 3．7\％ | 5 | 7\％ | 3 | 5\％ | 4 | 4\％ | 5 | 5\％ | 4 | 4\％ | 5 | 4\％ | 4 |
| | | | MAXIMO 100\％ | 0.185 | | | | | | | | | | | | |
| | | PRECIPITACION | MINIMO $0.02 \mathrm{~mm} / \mathrm{dia}$ | 5 | $\begin{gathered} 156.05 \\ \mathrm{~mm} / \mathrm{dia} \\ \hline \end{gathered}$ | 0.000641 | $\begin{gathered} 142,9 \\ \mathrm{~mm} / \mathrm{dia} \\ \hline \end{gathered}$ | 0.0007 | $\begin{gathered} \hline 122.05 \\ \mathrm{~mm} / \mathrm{dia} \\ \hline \end{gathered}$ | 0.000819 | $\begin{gathered} 116.9 \\ \mathrm{~mm} / \mathrm{dia} \\ \hline \end{gathered}$ | 0.00855 | $\begin{array}{r} 71.05 \\ \mathrm{~mm} / \mathrm{dia} \\ \hline \end{array}$ | 0.0014 | $353 \mathrm{~mm} /$ dia | 0，00028 |
| | | | MAXIMO $200 \mathrm{~mm} / \mathrm{dio}$ | 0.0005 | | | | | | | | | | | | |
| | | PRESION ATMOSFERICA | MINMMO 653 m bor | 1 | NO HAY datos | 0 | NO HAY DATOS | 0 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NOHAY } \\ & \text { DATOS } \end{aligned}$ | 0 | 728.05 mbar | 2.56 | NO HAY DATOS | 0 |
| | | HELIOFANIA | MINIMO 50 horas | 0．22 | $\begin{aligned} & \hline \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | $\begin{aligned} & \text { NO HAY } \\ & \text { DATOS } \end{aligned}$ | 0 | 196.5 horas | 1.27 | | | | |
| | | | MAXIMO 1120 horas | 5 | | | | | | | | | 163.2 horas | 1.53 | datos | 0 |
| | | VIIIEIUDAD | MINMO 0.5 arc ec | $\frac{1}{5}$ | NO HAY DATOS | 0 | $\overline{\mathrm{NOHAY}}$ DATOS | 0 | NO HAY DATOS | 0 |
| | | total medio | atural | 75\％ | | 13.250641 | | 132507 | | 21.240819 | | 25.51855 | | | | |
| | terreno | GEOMETRIA | REGULAR | 2 | | 1 | | 1 | | 1 | | 25．51855 | | 27，4214 | | $\frac{20.21028}{0}$ |
| | TERreno | | IRREGULAR | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 0 |
| | | AGUA Potable | | 2 | | 1 | | 1 | | 1 | | 0 | | 0 | | 1 |
| $\frac{\bar{u}}{4}$ | | ENERGIA ELECTRICA | | 2 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 |
| 产咅 | infraestructura | AlCANTARILIADO | | 2 | | 0 | | 0 | | 1 | | 0 | | 1 | | 0 |
| $\frac{\tilde{\alpha}}{\mathbf{x}}$ | irraestuctura | telefonos | | 2 | | 1 | | 1 | | 1 | | 0 | | 1 | | 1 |
| 0 | | CABLE | | 2 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 |
| $\frac{\mathrm{v}}{\frac{\mathrm{v}}{4}}$ | | VIAS | ESTADO DE LA CAPA DE RODADURA | 2 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 |
| 育 | | TRANSPORTE PUBULCO | ENEL ENTORNO MEDIATO | 2 | | 1 | | 1 | | 2 | | 1 | | 1 | | 1 |
| $\frac{0}{6}$ | FUNCIONALIDAD | COMPATIBILIDAD CON ACTVIDADES | | 2 | | 1 | | 1 | | 1 | | 1 | | 1 | | ， |
| | MORFOLOGIA | ALTURA DE LAS EDIF． | N／A | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 |
| | PREDOMINANTE | VOLUMEIRIA | N／A | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 |
| | | TOTAL MEDIO F | IIFICIAL | 18\％ | | 8 | | 8 | | 10 | | 5 | | 8 | | 7 |
| | | AlTO | | 2 | | 1 | | 1 | | 1 | | 1 | | 3 | | 1 |
| | El Entorno | MEDIO | | 4 | | 2 | | 2 | | 2 | | 2 | | 4 | | 2 |
| 난 | | BANO | | $\frac{2}{3}$ | | 2 | | 2 | | 2 | | 2 | | 3 | | 2 |
| 0 | | PUBLICA：NACIONAL | | 3 | | 0 | | 0 | | 0 | | 2 | | 0 | | 2 |
| $\left\lvert\, \begin{gathered} \tilde{\mathrm{o}} \end{gathered}\right.$ | | ${ }_{\text {Provinclal }}$ | | 3 | | 0 | | 0 | | 2 | | 0 | | 0 | | 0 |
| $\left\|\frac{0}{6}\right\|$ | LOTE | LOCAL | | 3 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 |
| | | PRIVADA：JURIDICA | | 1 | | 0 | | 0 | | 0 | | 0 | | 1 | | 0 |
| | | NATURAL | | 1 | | 1 | | 1 | | 0 | | 0 | | 0 | | 0 |
| | | TOTAL MEL | | 7\％ | | 6 | | 6 | | 7 | | 7 | | 11 | | 7 |
| | | PUNTAJE | | 100\％ | | 21．251 | | 21.251 | | 31.241 | | 30.519 | | 38，241 | | 2 |

FUENTE：Cuadro realizado por la autora

Al confrontar las distintas ubicaciones mediante los parámetros técnicos estudiados se ha obtenido el sitio más adecuado que cumple con los requisitos planteados para la implantación del CENTRO DE INVESTIGACION，DIVULGACION Y OBSERVACION ASTRONÓMICA，este centro se ubicará en la LOMA GORDA，que se encuentra a 25 km de Quito，cerca de Calacali，con una altitud de 3155 msnm localizada en la parte posterior del volcán Pichincha，creando así una barrera que evita el paso de la luminosidad emitido por la ciudad al sitio escogido．

Este sitio se encuentra en la Latitud $0^{\prime} 00^{\prime} 000^{\prime}$ ．Tiene una ubicación excepcional a estar alineado al volcán Cayambe，y con mucho sentido histórico，porque cruza la ruta de los observatorios astronómicos de los incas．

4．3．－Ubicación del terreno escogido．－

El terreno escogido se encuentra en la provincia de Pichincha，en el cantón Quito cerca a la parroquia Calacalí．

GRAFICO 15
Ubicación del terreno en el país

GRAFICO 16

Ubicación del terreno en la provincia de Pichincha

El lugar de emplazamiento del proyecto se encuentra próximo a la ciudad de Quito，a tan solo 30 minutos de distancia．Para acceder al sitio se lo realiza por la carretera Calacalí－La Independencia，que es una vía de primer orden，para luego tomar el camino que conduce a Nono．

GRAFICO 17
Ubicación del proyecto en el DMQ
MAPA FISICO DEL DISTRITO METROPOLITANO DE QUITO

GRAFICO 18

FUENTE：Google Earth

FUENTE：www4．quito．gov．ec．com

DEGARRELLロ
 ロ＝
 －A ロRロロリアニーツA

IMAGEN 48

FUENTE：www．pachacamac．net

5．1．－Modelo teórico conceptual．－

Al contemplar el UNIVERSO，su grandeza，profundidad，complejidad，se experimenta movimiento，ritmo，nos invita a sumergirnos en un sinfín de caminos； caminos que nos atraen a recorrer el cosmos，como los laberintos que son redes inmensas de callejones que se tuercen y entrecruzan de manera impredecible．Al igual que los laberintos el cosmos es fluido，dinámico，avanza por un impulso indefinido，que permite experimentar varias sensaciones，entrelazar y conectar．

Los laberintos son trazos，hendiduras en el espacio，que recrean una variedad infinita de los bosques en sus montañas，de las parcelas de cultivos en el campo，a igual que las estrellas en el firmamento，es por eso que los antiguos complejos astronómicos incaicos de la zona，poseen una concepción de laberinto en sus construcciones，construcciones con gran rigor geométrico，y en las que predominan la forma＂cuadrada＂que produce estabilidad en medio de un caos que busca el orden，esta analogía permite una conexión entre el cielo y la tierra．

IMAGEN 46

FUENTE：www．machupicchu．org

IMAGEN 47

IMAGEN 49

FUENTE：www．rumicucho．com

IMAGEN 50

FUENTE：www．hcpcanar．gov．ec

IMAGEN 51

UENTE：www．arqueo－ecuatorianaec

El estudio del medio físico y social no podía ser ajeno para la concepción de este proyecto，ya que este gran centro de tecnología debe causar el menor impacto posible a los pobladores aledaños．El campamento debe mimetizarse a la naturaleza，al color de las cosechas，de sus vestimentas，a la melancolia del ambiente，a sus chozas como viviendas，es por estas razones que los materiales que
se utilizan en el proyecto no son ajenos al medio．El paisaje andino y sus habitantes se caracterizan por mantener vidas nostálgicas，se encierran en sí mismos，en sus costumbres，en su comunidad，son personas arraigadas a sus tradiciones．

IMAGEN 52

Por estas razones se plantea volúmenes＂CAJAS＂，se utiliza un sistema de persianas en madera，que no son solo una solución funcional sino que a su vez crean una conexión de interior－exterior，creando asi＂cajas de luz＂y produciendo de esta manera confort en los ocupantes de estos espacios．De esta manera el proyecto se convierte en una piel en el paisaje，la textura de la madera se mimetiza en su entorno，se adapta a su lugar．

La disposición del emplazamiento se abstrae de las parcelas en sus campos，de los cultivos，del volumen tradicional en las construcciones andinas que es el cuadrado （cubo），el cual al descomponerlo crea una multitud de posibilidades：

GRAFICO 19
Descomposición del cuadrado－cubo

FUENTE：Proyecto Cubo，Eduardo Ibérico
Estar dentro de un cubo es estar dentro de la matemática más pura．Ana Alcolea

Esta descomposición permite jugar con las distintas variables，y de esta manera plantear una disposición laberíntica，para el conjunto，partiendo de esta idea fuerza para la concepción del proyecto．

5．2．－Organigrama de Relaciones．－

Durante el estudio de este trabajo se ha podido conocer las necesidades para un centro de esta tipología，y cómo las funciones de cada espacio deben articularse para que el proyecto funcione correctamente．（Gráfico en página 61）

5．3．－Modelo Dimensional．－

Aquí se reúne y verifica todas las condicionantes y determinantes estudiadas de cada actividad，para que haya una correcta secuencia entre la investigación y el diseño．（Cuadros desde página 62 hasta 90）

$\underset{\text { Escala }}{\text { MNOICAOA }}$ DIM

1	2		1	,				.	.		10	11		12	"	4	1	18	12
sme	sumbus	coovo	mencos	\%umboos				nounmame		anememex		suamove mownes		nenotm				sunco	unecoommo
						nemusarse	oatomes	usram		*	*	-	-	-tame	meneos	-mevens	-mene ${ }^{\text {a }}$	m	
														**		.	contrecon.		
		212	1.coindor ceieral	!	Wencon womate nowim		∞			11.9	118	1200		*0	${ }^{\prime \prime}$	${ }^{17}$	${ }^{17}$	15012	पु जिए 0 0 0 0 0 0 0
		222	2. Coingor pessome de servic	,	Usmitution		18		$\begin{aligned} & \frac{1}{1}+\cdots=1 \\ & \frac{1}{1}+\frac{1}{1}+1 \end{aligned}$	545	sso	$\infty \infty$		${ }^{\prime}$	-	$*$	*	3208	$\begin{array}{ll} 5 & 5 \\ 1 & 4 \\ 5 & \frac{1}{4} \end{array}$
		232	2. nooech in Aherros ownos	1			1	2etamisur		24	24	3×0	200	${ }^{24}$	-	20	${ }^{28}$	1000	
		242	- Boosenaererv	,			,	(2estume		${ }^{*}$	3	20	300	*	,	\star	\pm	140	
		282	3-0trostode neuma	,	Entran con las lundas de basura clasifcan la depostan		\cdots	Sematisu a		211	24		2.40	${ }^{16}$,	18	${ }^{10}$	${ }^{684}$	
		262	a-cumeromb	1			1	3mbarinuen		27	24	200	2×0	\cdots	\cdots	${ }^{24}$	${ }^{24}$	854	

MODELD DIMENSIONAL

CECILIA ALEXANDRA MISCOSO ZEA

$\underset{\text { gscala wiliapa }}{\text { MOD }}$

5．4．－Modelo geométrico espacial．－

El modelo dimensional，ha servido para poder entender las actividades en cada espacio，la secuencia de aquellas，y a la vez calcular las medidas para que cada espacio sea optimo y modulado para el momento del diseño y al mismo tiempo de la construcción．

En este punto es necesario determinar un macro modulo，que coordine las áreas de las distintas zonas del Programa，de manera que permita diseñar y construir un modelo geométrico de la organización de todo el proyecto ${ }^{73}$ ．

CUADRO 5

MODELO GEOMETRICO							
CALCULO DEL MACROMODULO							
ZONAS	AREA M2	RAIZ CUADRADA	$\mathrm{N}^{\circ} \mathrm{DE}$ MODULOS（dividir para 0．60）				LONGITUD MODULADA
1	538，56	23，21	38，68	$=$	39，00	mod	23，40
2	3540，24	59，50	99，17	$=$	99，00	mod	59，40
3	1807，20	42，51	70，85	$=$	71，00	mod	42，60
4	279，72	16，72	27，87	$=$	28，00	mod	16，80
5	34，56	5，88	9，80	＝	10，00	mod	6，00
6	5789，62	76，09	126，82	$=$	127，00	mod	76，20
7	1015，76	31，87	53，12	$=$	53，00	mod	31，80
8	1529，59	39，11	65，18	＝	65，00	mod	39，00
9	992，16	31，50	52，50	$=$	53，00	mod	31，80
	15527，41						

Modulo Menor 6
$6 \times 6=36 \mathrm{~m} 2$
FUENTE：Cuadro realizado por la autora

Al utilizar la longitud modulada menor： 6 como macro modulo común，ocurrirá lo siguiente ${ }^{74}$ ：

CUADRO 6

LONGITUD MODULADA mi	Coordinacion modular por zonas，utilizando 6 como macromodulo	N° de macromodulos por zona
23,40	$6 \times 4=24$（ superior en 0,60 ）	16
59,40	$6 \times 10=60$（inferior en 0,60 ）	100
42,60	$6 \times 7=42$（inferior en 0,60 ）	49
16,80	$6 \times 3=18$（superior en 1,20 ）	9
6,00	$6 \times 1=6$（igual）	1
76,20	$6 \times 13=78$（superior en 1,80 ）	169
31,80	$6 \times 5=30$（inferior en 1,80 ）	36
39,00	$6 \times 7=42$（superior en 3,00 ）	49
31,80	$6 \times 5=30$（inferior en 1,80 ）	25

FUENTE：Cuadro realiza por la autora

El proyecto se lo desarrollara en una malla con un macro modulo de 6×6 ． Se desarrolla las posibilidades de agrupación para las distintas zonas dentro de la malla．

POSIBILIDAD DE AGRUPACION

454	2	456 227	227
		228	2
114	2		
57	3		
		19	19

LA OPCION ESCOGIDA ES LA DE 114 BLOQUES
COMPUESTOS DE 4 MACROMODULOS CADA UNO．

El total de módulos del proyecto es de 454，pero este módulo no ofrece muchas posibilidades así que se lo aumento a 456 para poder encontrar varias posibilidades de agrupación．

[^34]Con este estudio se ha decidido agrupar：
114 de 4 macro módulos
GRAFICO 20
Distribución de zonas en la malla

FUENTE：G Gáfico realizado por la autora

Se plantea distintas alternativas de implantación，las posibilidades de agrupación y el número de módulos nos sugiere la magnitud del proyecto．Para que estas alternativas sean viables，se estudiaron las cualidades naturales y culturales del terreno，haciendo a la vez una analogía entre el espacio y la tierra．Y comprendiendo que las variables del universo son infinitas，al igual que los LABERINTOS，los mismos que se toma como punto de partida．

Abstractamente la construcción arquitectónica siempre será laberíntica，un laberinto recrea una variedad infinita de los bosques en su montaña．Hay una similitud de enredos en los senderos de las montañas，revueltas y vueltas de lo desconocido，las estrellas del firmamento que son de ayuda para los navegantes， \sin embargo，encontraron el orden absoluto en el intricado laberinto de las constelaciones．

Comprendiendo que los Laberintos pueden tener todas las formas geométricas， pero siempre conservaran características dinámicas，de constante movimiento，
caminos que provocan sensaciones de confusión y diferentes precepciones．Se trata de trasladar al proyecto estas sensaciones，para poder experimentar la mismidad del sitio－espacio．
－Alternativas de Modelo Geométrico．－

GRAFICO 21

FUENTE：Gráfico realizado por la autora
GRAFICO 22

FUENTE：Gráfico realizado por la autora

Alternativa 3

FUENTE：Gráfico realizado por la autora GRAFICO 24

Alternativa 4

FUENTE：Gráfico realizado por la autora

CUADRO 7

MATRIZ DE CONFRONTACION Y SELECCIÓN DE MODELOS GEOMETRICOS									
INDICADORES DE SELECCIÓN			PONDERACION ESPECIFICA	PONDERACION GENERAL	ALTERNATIVAS DE MODELOS GEOMETRICOS				
			1		2	3	4		
	TOPOGRAFIA			10\％	25\％	5	5	5	5
	GEOMETRIA		4\％	3		2	4	2	
	VIENTOS		3\％	2		2	2	2	
	ASOLEAMIENTO		8\％	35\％	6	8	8	5	
	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y y y}{3} \end{aligned}$	$\begin{aligned} & \text { FLUJO DE } \\ & \text { ASTRONOMOS } \end{aligned}$	8\％		4	7	8	4	
		FLUJO DE ADMINISTRATIVOS	7\％		4	6	7	6	
		FLUJO DE VISITANTES	6\％		4	6	6	5	
		FLUJO PERSONAL DE SERVICIO	5\％		4	4	5	4	
	$\begin{aligned} & \text { 冗 } \\ & \text { 쓰 } \\ & 0 \end{aligned}$	FLUJO DE ABASTECIMIENTO VIVERES	3\％		2	2	3	1	
		FLUJO DE ABASTECIMIENTO DE INSUMOS	3\％		2	1	2	1	
		FLUJO DE DESALOJO DE DESECHOS	3\％		1	2	2	1	
FACTIBILIDAD TECNICA ESTRUCTURAL			10\％	10\％	9	7	10	10	
$\begin{aligned} & \text { zo } \\ & \text { o } \\ & \text { U } \\ & \text { So } \\ & \text { U } \\ & \text { W } \\ & \text { ¢ } \end{aligned}$	ACCESIBILIDAD		5\％	10\％	3	3	3	3	
	RELACION CON ACTIVIDADES PERIFERICAS		5\％		1	1	1	1	
	$\begin{aligned} & \text { INTEGRACION AL } \\ & \text { PAISAJE } \\ & \hline \end{aligned}$		3\％	10\％	2	1	2	1	
	EXPRESION Y SIGNIFICADO		2\％		1	1	2	2	
	GEOMETRIA Y VOLUMETRIA	．	5\％		4	4	4	3	
	AJUSTE CON LAS AREAS POR ZONA		5\％	10\％	4	2	5	5	
	AJUSTE CON EL AREA TOTAL		5\％		4	2	4	5	
	TOTAL		100\％	100\％	65	66	83	66	

[^35]
5．5．Modelo Propositivo en el terreno．－

Al analizar el terreno para el emplazamiento con la alternativa escogida．La forma misma de la montaña，formando imaginariamente el signo de $\operatorname{INFINITO} \infty$ ，ayudo a distribuir las áreas del proyecto，estableciendo así en la parte de menor altitud el campamento base，y en la de mayor altitud la zona de telescopios．

Hay que resaltar como elemento predominante el eje trazado por la línea ecuatorial en la zona de implantación de los telescopios y la alineación al Nevado Cayambe，para simular la extensión y dinamismo del universo，ya que a simple vista parece no tener cambios，pero este se expande cada segundo，se niega por completo la creación de plazas o ubicación de árboles cerca de los telescopios，ya que estos crean microclimas y pueden causar efectos negativos en los cielos para la investigación．

El campamento base se encuentra ordenado sobre la línea de longitud 72° ，la implantación se realiza en forma laberíntica，conformada por bloques，caminos， puentes conectores y plazas，independizando los volúmenes para separar las actividades，al mismo tiempo provocando una geometría calculada y similitud en los elementos que lo conforman．Se adapta al terreno en pendiente，potenciando las vistas y los accesos．Cada volumen juega con su altura，para recrear la dinámica y espacialidad del cosmos en la tierra．

GRAFICO 25
DISPOSICION GENERAL DEL PROYECTO
EN EL TERRENO ESCOGIDO

FUENTE：Gráfico realizado por la autora

PLANロG DE LA RRロアUEGTA

ACCESI AL TERRENI DESDE CALACALI

TERREND ESCDGIDI

\[

\]

EMPLAZAMIENTI GENERAL DEL PRQYECTI

பBICACIDN DEL CAMPAMENTロ escalabite

EMPLAZAMIENTI CAMPAMENTI BASE

PLANTA SUBSUELI

FACHADA SUR
PERSIANAS CERRADAS EnCALAlilzs
${ }^{+7.00}$

FACHADA SUR
PERSIANAS ABIERTAS

FACHADA ESTE
PERSIANAS CERRADAS encala mzo

FACHADA ESTE
PERSIANAS CERRADAS EmEALA: :125

FACHADA ESTE
PERSIANAS CERRADAS Escala inzs

FACHADA ESTE
PERSIANAS CERRADAS Esoala mins

FACHADA SUR
PERSIANAS ABIERTAS

FACHADA NGRTE
FACHADA NGRTE

FACHADA SUR
PERSIANAS CERRADAS Escalalizo
$+38$
$+0.20$
$\stackrel{-3.00}{\square}$

+3.50
$+\sqrt{+0.20}$
\boldsymbol{V}

FACHADA ESTE
PERSIANAS ABIERTAS Encala inzo

FACHADA ロESTE
Escala titas
$\sqrt[3]{\sqrt[4]{7.50}}$

FACHADA ESTE
PERSIANAS CERRADAS Eacala $\ldots 125$

PLANTA BAJA

FACHADA ESTE
persianas cerradas coonu ingo

FACHADA ESTE
PERSIANAS CERRADAS EGCALA :13so

FACHADA ロESTE
PERSIANAS ABIERTAS EECALA inso

FACHADA DESTE
PERSIANAS ABIERTAS EGCALA HISO

FACHADA SUR
persianas abiertas
Escala 1125

FACHADA ロESTE
PERSIANAS ABIERTAS ESCALA H25
FACHADA ロESTE
PERSIANAS CERRADAS Escalal：1zs

FACHADA DESTE

PLANTA BAJA Encala 1:125

FACHADA NIRTE
PERSIANAS CERRADAS ESCALA inzs

FACHADA SUR
PERSIANAS CERRADAS EmCALA 1125

FACHADA SUR
persianas abiertas \qquad

FACHADA DESTE
PERSIANAS CERRADAS Emala inzs

FACHADA DESTE
PERSIANASABIERTAS Escallitzo

119

FACHADA SUR
Escalatitzs

PLANTA PERSIANA TIPD B PERSIANA CERRADA EBEALA M15：

NQTA：PERSIANAS TIPD A SE UTILIZA EN TロDロS LロS BLロQUES DEL PROYECTD PERSIANAS TIPI B SE UTILIZA SOLAMENTE EN EL EDIFICII RESIDENCIAL

EMPLAZAMIENTロ MANTENIMIENTI GENERAL tocena izzooo

ANTENA PARABOLICA SATELITAL

ANTENA
DE
RADIOCOMUNICACIONES

PLANTA APGYロ DE CロMUNICACIONES
E0ealal：30

PLANTA ABASTECIMIENTI DE GASILINA Y DIESEL

PLANTA TALLER DE MECANICA AUTIMOTRIZ

UBICACIIIN DEL CAMPAMENTI
Esanuane

EMPLAZAMIENTI AREA CIENTIFICA
encala ‥1soo

PLANTA BAJA TALLERES

PLANTA ANTENA
ع60ala

FACHADA SUR ANTENA Y TALLERES
persianas cerradas
cecaca l:iso

FACHADA NIRTE ANTENA Y TALLERES
persianas abiertas nacala inso

FACHADA SUR ANTENA Y TALLERES persianas abiertas

FACHADA NIRTE／SUR ANTENA
Encala maso

FACULTAO DE ARDUITECTIRA Y URBANIBMO

154

AXロNロMETRIA LロNGITUDINAL DUCTロS DE VENTILACIロN EN CUPULA

TELESCIPIC ø 3.6 M Escalatiso

AXINロMETRIA TRANSVERSAL
DUCTロS DE VENTILACIロN EN CUPULA

TELESCロPIロ ø 3.6 M

DETALLE 3
DETALLE 1
cecala 1：30

DETALLE 2

EscaLa 1：30
reacala i：30

recala 1izzs

SECCIDN A
sacala tizo

NOTA：FUENTE DE DETALLES www．ESG． FR

DETALLE 4

DETALLE PL－ 1

DETALLE 6 UNIGN DUCTロS Exacha 1：2

DETALLE 5 Excala lias

PLANTA UBICACIGN
TELESCIPIO ø 3.6 M Escalazz

CIRTE A－A．
eseaca liso

DETALLE 1
Ebeala 1 ：

FACULTAD DE ARRUHTECTURA Y URBANISMO

DETALLES
 TELESCロPIロ ø 3.6 M

SECCIDN B

DETALLE 2
Escala 1710

PL $1 E=1$ ロMM

PL3 E＝5MM CANT．B UNIDADES

Escala ins

PLANTA N＋24．3ロ
in

DETALLE 1
Encala ino

cant． 4 unidades
eseata ins
－

PERFORACION EN
PLZ $E=5 \mathrm{MM}$ CANT．B UNIDADES

Escata ins

PL4 E＝6MM CANT．B UNIDADES

Escala mot

DETALLES

PLANTA
Escala itsa

CIRTE A－A＇
eseata its

UBICACIロN PLANTA CUPULA

CDRTE B－B＇
Escala ition

CIRTE C－C
encala niso

PLANTA PLACAS PISI FALSI

NOTA: FUENTE DE DETALLES WwW.ESD. \quad RE

CORTE C－C

DETALLES

 TELESCロPIロ ø 1.4 MCDRTE C－C＇

DETALLE PLACA 1
Escala is

 camtida，uniono escalalizo

ESTRUCTURA P－3
bantiono I uniono remeala lizo

DETALLES TELESCロアIロ ø3．6M

DETALLE ANCLAJE PILARES
sscala 1 is

ESTRUCTURA P－6
bantiond unidad emoala ilizo

TUBULAR P3－2

TUBLLAR P3－4

TUBULAR P3－3

PLANTA UBICACIIN CIRTES DE ESTRUCTURA DE PILARES \qquad

PLANTA SUBSUELロ TELESCRPIO ø日．2M EsEALA

PLANTA BAJA
TELESCOPIO øE.2M EncALA !isc

FACHADA ESTE/ロESTE

CIRTE DE ESTRUCTURA DE SロPロRTE

ESQUEMA DE RロTACIロN DE TELESCロPID

BGRDILLI FICD CASSSEGRAIN PLANTAS Y REQUERIMIENTDS DE PISI ESACALIIZO

frenos de de instrumento

DETALLES DE BロRDILLロ FロCD CASSSEGRAIN PLANTAS Y REQUERIMIENTOS DE PISI cacalalias

INTERFACE INSTRUMENTI NASMYTH ELEMENTI DE ROTACION

VISTA Y
Eacala 12 Za

CロRTE B－B＇
oIsco de freno

DETALLES TELESCロPIロ ø日． 2 M

INTERFACE CASSEGRAIN Escala 1ito

CDRTE Z－Z＇ EboALA 10

TOANLLO PAAA
FLACIONDE
TOANILIO PARA
3 FANCION DE
INSTRUMENTO
CロRTE B－B
CIRTE A－A
Escalatia
kacala i：a

AEULTAD DE ARGUITECTURA Y URBANIBMS

DETALLES

INTERFACE INSTRUMENTI NASMYTH

PLANTA Y REQUERIMIENTISS DE PISI
Escala izo

NOTA: FUENTE DE DETALLES www.ESG. ARE

FACHADA NDRTE EDIFICID TALLERES
PERSIANAS CERRADAS－TELESCIPII ФE．2M EEOALA 11

FACHADA NDRTE EDIFICID TALLERES PERSIANAS ABIERTAS－TELESSCIPII øB．2M EscALA HISO

FACHADA ESTE EDIFICID TALLERES PERSIANAS ABIERTAS－TELESCIPIIC Ø日．2M ESEALA ：3150

FACHADA SUR EDIFICID TALLERES
PERSIANAS CERRADAS - TELESCIPII ØE.2M EEEALA M130

FACHADA SUR EDIFICID TALLERES
PERSIANAS CERRADAS - TELESCIPII VG.2M Escalatiod

$\stackrel{+6.00}{V}$

IMÁcENES DEL PREYECTロ

VISTA DESDE INGRESD PபBLICロ

VISTA RESIDENCIA
Y ADMINISTRACIIN

VISTA DESDE INGRESI A RESIDENCIA

RELロJ DE SロL PLAZA ASTRロNロMICA

VISTA EDIFICID DE RESIDENCIA

VISTA RESIDENCIA Y BIBLIDTECA ESPECIALIZADA

VISTA TELESCIPII PRINCIPAL
Y TELESCロPIロS AUXILIARES

TELESCIAPIG PRINCIPAL
Y TELESCOPIOS AUXILIARES

RADIロTELESCロPIロ

Conclusiones.-

- El presente trabajo de fin de carrera me permitió aplicar los conocimientos adquiridos en mis estudios universitarios y al mismo tiempo, incursionar en nuevas técnicas alternativas del momento.
- Las investigaciones realizadas para desarrollar este trabajo permitieron establecer que en nuestro país la falta de interés en los avances científicos y tecnológicos es muy notoria.
- La tecnología en la actualidad es muy importante en el desarrollo humano, para lograr nuevos descubrimientos en todos los campos, por lo cual, es necesario incentivar a la población desde temprana edad para desarrollar su interés e insertarse a los avances de la sociedad cientifica internacional. Este centro servirá de instrumento motivador a los estudiantes.
- El proyecto permitirá que la población ecuatoriana participe de la investigación y, marcará un hito en el futuro del desarrollo cientifico en nuestro país.
- Este proyecto albergará condiciones tecnológicas no tradicionales en el pais, en los sistemas electrónicos, técnicos, constructivos de los telescopios, siendo asi un gran motivador para que se integren profesionales de todas las áreas a participar de este centro.
- El tratamiento que se da a la propuesta arquitectónica, crea sensaciones en el usuario, está concebido para que haya confort en todo momento.
- Al diseñar el proyecto se pensó en el medio ambiente, se utilizaron sistemas de tecnología alternativa para de esta manera no causar grandes impactos y no producir contaminación. Se utilizó un sistema innovador de fachadas persianas, para de esta manera poder bloquear la salida de luz por las noches y no dañar la calidad de la observación astronómica.

Bibliografía.-

- Arq. Javier Arguello. Divulgador Científico. Asociado a observatorio astronómico "Pic Du Midi"
- Ara. Pedro Rodas. Socio Fundador Asociación Ecuatoriana de Astronomia, Filial de Cuenca.
- Astronomía Fundamental e Historia de la Cosmologia. BOC n 101. 30/07/99
- Conceptual Design of the Structure of the Telescope for the Roque de los
- Centro de Investigaciones de Astronomía Francisco Duarte
- Complejo Astronómico Roque de los Muchachos. Canarias.
- Dr. Ericsson López. Director Observatorio Nacional "La Alameda". Quito, Ecuador.
- Documento: Conexión Astronómica.
- Enciclopedia Salvat Diccionario. Tomo 2. Pág. 326. / Tomo 3. Pág. 1588
- Estudio Histórico: El OBSERVATORIO ASTRONOMICO DE QUITO. Lucia MOSCOSO Cordero. Quito. 1993
- Esperanza Carrasco Licea \& Alberto Carramiñana Alonso. Diario Síntesis 31 de Octubre de 2000.
- ESO workshop on Site Testing for future large telescopes; 1983, Eds P. A. Ardeberg \& L. Woltjer
- ESPAS Site Summary Series. Kauffman and Vecchione 1981, Issue 1.2, 06/03/03
- FONSAL. Fondo de Salvamento del Patrimonio Cultural de Quito.
- Font-Tullot I., 1956, "The weather in the Canary Island" (in spanish) Madrid. Servicio Nacional de Meteorología, Publ.Ser. A 26
- Keck Report. 90 Sarazin. M. 2002b, ESPAS Site Summary Series: Mauna Kea. Issue 1.1. 03/08/02
- Ley Del Cielo. Instituto de Astrofisica de Canarias IAC. 2001
- Muchachos Observatory. Julio Martínez Calzón, José María Goicolea. Febrero 2000
- Panorama de la Astronomía Moderna. Félix Cenuschi y Sayd Codina, actualizada 1976. Pág. 1
- Revista Astro Ciencia. Asociación Ecuatoriana de Astronomia de Cuenca. Ecuador. $\mathrm{N}^{\circ} 001$.
- Revista Contexto. Las ventajas que ofrece la "arquitectura modular". San José de Tucumán. Argentina.
- Sarazin M., 1995, ESO Technical Note on Site Quality Assessment: Observatorio del Roque de los Muchachos, La Palma, Islas Canarias
- Sección de Difusión del Planetario del Instituto Geográfico Militar. IGM, Quito Ecuador.
- Trabajo de fin de carrera "Observatorio Astronómico para la ciudad de Cuenca. Ecuador". Wilson Ulloa y Pedro Rodas. Pág. I
- Towards an optimal enclosure for the future large telescope. G. Pescador J. Castro, G. Winter P. Cuesta
- Video reportaje de Discovery. Construcción Observatorio Cerro Paranal. 2003
- VLT site selection working group; final report; 1990, Ed. M. Sarazin
- ZAGO, Lorenzo., The Design of Telescope Enclosures for the VLT. ESO Conference and Workshop Proc. No. 42.
- Observatorio Monte Palomar. http://www.astro.caltech.edu/palomar/scopes.html Aver \& Weber \& Assoziierte. http://www.aver-weber.de/pdf e/ESOHotelCerroParanalChile-A4web_engl.pdf
- Arq. Paula Gutiérrez. Diseñadora de los interiores de la residencia de Paranal. http://www.paulagutierrez.com/
- Observatorio astronómico " Pic Du Midi". Francia. www.picdumidi.com
- Fachadas y edificios. solución clave al calentamiento global. www.revistahabitat.com
- www.ls.eso.org
- http://www.iac.es/eno.php?opl=2
- http://www.gtc.iac.es/pages/gtc.php
- http://www.manizales.unal.edu.co/oam_manizales/hist-astronm.pdf
- http://www.iac.es/eno.php?opl=2
- http://www.soludevt.com/site/index.php/Proyectos-Comunitarios/biodigestor.html
- http://www.almediam.org/articulos/articulos 099.htm
- http://www.astrosurf.com/astronosur/monturas.htm
- http://www.astrosurf.com/astronosur/monturas.htm
- http://www.astromia.com/glosario/observastronom.htm
- http://usuarios.multimania.es/d59astro/universo/observatorios/observatorios.php
- http://www.eso.org/sci/facilities/paranal/telescopes/ut/enclosure.htmi
- http://www.iac.es/gabinete/difus/ciencia/annia/diatng.htm
- http://es.wikipedia.org/wiki/Telescopio
- http://www.manizales.unal.edu.co/oam_manizales/hist-astronm.pdf

[^0]: ${ }^{\text {a }}$ Es una exposición sistemática de las caracteristicas generales y particulares de los diversos astros; comprende, por tanto, la descripción detallada de los planetas, cometas, nebulosas, etc.
 Estudia las características fisicas de la materia cósmica mediante la aplicación de las modernas teorias físicas
 Determina la situación y movimiento de los astros y sus distancias reciprocas.
 Se propone el estudio de la evolución del universo mediante el conocimiento de la formación de la Tierra, la del sistema solar y su evolución, la de las galaxias y el comportamiento del universo en su conjunto.
 ${ }_{4}^{3}$ Enciclopedia Salvat Diccionario. Tomo 2. Pág. 326.
 ${ }^{5}$ Revista Astro Ciencia. Asociación Ecuatoriana de Astronomía de Cuenca. Ecuador. N 001.
 ${ }^{6}$ Arq. Javier Arguello. Divulgador Cientifico. Asociad y Sayd Codina, actualizada 1976. Pág, I
 "Arq. Javier Arguello. Divulgador Cientifico. Asociado a observatorio astronómico "Pic Du Midi".

[^1]: ${ }^{7}$ Dr. Ericsson López. Dírector Observatorio Nacional "La Alameda". Quito, Ecuador.

[^2]: ${ }^{8}$ Arq. Javier Arguello. Divulgador Cientifico. Asociado a observatorio astronómico "Pic du Midi"
 ${ }^{9}$ Arq. Pedro Rodas. Socio Fundador Asociación Ecuatoriana de Astronomia, Filial de Cuenca.
 ${ }^{10}$ Arq. Pedro Rodas. Socio Fundador Asociación Ecuatoriana de Astronomia, Filial de Cuenca.

[^3]: Enciclopedia Autodidacta Océano．Tomo 3．Pág． 1588
 ${ }^{12}$ Astronomia Fundamental e Historia de la Cosmologia．BOC n° 101．30／07／99

[^4]: ${ }^{15}$ FONSAL. Fondo de Salvamento del Patrimonio Cultural de Quito.

[^5]: ${ }^{16}$ Astronomia Fundamental e Historia de la Cosmologia．BOC n^{n} 101．30／07／99
 ${ }^{17} \mathrm{htp}: / / \mathrm{www}$ ．manizales．unal．edu．co／oam＿manizales／hist－astronm．pdf

[^6]: ${ }^{19}$ Documento：Conexión Astronómica．
 ${ }^{20} \mathrm{http}$ ：／／www．astrosurf．com／astronosur／monturas．htm

[^7]: ${ }^{21}$ http://www.astrosurf.com/astronosur//monturas.htm
 ${ }^{22}$ http://es.wikipedia.org/wiki/Telescopio

[^8]: ${ }^{25}$ Fuentes varias para la elaboración del proyecto óptimo:
 Observatorio astronómico " Pic Du Midi". Francia. www.picdumidi.com
 Estudio Histórico: EL OBSERVATORIO ASTRONOMICO DE QUITO. Lucia Moscoso Cordero. Quito. 1993 Arq. Javier Argüello. Divulgador Cientifico Asociado a Observatorio astronómico "Pic Du Midi". Sección de Difusión del Planetario del Instituto Geográfico Militar. IGM. Quito, Ecuador.

[^9]: ${ }^{27}$ Esperanza Carrasco Licea \& Alberto Carramiñana Alonso. Diario Sintesis 31 de Octubre de 2000.

[^10]: ${ }^{29}$ Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez Calzón, Josè Maria Goicolea. Febrero 2000

[^11]: ${ }^{5} \mathrm{http}: / /$ www.eso.org/sci/facilities/paranal/telescopes/ut/enclosure.html
 Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martínez Calzon, José Maria Goicolea. Febrero 2000

[^12]: ${ }^{12}$ Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez Calzón, José Maria Goicolea. Febrero 2000

[^13]: ${ }^{13}$ httpz//www.eso.org/sci/facilities/parana//telescopes/ut/enclosure.html

[^14]: ${ }^{34}$ Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez Calzón, José Maria Goicolea. Febrero 2000
 ${ }^{15}$ Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez Calzonceptual Josesign of Maria Goicolea. Febrero 2000

[^15]: ${ }^{36}$ Fachadas y edificios, solución clave al calentamiento global. www.revistahabitat.com

[^16]: ${ }^{37}$ Revista Contexto，Las ventajas que ofrece la＂arquitectura modular＂．San José de Tucumán．Argentina．

[^17]: ${ }_{30}^{7}$ Video reportaje de Discovery．Construcción Observatorio Cerro Paranal． 2003
 ${ }^{39}$ Arq．Javier Argüello．Divulgador Cientifico．

[^18]: ${ }^{20} \mathrm{http}: / / \mathrm{www}$. almediam.org/articulos/articulos_099.htm

[^19]: ${ }^{41}$ Observatorio Monte Palomar. hutp://www,astro.caltech.edu/palomar/scopes.hrml

[^20]: ${ }^{42}$ http://www.soludevt.com/site/index.php/Proyectos-Comunitarios/biodigestor.htm

[^21]: ${ }^{43}$ Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez Calzón, José Maria Goicolea. Febrero 2000
 ${ }^{44}$ ZAGO, Lorenzo. The Designo ZAGO, Lorenzo.. The Design of Telescope Enclosures for the VLT. ESO Conference and Workshop Proc. No. 42 ${ }_{45}$ April 1992. pgs. 235-346.
 Conceptual Design of the Structure of the Telescope for the Roque de los Muchachos Observatory. Julio Martinez

[^22]: ${ }^{46}$ Video reportaje de Discovery. Construccion Observatorio Cerro Paranal. 2003

[^23]: ${ }^{47}$ www.Is.eso.org
 ${ }^{40}$ Complejo Astronómico Roque de los Muchachos. Canarias.

[^24]: ${ }^{1}$ Video reportaje de Discovery. Construcción Observatorio Cerro Paranal. 2003
 ${ }^{51}$ http://www.iac.es/eno.php?opl=2

[^25]: ${ }^{52}$ Ley Del Cielo. Instituto de Astrofisica de Canarias IAC. 200

[^26]: ${ }^{53}$ Centro de Investigaciones de Astronomía Francisco Duarte.
 ${ }^{54}$ ESPAS Site Summary Series. Kauffman and Vecchione 1981. Issue 1.2, 06/03/03
 ${ }^{55}$ ESPAS Site Summary Series. Kauffman and Vecchione 1981. Issue 1.2, 06/03/03
 ${ }^{36}$ Keck Report. 90

[^27]: ${ }^{5 \mathrm{5K}}$ Towards an optimal enclosure for the future large telescope．G．Pescador J．Castro，G．Winter P．Cuesta

[^28]: ${ }^{59}$ www.ls.eso.org
 ${ }^{60} \mathrm{http}: / /$ www.eso.cl/teles_silla.php

[^29]: ${ }^{64}$ Video reportaje de Discovery. Construcción Observatorio Cerro Paranal. 2003

[^30]: ${ }^{65}$ www.eso.org/paranal

[^31]: ${ }^{67}$ http://www.eso.cl/paranal.php

[^32]: ${ }^{70}$ http://www.iac.es/eno.php?opl=
 ${ }^{1}$ http://www.iac.es/eno.php?opl=2

[^33]: ${ }^{72}$ http://www.gtc.iac.es/pages/gtc.php

[^34]: ${ }^{73}$ El trabajo de Fin de Carrera de Arquitectura．Guia Metodológica y Conceptual．Arq．Leonardo Miño Garcés
 ${ }^{74}$ El trabajo de Fin de Carrera de Arquitectura．Guia Metodológica y Conceptual．Arq．Leonardo Miño Garcés

[^35]: FUENTE：Cuadro realizado por la autora

